HLA-G Proteins in Cancer: Do They Provide Tumor Cells with an Escape Mechanism?

Nathalie Rouas-Freiss, Philippe Moreau, Soldano Ferrone, and Edgardo D. Carosella

Abstract

Convincing clinical evidence indicates that the limited success of T-cell–based immunotherapy of malignant diseases is caused, at least in part, by the ability of malignant cells to escape from immune recognition and destruction. Among the multiple escape mechanisms identified, a major role is played by changes in the expression and/or function of HLA antigens expressed by tumor cells, because they may markedly affect tumor cell-host’s immune system interactions. In this article, we review the data about the aberrant expression of the nonclassical HLA class I antigen HLA-G by tumor cells. Furthermore, we discuss the possible reasons for the conflicting information in the literature about HLA-G antigen expression by malignant cells. Lastly, in light of the well-documented immunotolerant function of HLA-G, we discuss the potential role of these antigens in the escape of tumor cells from immune recognition and destruction in the clinical course of malignant diseases.

Introduction

Early studies have shown that the expression of the nonclassic HLA class I molecule HLA-G is restricted to the fetal-maternal interface on the extravillous cytotrophoblast (1). The presence of HLA-G at this immunologically privileged site was proposed to serve as a protection for the fetus from maternal allorecognition. This possibility is supported by the ability of HLA-G to suppress immune cell functions, such as natural killer (NK) cell–mediated and CTL-mediated cytosis and T-cell proliferative response (for review, see ref. 2).

Over the past few years, the distribution of HLA-G in normal tissues has been found to be broader than originally reported: (a) HLA-G molecules have been detected in embryonic tissues from oocyte to blastocyst stage and then in invasive trophoblast, amniotic cells and fluid, endothelial cells from the chorionic villi, and erythroid cells in all organs sustaining primitive to definitive erythropoiesis; (b) in adult tissues, HLA-G antigens have been detected in thymic epithelial cells, in the epithelium, endothelium, and keratocytes from cornea, and in cells of the erythropoietic lineage from bone marrow (2). In addition, HLA-G antigens have been unexpectedly found in various types of malignant cells. The aberrant expression of HLA-G antigens by tumor cells has been suggested to be part of the strategies they use to escape from host’s immunosurveillance, in analogy with the role of HLA-G antigens in the escape of trophoblasts from maternal allorecognition (3).

Because of the current interest in defining the molecular nature of the immune escape mechanisms used by tumor cells, the potential role of HLA-G in these phenomena, and the significant amount of new data presented at the third international conference on HLA-G (4), in this article, we (a) describe the structural and functional characteristics of HLA-G antigens, (b) review the information about their expression in malignant cells, and (c) discuss the potential role of HLA-G antigens in tumor cell escape mechanisms and in the clinical course of malignant diseases.

Structural and Functional Characteristics of HLA-G Molecules

Besides its limited polymorphism with the expression of 15 alleles (including 1 null allele; for review, see ref. 2), a distinct feature of HLA-G is its possible expression in seven isoforms. Alternative splicing of the primary HLA-G transcript leads to the synthesis of the four membrane-bound HLA-G1, HLA-G2, HLA-G3, and HLA-G4 isoforms as well as of the three soluble HLA-G5, HLA-G6, and HLA-G7 isoforms.

HLA-G antigens play a key role in the establishment and maintenance of immune tolerance by inhibiting the function(s) of immunocompetent cells (2). Such inhibitory effects are mediated by the direct binding of HLA-G to inhibitory receptors [i.e., immunoglobulin-like transcript (ILT)-2 (CD85j) expressed by lymphoid and myelomonocytic cells and ILT-4 (CD85d) expressed by dendritic cells, macrophages, and monocytes]. Although both receptors have other HLA class I ligands, they have been reported to have the highest affinity for HLA-G (2). Furthermore, KIR2DL3/p49 (CD158d) has been described as a HLA-G-specific receptor expressed by all NK cells. Therefore, the HLA-G protein can, through these receptors, directly interact with B, NK, T, and antigen-presenting cells and exert its immunotolerant functions at different stages of the immune response (i.e., differentiation, proliferation, cytosis, and cytokine secretion). HLA-G may also exert its immunosuppressive effect through an indirect pathway by allowing the cell surface expression of HLA-E, another nonclassical HLA class I molecule. The latter molecule inhibits both NK and T cells by interacting with the inhibitory receptor CD94/NKG2A (5).

