Steroid Receptor Regulation of Epidermal Growth Factor Signaling through Src in Breast and Prostate Cancer Cells: Steroid Antagonist Action

Antimo Migliaccio, Marina Di Domenico, Gabriella Castoria, Merlin Nanayakkara, Maria Lombardi, Antonietta de Falco, Antonio Bilancio, Lilian Varricchio, Alessandra Ciociola, and Ferdinando Auricchio

Dipartimento di Patologia Generale, Facoltà di Medicina e Chirurgia, II Università di Napoli, Naples, Italy

Abstract

Under conditions of short-term hormone deprivation, epidermal growth factor (EGF) induces DNA synthesis, cytoskeletal changes, and Src activation in MCF-7 and LNCaP cells. These effects are drastically inhibited by pure estradiol or androgen antagonists, implicating a role of the steroid receptors in these findings. Interestingly, EGF triggers rapid association of Src with androgen receptor (AR) and estradiol receptor α (ERα) in MCF-7 cells or ERβ in LNCaP cells. Here, we show that, through EGF receptor (EGFR) and erb-B2, EGF induces tyrosine phosphorylation of ERα preassociated with AR, thereby triggering the assembly of ER/AR with Src and EGFR. Remarkably, experiments in Cos cells show that this complex stimulates EGF-triggered EGFR tyrosine phosphorylation. In turn, estradiol and androgen antagonists, through the Src-associated receptors, prevent Src activation by EGF and heavily reduce EGFR tyrosine phosphorylation and the subsequent multiple effects, including DNA synthesis and cytoskeletal changes in MCF-7 cells. In addition, knockdown of ERα or AR gene by small interfering RNA (siRNA) almost abolishes EGFR tyrosine phosphorylation and DNA synthesis in EGF-treated MCF-7 cells. The present findings reveal that steroid receptors have a key role in EGF signaling. EGFR tyrosine phosphorylation, depending on Src, is a part of this mechanism. Understanding of EGF-triggered growth and invasiveness of mammary and prostate cancer cells expressing steroid receptors is enhanced by this report, which reveals novel aspects of steroid receptor action. (Cancer Res 2005; 65(22): 10585-93)

Introduction

Growth factors and steroid receptors control breast cancer progression. In the absence of estradiol, epidermal growth factor (EGF) activity converges on the estradiol receptor (ER) in human mammary cancer-derived cells, as well as in uterine, thereby triggering DNA synthesis and cell proliferation. EGF can also activate genes regulated by estrogen-responsive elements (1–3). In addition, growth factors directly activate androgen receptor (AR) in androgen-deprived prostate cancer cells (4). An increase in uterine weight and proliferation of the uterine epithelial cells follows EGF or insulin-like growth factor-I (IGF-I) treatment of ovariectomized mice. Interestingly, these effects are not observed in ERα knockout mice, indicating that ERα is required in this case (3).

Tyrosine kinases are involved in human breast cancer development and EGF receptor (EGFR) is amplified in 10% to 35% of human breast carcinomas. This event is correlated with a poor disease prognosis (5). Elevated Src activity has been found in breast tumor specimens and cell lines (6). Moreover, both EGFR and Src are overexpressed in a subset of human breast tumors and a wealth of evidence indicates physical and functional associations between EGFR and Src (reviewed in ref. 7). Expression of a dominant-negative form of Src in murine fibroblasts interferes with EGF-induced mitogenesis and cytoskeletal changes (8). In addition, Src has been implicated in the regulation of EGFR endocytosis (9). Therefore, Src seems to be a component of the signaling pathway elicited by EGF.

