Association between Acquired Uniparental Disomy and Homozygous Gene Mutation in Acute Myeloid Leukemias

Jude Fitzgibbon, Lan-Lan Smith, Manoj Raghavan, Matthew L. Smith, Silvana Debernardi, Spyros Skoulakis, Debra Lillington, T. Andrew Lister, and Bryan D. Young

Cancer Research UK Medical Oncology Laboratory, Barts and the Royal London School of Medicine, Queen Mary College, London, United Kingdom

Abstract

Genome-wide single nucleotide polymorphism analysis has revealed large-scale cryptic regions of acquired homozygosity in the form of segmental uniparental disomy in ~20% of acute myeloid leukemias. We have investigated whether such regions, which are the consequence of mitotic recombination, contain homozygous mutations in genes known to be mutational targets in leukemia. In 7 of 13 cases with uniparental disomy, we identified concurrent homozygous mutations at four distinct loci (WT1, FLT3, CEBPA, and RUNX1). This implies that mutation precedes mitotic recombination which acts as a "second hit" responsible for removal of the remaining wild-type allele, as has recently been shown for the JAK2 gene in myeloproliferative disorders. (Cancer Res 2005; 65(20): 9152-4)

Introduction

Recently, a novel form of abnormality in acute myeloid leukemia (AML), uniparental disomy, has been revealed through the application of single nucleotide polymorphism (SNP) genotype array technology (1). Uniparental disomy, which cannot be detected by conventional cytogenetic methods, was observed in ~20% of the AMLs studied. The affected regions are evident as large stretches of somatically acquired homozygosity, usually continuing from a certain point on the chromosome to the telomere and have the hallmarks of mitotic recombination, because there is no net change in copy number in the affected region. A consequence of a mitotic recombination event is the generation of two daughter cells, each with the reciprocal chromosomal products. The homozygosity observed in AML is due to the outgrowth of one of these daughter cells. Because this phenomenon has only recently been described, the nature of the selective advantage to the cell, gained by uniparental disomy, has been uncertain. However, it was noted, first, that the distribution of affected chromosomal regions seemed nonrandom, and second, that some of the regions of uniparental disomy included genes known to be mutated in a proportion of myeloproliferative disorders. Such a situation could arise by several mechanisms, including the deletion of wild-type allele to yield a hemizygous state, amplification of the mutant allele, or mitotic recombination or deletion. To investigate this phenomenon further, we selected a total of 13 primary AMLs with uniparental disomy encompassing regions known to harbor genes potentially mutated in AML (Table 1). These included previously described and new cases of uniparental disomy which were confirmed by analysis of the SNP signal values and the karyotype. As described previously (1), such an analysis can detect the presence of acquired homozygosity and by evaluation of the signal values can determine whether it is due to mitotic recombination or deletion. To investigate this phenomenon further, we selected a total of 13 primary AMLs with uniparental disomy encompassing regions known to harbor genes potentially mutated in AML (Table 1). These included previously described and new cases of uniparental disomy which were confirmed by analysis of the SNP signal values and the karyotype.

Materials and Methods

10K GeneChip assay. DNA was extracted using standard phenol-chloroform techniques or from the organic phase of TRIzol (Invitrogen, Carlsbad, CA). DNA probes were prepared using the GeneChip mapping assay protocol (Affymetrix, Inc., Santa Clara, CA) with the modification that PCR products were purified using the Ultrafree-MC filtration column (Millipore Corp., Billerica, MA). Signal intensity data was analyzed by the GeneChip DNA analysis software, which uses a model algorithm to generate SNP calls.

Results and Discussion

SNP genotype arrays were used to analyze DNA samples from a series of AMLs. As described previously (1), such an analysis can detect the presence of acquired homozygosity and by evaluation of the signal values can determine whether it is due to mitotic recombination or deletion. To investigate this phenomenon further, we selected a total of 13 primary AMLs with uniparental disomy encompassing regions known to harbor genes potentially mutated in AML (Table 1). These included previously described and new cases of uniparental disomy which were confirmed by analysis of the SNP signal values and the karyotype.