It is of note that the above-described functions are not exclusive to HLA-G1 protein but are shared with the HLA-G2, HLA-G3, and HLA-G4 protein isoforms (2) and with the soluble HLA-G5, HLA-G6, and HLA-G7 isoforms.

locally where they are expressed, soluble HLA-G5 may exert functions in the nearby environment of its site of origin and at distant sites because of distribution via the circulation system.

Cytokine-mediated effects represent another molecular mechanism by which HLA-G can exert immunosuppression. In this regard, HLA-G has been shown to modulate the release of cytokines from peripheral blood and decidual mononuclear cells toward Th2 profile. HLA-G protein may in turn be induced by several cytokines, such as granulocyte macrophage colony-stimulating factor, interleukin (IL)-10, IFNs, and leukemia inhibitory factor (for review, see ref. 2). Interestingly, the presence of IL-10, which is secreted by cutaneous lymphoma cells and is able in vitro to induce HLA-G expression, is correlated with HLA-G protein expression in these tumors (7). Because of their immunosuppressive properties (2), IL-10 and HLA-G might both contribute to the evasion of malignant cells from immunosurveillance and favor the transition from low-grade to high-grade lymphoma.

Both IFN-β and IFN-γ have been shown to enhance HLA-G cell surface expression in vitro (2). Therefore, one potential side effect of the administration of IFNs for immunotherapy of malignant diseases is represented by the up-regulation of HLA-G expression at the tumor site. This phenotypic change may confer immunoprotection to tumor cells, thus facilitating their spreading in the host (8, 9). In this regard, an association has been described between lack of clinical response to therapy with high-dose IFN-α2b and HLA-G expression in melanoma lesions (9). This association suggests that screening of melanoma lesions for HLA-G expression may represent a useful strategy to identify patients with melanoma who are likely to benefit from therapy with IFN-α.

HLA-G antigens have also been reported to be expressed by immune cells infiltrating tumor sites and in peripheral blood from cancer patients (7, 8, 10–13). In view of the expression of the HLA-G-binding inhibitory receptors (ILT-2 and ILT-4) on B and T lymphocytes as well as on dendritic cells and monocytes/macrophages, it remains to be determined whether HLA-G immunoreactivity in these cells is due to endogenous expression of HLA-G or to the binding of soluble HLA-G molecules to these receptors. These studies will benefit from the recently developed antibodies, which react specifically with soluble HLA-G proteins (4). Notably, antigen-presenting cells, such as dendritic cells and monocytes/macrophages, are able to endogenously express HLA-G upon in vitro cytokine treatment, such as IFN and IL-10, supporting an immunoregulatory activity in these cells within a tumor microenvironment containing such cytokines (2). Therefore, HLA-G antigens expressed by such antigen-presenting cells may block the triggering of a patient's immune response to his own tumor. This possibility is supported by the ability of HLA-G tetramers to inhibit the maturation of immature dendritic cells into mature and stimulatory dendritic cells via binding to the ILT-4 receptor in humans and to the paired immunoglobulin-like receptor-β receptor in mice (14). Moreover, HLA-G-positive antigen-presenting cells have been shown recently to inhibit CD4+ T cells in response to antigen stimulation and to trigger their differentiation into suppressor cells (4).

HLA-G Expression in Malignant Lesions

The scientific community's interest in assessing the potential role of HLA-G in tumor cell escape from immunosurveillance has stimulated the analysis of HLA-G expression in malignant lesions. During the last 5 years, >1,000 malignant lesions have been tested for HLA-G expression. The assay systems used include immunohistochemical staining of frozen and formalin-fixed, paraffin-embedded tissue sections with monoclonal antibody (mAb) and Western blotting analysis of tumor lesion lysates with mAb. The HLA-G1 and HLA-G5 antigen–specific mAb 87G and the HLA-G-specific mAb 4H84 have been used as probes in most of the studies. The specificity of both mAbs has been validated during international workshops on HLA-G/HLA-E. The mAb 4H84 is not commercially available, whereas the mAb 87G has become recently commercially available.