MCF-7 and LNCaP cells are hormone-responsive cells derived from human mammary and prostate cancers, respectively. They express AR and either ERα (MCF-7) or ERβ (LNCaP) and are widely used to analyze the effect of sex-steroid hormones and the cross-talk between growth factors and steroid hormones. We previously reported that in MCF-7 and LNCaP cells, ER and AR, once activated by steroid hormones, stimulate a mitogenic signaling network known to be engaged by growth factors (10, 11). In this report, we attempted to shed light on the cross-talk between EGFR and steroid receptors and to determine the effect of the steroid antagonists on mammary and prostate cancer cells in the absence of steroid hormones. We now observe that in the two human cancer-derived cell lines, under conditions of short-term hormone deprivation, specific steroid antagonists suppress EGF-induced DNA synthesis, cytoskeletal changes, and Src activation. Our analysis of the effect of these antagonists revealed unexpected features in the cross-talk between EGFR and steroid receptors. EGF induced ER/AR/Src complex in MCF-7 and LNCaP cells. A small percentage of the total AR, ERα, or ERβ was found to be associated in these cells under basal conditions. These preassociated receptors, together with ER tyrosine phosphorylation elicited by EGF, play a major role in the heterodimer steroid receptor interaction with Src and the regulation of Src-dependent action. We suggest that once Src-associated receptors are occupied by steroid antagonists, they interfere with the EGF-induced active AR/ER/Src complex, thereby silencing their effects on Src. One of these, and probably the most unexpected, is EGFR tyrosine phosphorylation. Remarkably, ERα and AR knockdown by small interfering RNA (siRNA) heavily reduces EGFR tyrosine phosphorylation as well as DNA synthesis stimulated by EGF in MCF-7 cells.
The role of the steroid receptors in EGF signaling is further stressed by experiments in Cos cells showing that EGFR tyrosine phosphorylation triggered by EGF is strongly up-regulated by transient expression of ERs and AR, provided that the AR/ER/Src complex can be assembled.

Materials and Methods

Constructions and small interfering RNA. cDNAs encoding hAR, wild-type hER (HEGO), HEG241, and the point-mutated (HEG537E) forms of hERs were cloned into pSG5 expression vector as described previously (11–14). The wild-type and the kinase-inactive form of Src (Lys579 changed to methionine) were cloned into pSG5 as reported (15). Smart pools of double-stranded siRNA against AR as well as nonspecific siRNAs were obtained from Dharmacon Tech (Lafayette, CO). The stealth RNA interference (RNAi) against ERα obtained from Dharmacon Tech (Lafayette, CO). The negative control siRNA Alexa Fluor 488 (at 15 nmol/L) to help identify transfected cells was revealed with the ECL detection system (Amersham Biosciences, Buckingham, United Kingdom).

Cell culture and transfection techniques. Human mammary cancer-derived MCF-7 and MDA-MB231 cells were grown and made quiescent as reported elsewhere (16). Human prostate cancer-derived LNCaP and Cos cells were grown and made quiescent as previously reported (10, 11). When indicated, Cos cells were made quiescent by serum starvation (17). Quiescent cells were transfected by Superfect (Qiagen) using 2 μg of purified plasmids. Twenty-four hours later, transfected cells were left unstimulated or stimulated with the indicated compounds. For the siRNA studies, MCF-7 cells at 70% confluence were transfected in complete medium with LipofectAMINE 2000 Reagent according to the instructions of the manufacturer. RNAi against ERs was transfected for 48 hours, and siRNA against AR was transfected for 24 hours. Cells were then made quiescent and left unstimulated or stimulated with the indicated compounds.

DNA synthesis analysis and cytoskeletal changes. For BrdUrd incorporation analysis, quiescent cells on coverslips were left unstimulated or stimulated for 24 hours with the indicated compounds. After a 6-hour pulse with 100 μmol/L BrdUrd (Sigma, St. Louis, MO), BrdUrd incorporation was analyzed as described (16) and nuclei were stained with Hoechst 33258 (Sigma). For the siRNA studies, the cells were cotransfected with negative control siRNA Alexa Fluor 488 (at 15 nmol/L) to help identify transfected cells and BrdUrd incorporation was analyzed as reported (16) using Alexa Fluor 594–conjugated mouse monoclonal anti-BrdUrd antibody (Molecular Probes, Eugene, OR). For cytoskeletal changes, cells on coverslips were made quiescent by serum starvation (0.1% serum) for 16 hours. They were then left unstimulated or stimulated for 20 minutes with the indicated compounds. F-actin was visualized using either Texas red or FITC-labeled phalloidin as reported (17). Finally, coverslips were mounted in Mowiol (Calbiochem, Darmstadt, Germany). Images were generated with a DMLB fluorescence microscope (Leica, Wetzlar, Germany) equipped with ×40 and ×100 lens and processed with IM1000 software (Leica).

Immunoprecipitation, kinase, and Ras assays. Lysates were prepared as described previously (10) and protein concentration was measured with a Bio-Rad protein assay kit (Bio-Rad, Hercules, CA). Equal amounts of cell lysates (2 mg protein/mL) were used for immunoprecipitation and kinase assay of Src and extracellular signal-regulated kinase-2 (Erk-2; ref. 10). ERα was immunoprecipitated using the anti-ER rabbit polyclonal antibody (HC-20, Santa Cruz, Santa Cruz, CA) and AR was immunoprecipitated using the anti-AR rabbit polyclonal antibody (N-20, Santa Cruz). EGFR was immunoprecipitated using the anti-EGFR rabbit polyclonal antibodies (UBI, Charlotteville, VA). The Ras activation assay kit (UBI) was used for Raf-BBD pullout.