Sequence analysis was done on nine genes in the appropriate leukemias (Table 1). Mutations were detected at four distinct loci (WT1, FLT3, CEBPA, and RUNX1) in 7 of the 13 leukemias examined. In all cases, sequence analysis indicated a homozygous mutation with no evidence of the wild-type sequence. In Fig. 1, the sequence traces showing a homozygous insertional mutation of the WT1 gene are illustrated along with the homozygosity map for chromosome 11. Similarly, a homozygous single-base insertion of the RUNX1 gene is shown with the concurrent homozygosity of 21q (Fig. 1). It was notable that uniparental disomy of 13q was associated with homozygous internal tandem duplication mutation of FLT3 (FLT3-ITD) in four separate cases.

The presence of a mutation and the absence of the wild-type sequence has previously been reported in AML: WT1 (3), CEBPA (4), and RUNX1 (5, 6). Such a situation could arise by several mechanisms, including the deletion of wild-type allele to yield a hemizygous state, amplification of the mutant allele, or mitotic recombination or deletion.
recombination. Without accurate copy number information, it has been difficult to distinguish between these possibilities. The high degree of association between uniparental disomy and homozygous mutation presented here suggests that uniparental disomy may account for a substantial proportion of cases exhibiting a lack of the wild-type allele. Indeed, it has been previously suggested that homozygous RUNX1 mutations in leukemias could be due to mitotic recombination (5). Because relatively large regions of the genome are involved, there may be more than one potential mutational target in a given region of uniparental disomy. One example of WT1 mutation was observed in the three examples of UPD11p suggesting other potential targets in this region. Similarly, because no mutations were detected in the CCND3, CDKN2A, CDKN2B, and RUNX1 genes, our data would suggest that there may be other targets in UPD6p, UPD9p, and chromosome 13. This could include nondisjunction followed by chromosome duplication. Mitotic recombination is clearly the case for WT1, RUNX1, and CEBPA mutation (Fig. 1) and suggests that mutation precedes mitotic recombination that acts to remove a normal copy of a gene and replace it with a mutated copy.

Before the introduction of SNP genotyping arrays, only a limited number of microsatellite markers could be used to detect the occurrence of mitotic recombination and the resultant uniparental disomy in tumors. In this manner, uniparental disomy has previously been shown on chromosome 9p in polycythemia vera (8). Recently, several groups have shown that a frequent mutational target in myeloproliferative disorders such as polycythemia vera is the JAK2 gene, located within 9p (9–12). Loss of heterozygosity at 9p is frequently observed in association with mutations to the JAK2 gene and has been shown to be due to mitotic recombination (9). Thus, mitotic recombination is playing a role in both myeloproliferative disorders and in AMLs, although clearly different mutational targets are involved.

In solid tumors, uniparental disomy has been observed in breast cancer (13), uveal melanoma (14), Wilm’s tumors (15), and retinoblastoma (16). In addition, the background rate of mitotic recombination has been measured (17) in normal human and mouse cells to be ~10⁻⁴ to 10⁻⁵. Thus, given the widespread nature of mitotic recombination, it is therefore very probable that the acquisition of uniparental disomy has a similar role in other tumors. In this context, it is interesting that a recent SNP array study has shown that acquired uniparental disomy of chromosome 9q is common in basal cell carcinomas (18).

Our study indicates that mitotic recombination and the resultant uniparental disomy has a role in rendering a leukemic cell homozygous for a preexisting mutation. However, there may be other potentially important consequences. Uniparental disomy will, in principle, lead to alterations in expression levels of imprinted genes. In addition, it has recently been shown that there are allelic differences in gene expression levels (19) and therefore, if these are maintained after mitotic recombination, uniparental disomy could be associated with specific gene expression patterns.

Acknowledgments

Received 6/9/2005; accepted 7/18/2005.

Grant support: Kay Kendall Leukaemia Fund and the Barts and Royal London Charitable Foundation.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Tracy Chaplin (Cancer Research UK) and Claire Taylor (Mutation Detection Facility).