The information in the literature about HLA-G expression in various types of tumors, which is summarized in Fig. 1, deserves several comments. First, 16 types of tumors have been analyzed. Seven are of ectodermic origin, six of mesodermic origin, and three of endodermic origin. Second, different numbers of lesions have been analyzed in each type of malignancy. The largest number of samples has been analyzed in leukemia (15). Among solid tumors, the number of lesions analyzed ranges from ~10 in basal cell carcinoma to >100 in melanoma (9, 16, 17) and in

![Figure 1. HLA-G expression in tumor lesions. For each tumor type, the total number of lesions indicated as # and the corresponding percentage of HLA-G-positive lesions were determined by taking into account all the studies published up to now. Malignant tumors were divided into three groups: those without detectable HLA-G expression (A), those with <28% of lesions expressing HLA-G (B), and those with >37% of lesions expressing HLA-G (C).](image-url)
Increased Soluble HLA-G Levels in Serum and Ascites from Patients with Malignancies

Like other types of HLA class I antigens, soluble HLA-G antigens are present in serum. Their level, which has been measured using various antibody-based assays, is ~20 ng/mL in healthy individuals (24, 25). Regarding the source of soluble HLA-G in vivo, both immune cells and tumor cells may produce it. For instance, HLA-G antigens are expressed in peripheral blood monocytes from melanoma patients with elevated soluble HLA-G serum level (8). Furthermore, T cells, dendritic cells, and monocytes/macrophages are able to secrete soluble HLA-G molecules in vitro (2, 25). Serum HLA-G antigens, which are derived from the release of membrane-bound HLA-G isoforms, like HLA-G1 (HLA-G1s for HLA-G1 shedding), and from the secretion of soluble HLA-G isoforms, like HLA-G5, may affect antitumor immune response both locally at the tumor site and systemically by distribution via the circulation. Soluble HLA-G plasma levels are significantly increased in patients with malignant melanoma, glioma, and breast and ovarian carcinoma (25) as well as in those with lymphoproliferative disorders (26). Notably, in patients suffering from glioblastoma multiforme, their survival after tumor diagnosis is inversely correlated with serum HLA-G level (8). These observations parallel results in transplanted patients in whom increased soluble HLA-G serum level is associated with an improved allograft acceptance (24, 27). Taken together, these findings suggest that an increased soluble HLA-G level in biological fluids is associated with a down-modulation of the immune response.

In agreement with this possibility, soluble HLA-G levels are increased in malignant ascites from ovarian and breast carcinomas compared with benign ones. This finding leads to the possibility that HLA-G may be a potential tumor marker and that measurement of soluble HLA-G constitutes a useful way in addition to cytology for the differential diagnosis of malignant versus benign ascites (18). Furthermore, HLA-G expression in...
cancer cells from malignant effusions has been proposed as a possible marker of tumor susceptibility to chemotherapy in patients with advanced-stage ovarian carcinoma (19).

Whether a relationship exists between HLA-G expression in the tumor lesion and its serum level remains still to be determined. To the best of our knowledge, only one type of patient’s sample (biopsy or serum) has been analyzed in all studies, except one. In this study on leukemia patients, plasma HLA-G levels tended to be higher in patients with HLA-G-positive leukemias than in those with HLA-G-negative leukemias (15). In patients with breast and ovarian carcinoma, the frequency of HLA-G expression in tumors as measured by immunohistochemistry is lower than that in malignant ascites as measured with an antibody-based ELISA (18).

In vitro HLA-G Expression by Cell Lines

More than 200 cell lines have been studied up to now for their expression of HLA-G on the cell surface by flow cytometry or in the cytoplasm by immunocytochemistry and Western blot analysis. The results in the literature about HLA-G expression by cell lines are more discordant than those derived from the analysis of surgically removed tumor lesions. It is a general experience that, with the exception of choriocarcinoma cell lines, HLA-G is expressed in a very low number of cell lines in long-term culture. As discussed already with malignant lesions, cell lines can be divided into three groups: (a) in some types of cell lines, such as breast carcinoma cell lines, HLA-G has never been detected; (b) in melanoma cell lines (28) and renal cell carcinoma cell lines (21), HLA-G has been detected only in a minority of cell lines; and (c) in cell lines of neuroectodermal origin, HLA-G is expressed in the large majority of cell lines (29). Interestingly, incubation with IFN (α, β, and γ) enhances HLA-G1 cell surface expression on cell lines that express this antigen (21). More relevant, incubation with IFN-γ up-regulates HLA-G1 gene transcription and induces HLA-G1 cell surface expression on cell lines without detectable expression of this antigen (29).