Protein-protein interaction assay. Recombinant proteins were produced as previously described (11). Coupled in vitro transcription/translation reactions were used to produce 35S-labeled proteins in rabbit reticulocyte lysates (Promega, Madison, VA) and protein-protein interaction assays were done according to the same report (11). Eluted proteins were resolved by SDS-PAGE and protein bands were revealed by fluorography.

Electrophoresis and immunoblotting. The electrophoresis and immunoblotting procedures were done as described elsewhere (10). Src was revealed using the mouse monoclonal anti-Src antibody (clone 327; Calbiochem), EGFR was visualized using anti-EGF receptor rabbit polyclonal antibody (UBI), and Ras was detected using anti-pan Ras antibody (UBI). P-tyrosine proteins were detected using the mouse monoclonal antiphosphotyrosine antibody (clone 2G4, UBI). The rabbit polyclonal anti-AR antibodies (either C-19 or N-20, Santa Cruz) were used to reveal AR. EBox was immunoblotted using the rabbit polyclonal anti-ER (HC-20, Santa Cruz) antibody. Modulator of nongenomic activity of estrogen receptor (MNAR) was detected using rabbit polyclonal anti-PELP1/MNAR antibody (Novus Biologicals, Littleton, CO). Immunoreactive proteins were revealed with the ECL detection system (Amersham Biosciences, Bucks, United Kingdom).

Results

Epidermal growth factor–stimulated DNA synthesis and cytoskeletal changes in MCF-7 cells are regulated by steroid receptors and Src. EGF (100 ng/mL) stimulated the S-phase entry of MCF-7 cells maintained in phenol red–free medium supplemented with charcoal-treated serum (Fig. 1A). This response was similar in intensity to that of the same cells treated with 10 nmol/L estradiol (Fig. 1A). In accordance with a previous report (1), the effect of EGF was abolished by 10 μmol/L ICI 182,780, a pure antiestrogen. The same antagonist showed a similar effect at a 100-fold lower concentration (not shown). Because estradiol and androgen stimulate cross-talk between ERα and AR in MCF-7 cells (11), we verified the effect of a pure antiandrogen, Casodex, on the effect of EGF. Interestingly, Casodex also (10 μmol/L) abolished the growth hormone effect (Fig. 1A). This antagonist also inhibited the G1/S transition at a concentration of 0.1 μmol/L (not shown). Effects similar to those of the two steroid antagonists were observed in the presence of the Src kinase family inhibitor, PP2 (Fig. 1A), as well as in cells transiently transfected with siRNA silencing EBox or AR (Fig. 1B and C).

Alternatively, these findings indicate that steroid receptors and Src play a key role in EGF-triggered DNA synthesis.

EGF evokes dramatic morphologic changes and stress fiber breakdown in a number of cell types (18). Here, we show that EGF at a concentration of 100 ng/mL rapidly induces fan-like membrane protrusions and ruffles in MCF-7 cells. Also, in this case, both steroid antagonists prevented EGF-induced cytoskeletal changes (Fig. 1D). Src activity is also involved in these responses as indicated by the PP2 inhibitory effect on EGF-induced cytoskeletal changes (Fig. 1D). Findings in Fig. 1 show that the two steroid receptors and Src have a key role in the EGF-elicited effects in MCF-7 cells.

Epidermal growth factor–triggered Src activation in MCF-7 cells is inhibited by steroid antagonists. The effect of EGF on DNA synthesis and membrane ruffling is inhibited by steroid antagonists and Src inhibitor, PP2. Src family tyrosine kinases are involved in signaling of different growth factor receptors including EGFR. They can promote initiation of signaling pathways required for DNA synthesis and actin cytoskeleton rearrangements (19). Therefore, we evaluated the effect of 10 μmol/L ICI 182,780 on EGF-stimulated Src activity. The activity was measured as enolase phosphorylation by the immunoprecipitated Src. We used control antibodies to verify that Src immunoprecipitation was specific and that the samples contained equal amounts of Src (Fig. 2A). EGF activated Src, whereas ICI 182,780 prevented this activation. Because Src acts upstream of Ras and the Ras-dependent kinase cascade, we evaluated the effect of ICI 182,780 on EGF-induced
Ras and Erk-2 activation. The estradiol antagonist reduced the robust activation by EGF of Ras and Erk-2 (Fig. 2A). These findings indicate that ERα plays a major role in the regulation of EGF-elicited signaling. In addition to preventing Src activation by the synthetic androgen, R1881, Casodex also prevented the EGF-induced activation of Src in MCF-7 cells, which express AR (Fig. 2B).