Table 1. Thirteen examples of uniparental disomy were investigated for mutation

<table>
<thead>
<tr>
<th>Patient</th>
<th>FAB</th>
<th>Karyotype</th>
<th>Uniparental disomy</th>
<th>Gene</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1</td>
<td>46,XY</td>
<td>11p13-11pter</td>
<td>WT1</td>
<td>1584ins16bp (WT1)</td>
</tr>
<tr>
<td>2</td>
<td>M1</td>
<td>46,XY</td>
<td>19q12-19pter</td>
<td>CEBPA</td>
<td>1038ins57bp (CEBPA)</td>
</tr>
<tr>
<td>3</td>
<td>M2</td>
<td>46,XY</td>
<td>21q21-21pter</td>
<td>RUNX1</td>
<td>970insA (RUNX1)</td>
</tr>
<tr>
<td>4</td>
<td>M1</td>
<td>46,XX</td>
<td>13q</td>
<td>FLT3</td>
<td>ITD 21bp (FLT3)</td>
</tr>
<tr>
<td>5</td>
<td>M2</td>
<td>46,XY 6q(6)</td>
<td>13q</td>
<td>FLT3</td>
<td>ITD 63bp (FLT3)</td>
</tr>
<tr>
<td>6</td>
<td>M4</td>
<td>46,XX</td>
<td>13q</td>
<td>FLT3</td>
<td>ITD 36bp/39bp (FLT3)</td>
</tr>
<tr>
<td>7</td>
<td>M1</td>
<td>46,XX</td>
<td>13q</td>
<td>FLT3</td>
<td>ITD 108bp (FLT3)</td>
</tr>
<tr>
<td>8</td>
<td>M2</td>
<td>46 XX</td>
<td>11p11-11pter</td>
<td>WT1</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>M4</td>
<td>46 XX</td>
<td>11p11-11p14</td>
<td>WT1</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>M1</td>
<td>46,XX, dic(7;22)(q11.2q110), +8[10]</td>
<td>11q12-11pter</td>
<td>MLL</td>
<td>None</td>
</tr>
<tr>
<td>11</td>
<td>M4</td>
<td>48,XY, +3, +10[10]</td>
<td>6p21-6pter</td>
<td>CCND3</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>M1</td>
<td>46 XX</td>
<td>6p11-6pter</td>
<td>CCND3</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>M5</td>
<td>46,XY, der(12)t(1;12)(q11;p11.2)[7]/46,XY[15]</td>
<td>9pcen-9pter</td>
<td>CDKN2A</td>
<td>CDKN2B</td>
</tr>
</tbody>
</table>

Note: Mutation analysis was done on the following genes/exons: CCND3, CDKN2A, CDKN2B, PU.1, and CEBPA (entire coding region; ref. 2); WT1 (exons 7–10); FLT3 (exons 14–15); RUNX1 (exons 3–5); and MLL (PTD). Numbering of mutations is according to the following Genbank accession nos.: NM_024426 (WT1), Y11525 (CEBPA), and NM_001754 (RUNX1).

*Clonal evolution of one FLT3-ITD mutation was observed in patient 6 following uniparental disomy resulting in the addition of 3 bp (ITD = 39bp).
Figure 1. Display of uniparental disomy on 11p and 21q in two AML samples. Heterozygous calls (red) and homozygous calls (blue). The corresponding sequencing traces showing 1584ins16bp WT1 and 970insA RUNX1 homozygous mutations. WT1 and RUNX1 duplicated segments (underlined in orange).

References
Association between Acquired Uniparental Disomy and Homozygous Gene Mutation in Acute Myeloid Leukemias

Jude Fitzgibbon, Lan-Lan Smith, Manoj Raghavan, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/65/20/9152

Cited articles This article cites 18 articles, 4 of which you can access for free at:
http://cancerres.aacrjournals.org/content/65/20/9152.full.html#ref-list-1

Citing articles This article has been cited by 54 HighWire-hosted articles. Access the articles at:
/content/65/20/9152.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.