The discrepancy between the in vitro data and the results obtained by testing surgically removed lesions may reflect the lack in tissue culture medium of factors that induce and maintain HLA-G expression in the tumor microenvironment. In agreement with this possibility is our recent finding that HLA-G was lost after several passages in culture by a melanoma cell line that had a high HLA-G expression when established from a HLA-G-positive melanoma biopsy (ref. 30; Fig. 3). Similarly, HLA-G expression was down-regulated or even lost following a few passages in culture by short-term ovarian carcinoma cell lines and renal carcinoma cell lines, whereas classical HLA class I antigen expression was not affected under these conditions (20, 31). These results should be kept in mind when analyzing the results obtained with cell lines because most of them have been cultured in vitro for many years.

The factors that are involved in ectopic activation of HLA-G gene transcription and protein expression in tumor cells remain to be defined. In this regard, a model has recently been proposed that may account for the preferential in vitro HLA-G expression in tumor cells (32). When malignant transformation occurs, tumor cells are likely to be exposed to a variety of cytokines and of stress factors from the tumor microenvironment and to undergo epigenetic changes, such as DNA hypomethylation and histone acetylation, which activate the HLA-G gene (33). The appearance of HLA-G on tumor cells may then down-regulate cellular immune responses and increase their chances of survival. However, on adaptation to tissue culture, tumor cells are not exposed to the same stressful conditions. Consequently, methylation of the HLA-G promoter and silencing of the gene may occur.

Functional Significance of HLA-G Expression by Tumor Cells

Like trophoblasts that do not express classical HLA class I antigens (1), allowing their escape from CTL killing, human tumor cells frequently down-regulate or lack classical HLA class I molecule expression. These defects, which may be associated with loss of heterozygosity (34), are often associated with a poor clinical course of the disease, although such classical HLA class I-deficient tumor cells should be susceptible to NK cell–mediated lysis. This finding has led to the hypothesis that malignant cells are protected from NK cell–mediated killing by HLA-G antigens.

Figure 3. Loss of HLA-G cell surface expression during long-term culture of a melanoma cell line derived from a surgically removed primary melanoma lesion. A formalin-fixed, paraffin-embedded primary melanoma lesion section was positively stained by gp100-specific mAb HMB45 and by HLA-G-specific mAb 4H84. A melanoma cell line was derived in vitro from the tumor lesion. The primary culture cell line expressed high levels of HLA-G1 that was maintained until passage 40 (P40). HLA-G cell surface expression started to decrease at passage 66 (P66) and became undetectable at passage 70 (P70). HLA-G expression was not detectable on the long-term propagated cell line. HLA-G1 cell surface expression was assessed by flow cytometry analysis of cells stained with HLA-G1-specific mAb MEM-G/9.

Like trophoblasts that do not express classical HLA class I antigens (1), allowing their escape from CTL killing, human tumor cells frequently down-regulate or lack classical HLA class I molecule expression. These defects, which may be associated with loss of heterozygosity (34), are often associated with a poor clinical course of the disease, although such classical HLA class I-deficient tumor cells should be susceptible to NK cell–mediated lysis. This finding has led to the hypothesis that malignant cells are protected from NK cell–mediated killing by HLA-G antigens.

Like trophoblasts that do not express classical HLA class I antigens (1), allowing their escape from CTL killing, human tumor cells frequently down-regulate or lack classical HLA class I molecule expression. These defects, which may be associated with loss of heterozygosity (34), are often associated with a poor clinical course of the disease, although such classical HLA class I-deficient tumor cells should be susceptible to NK cell–mediated lysis. This finding has led to the hypothesis that malignant cells are protected from NK cell–mediated killing by HLA-G antigens.