We then used AR-positive and ER-negative MDA-MB231 cells to verify whether ER is directly involved in EGF-stimulated signaling, as suggested by the inhibitory effect of antiestrogen. Although EGF was a stimulus of Src activity in these cells, Src activation was unaffected by ICI 182,780 but was abolished by Casodex (Fig. 2C, left). This effect of Casodex confirms the crucial role of steroid receptors on Src activity during EGF signaling. In contrast, the antiestrogen completely inhibited Src activity in MDA-MB231 cells forced to express ERα (Fig. 2C, right). Therefore, we conclude that inhibition of EGF-induced Src activation by ICI 182,780 requires ERα expression.

Epidermal growth factor induces rapid estradiol receptor α and androgen receptor association with Src and epidermal growth factor receptor in MCF-7 cells and in transiently transfected Cos cells. Estradiol and androgen induce rapid
activation, EGF induces or increases the association of ER
association (11). Here, we show that, simultaneous to Src
interacts with the Src-SH2 domain and is required for ER/Src
interaction (20), was also expressed instead of wild-type ERα (Fig. 3D, left). Cells were then stimulated with EGF and lysates were immunoprecipitated with anti-Src antibody. Immunoblotting revealed that the samples contained equal amounts of Src (Fig. 3D, right, top). As shown in Fig. 3D (right), EGF was a potent inducer of the Src/AR/ERα complex in cells expressing wild-type ERα. The association with Src of the mutant was very weak and that of AR was absent, which shows that ERα tyrosine phosphorylation in position 537 is required for the coexpressed receptors/Src complex assembly.

When MCF-7 cells were stimulated by EGF for 5 minutes, association of the EGFR with ER, AR, Src, and MNAR was detectable. It has been reported that MNAR modulates the estradiol-dependent ER interaction with Src (21). Its association in the EGFR/ER/AR/Src complex triggered by EGF supports the view that this protein interacts with activated ER. In the absence of the growth factor, no association of the EGFR with these proteins was observed (Fig. 4A, left).

In addition, in Cos cells transiently expressing hERα or its mutant HE241G, EGF induces association of its own receptor not only with the wild-type hERα but also with the HEG241 mutant (Fig. 4A, right). Because the HE241G mutant does not bind DNA, lacks the nuclear localization signal (14), and permanently resides

association of Src with AR and ERβ or ERα in LNCaP and MCF-7 cells, respectively (11). Phosphotyrosine 537 of ERα directly interacts with the Src-SH2 domain and is required for ER/Src association (11). Here, we show that, simultaneous to Src activation, EGF induces or increases the association of ERα and AR with Src in MCF-7 cells (Fig. 2A and 3C, respectively).

We next investigated the role of EGFR-tyrosine kinase and erb-B2 in Src/ERα/AR association. A selective inhibitor of EGFR-tyrosine kinase, Iressa (ZD 1839), blocked EGF-elicted Src activity (Fig. 2D). It also prevented the association of Src with ER and AR (Fig. 2D and 3C, respectively). Preincubation of MCF-7 cells with the anti-erb-B2 antibody herceptin (Trastuzumab) produced the same effects [i.e., inhibition of Src activity (Fig. 2D) and reduction of association of Src with ER and AR (Fig. 2D and 3C, respectively)]. The growth factor induced tyrosine phosphorylation of ERα (Fig. 3A and B).

The parallel inhibition of the steroid receptor/Src complex and ER tyrosine phosphorylation by Iressa (Fig. 3A) and herceptin (Fig. 3B) suggests that these two events are causally related. To address this point, we transiently transfected Cos cells with hAR and hERα (HEG0) cDNAs. The HEG537 cDNA mutant, lacking the only phosphorylatable tyrosine (20), was also expressed instead of wild-type ERα (Fig. 3D, left). Cells were then stimulated with EGF and lysates were immunoprecipitated with anti-Src antibody. Immunoblotting revealed that the samples contained equal amounts of Src (Fig. 3D, right, top). As shown in Fig. 3D (right), EGF was a potent inducer of the Src/AR/ERα complex in cells expressing wild-type ERα. The association with Src of the mutant was very weak and that of AR was absent, which shows that ERα tyrosine phosphorylation in position 537 is required for the coexpressed receptors/Src complex assembly.