Like trophoblasts that do not express classical HLA class I antigens (1), allowing their escape from CTL killing, human tumor cells frequently down-regulate or lack classical HLA class I molecule expression. These defects, which may be associated with loss of heterozygosity (34), are often associated with a poor clinical course of the disease, although such classical HLA class I-deficient tumor cells should be susceptible to NK cell–mediated lysis. This finding has led to the hypothesis that malignant cells are protected from NK cell–mediated killing by HLA-G antigens.

Like trophoblasts that do not express classical HLA class I antigens (1), allowing their escape from CTL killing, human tumor cells frequently down-regulate or lack classical HLA class I molecule expression. These defects, which may be associated with loss of heterozygosity (34), are often associated with a poor clinical course of the disease, although such classical HLA class I-deficient tumor cells should be susceptible to NK cell–mediated lysis. This finding has led to the hypothesis that malignant cells are protected from NK cell–mediated killing by HLA-G antigens.
In addition, the expression of HLA-G in short-term ovarian carcinoma cell lines has resulted in resistance of these cells to lysis by peptide-specific and allospecific CD8\(^+\) T cells. This effect was not directly due to HLA-G but reflects its ability to induce HLA-E expression on tumor cells (31). Finally, exosomes secreted by HLA-G-positive melanoma cells have been found to bear HLA-G on their membrane (35).

Ligands that activate NK cell–mediated tumor cytotoxicity, such as the stress-inducible molecule MICA, have been reported to be selectively switched on in various tumors of both epithelial and nonepithelial origins (36). Analysis of the balance between the activating signal delivered by MICA and the inhibitory signal generated by HLA-G1 on NK cell–mediated lysis of a melanoma cell line has showed that HLA-G1 counteracts the triggering signal of MICA (37). This finding suggests that in vivo the overexpression of inhibitory ligands, such as HLA-G, by tumor cells may bypass activating signal(s) mediated by MICA, thereby favoring tumor progression (38).

Conclusion

During the last few years, the HLA-G field has evolved from being a topic restricted to reproduction to a very broad topic that spans from oncology to transplantation to autoimmunity as illustrated by the many presentations at the last international conference on HLA-G (4). Consequentially, in a short time, a significant amount of information has been accumulated, particularly on HLA-G in tumors.

Based on the information we have reviewed, we propose that HLA-G whose engagement generates inhibitory signals in various immune cells may represent a mechanism used by tumor cells to escape from immunosurveillance (Fig. 4). Testing of the validity of this possibility will benefit from the development of an animal model system. This model would also provide the opportunity to test the affect on the clinical course of malignant diseases of strategies, which interfere with HLA-G expression and/or function.

Furthermore, the relationship found between HLA-G expression in melanoma lesions and clinical response to therapy with IFN-\(\alpha\) (9) suggests that HLA-G expression in tumor lesions should be taken into account in the evaluation of the outcome of immunology-based therapies of malignant diseases. Lastly, the recently described association of HLA-G expression in B-cell chronic lymphocytic leukemia with a strong immunodeficiency and a poor clinical evolution raises the possibility that HLA-G expression may represent a useful prognostic marker in at least some malignant diseases (15).

Acknowledgments

Grant support: Commissariat à l’Énergie Atomique, Association pour la Recherche sur le Cancer, Établissement Français des Greffes, Vaincre la Mucoviscidose, and USPHS grants BO1CA67108, BO1CA110249, and BO1CA113861 awarded by the National Cancer Institute, Department of Health and Human Services.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

3. Chang CC, Campoli M, Ferrone S, HLA-G expression on tumor cells and/or by immune cells induces apoptosis of activated CD8\(^+\) T cells by binding to CD8 and by triggering a Fas/FasL–dependent pathway. Lastly, whereas membrane-bound HLA-G down-regulates IFN secretion by T cells, soluble HLA-G stimulates the release of IL-3, IL-4, and IL-10. Thus, HLA-G induces Th2 cytokine profile that in turn up-regulates HLA-G expression at the tumor site. These multiple immunosuppressive effects are mediated by the binding of HLA-G to several receptors, including CD8, KIR2DL4/p49, ILT-2, and ILT-4.

HLA-G Proteins in Cancer: Do They Provide Tumor Cells with an Escape Mechanism?

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/65/22/10139

Cited articles
This article cites 38 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/65/22/10139.full.html#ref-list-1

Citing articles
This article has been cited by 14 HighWire-hosted articles. Access the articles at:
/content/65/22/10139.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.