When MCF-7 cells were stimulated by EGF for 5 minutes, association of the EGFR with ER, AR, Src, and MNAR was detectable. It has been reported that MNAR modulates the estradiol-dependent ER interaction with Src (21). Its association in the EGFR/ER/AR/Src complex triggered by EGF supports the view that this protein interacts with activated ER. In the absence of the growth factor, no association of the EGFR with these proteins was observed (Fig. 4A, left).

In addition, in Cos cells transiently expressing hERα or its mutant HE241G, EGF induces association of its own receptor not only with the wild-type hERα but also with the HEG241 mutant (Fig. 4A, right). Because the HE241G mutant does not bind DNA, lacks the nuclear localization signal (14), and permanently resides

Figure 2. Inhibition by steroid antagonists and Iressa (ZD 1839) or herceptin (Trastuzumab) of EGF-induced Src activation in MCF-7 cells. ERα requirement for the antiestrogen effect. A and B, quiescent MCF-7 cells were left unstimulated or stimulated for 5 minutes with the indicated compounds. The antiestrogen ICI 182,780 and the antiandrogen Casodex were used at a concentration of 10 μmol/L, EGF at 100 ng/mL, and R1881 at 10 nmol/L. Lysate proteins were immunoprecipitated with either anti-Src (anti-src ab) or control (Ctrl ab) antibodies. The immunoprecipitates were either blotted with anti-Src antibody (top panels in A and B) or analyzed for Src activity using enolase (en) as a substrate (top panels in A and B). A, middle, Ras pulldown assay of MCF-7 cell lysates. A, bottom, Erk-2 activity assay done using myelin basic protein (MBP) as a substrate. C, quiescent MDA-MB231 cells were left unstimulated or stimulated for 5 minutes with the indicated compounds. Src activity was assayed in untransfected (MDA) or hERα-transfected (MDA-HEG0) cells. D, MCF-7 cells, pretreated with 0.5 μmol/L Iressa (ZD) or 10 μg herceptin (Her), were stimulated with EGF for 5 minutes. Lysate proteins were immunoprecipitated with either control or anti-Src antibodies. Immunocomplexes were either blotted with antibodies against the indicated proteins (Src or ERα) or submitted to Src kinase assay.
outside the nucleus of MCF-7 cells. ERα associated with EGFR must be in the extranuclear compartment of cells. This finding is in agreement with the involvement in the EGF-triggered EGFR/ER/AR/Src complex of Src, which is a classic cytoplasmic protein, and the role of steroid receptors in the EGF-triggered cytoskeletal changes, which are expressed independently of the cell nucleus (22).

Androgen receptor and estradiol receptor α are associated in MCF-7 cells. An association between AR and ERα but not Src was observed in unstimulated MCF-7 cells (not shown). To evaluate the proportion of AR and ERα in the complex, we coimmunoprecipitated the receptors from MCF cell lysates with anti-ERα or anti-AR antibodies. Supernatants were collected for further analysis, and the immunocomplexes were probed by Western blots with anti-AR or anti-ERα antibodies (Fig. 4B). The band intensities were measured and the percentage of associated proteins was calculated as described in Fig. 4 caption. About 8% of the total AR and ERα were associated. Interestingly, similar results were observed with LNCaP cells using immunoprecipitating anti-ERα instead of anti-ERα antibodies (not shown).

We then conducted pulldown experiments with glutathione S-transferase (GST) fusion protein constructs to determine whether the association between the two receptors was direct (Fig. 4C). GST-agarose, GST-HEG0 (HEG0 is the entire hERα), GST-HEG14 (HEG14 is the carboxyl-terminal half of hERα containing the hormone binding domain), and GST-HEG15 (HEG15 is the amino-terminal half of hERα) were incubated with the [35S]methionine-labeled hAR. Association of AR with GST-HEG14 was comparable with the low, nonspecific interaction of AR with GST-agarose, whereas there was a much stronger association with the entire receptor (GST-HEG0) and the amino-terminal half of ERα, GST-HEG15. These experiments reveal a direct interaction between the ERα amino-terminal half and AR in unstimulated cells.

Epidermal growth factor–stimulated epidermal growth factor receptor tyrosine phosphorylation in MCF-7 cells is regulated by steroid receptors and Src. The foregoing experiments show that EGFR regulates ligand-independent steroid receptors and Src activity. We conducted experiments to determine whether steroid receptors in turn regulate the EGFR. To this end, quiescent MCF-7 cells were stimulated or not with EGF alone or in the presence of 10 μmol/L ICI 182,780 or 10 μmol/L Casodex. Cell lysates were then immunoprecipitated with anti-EGFR antibody and the immunocomplexes probed with the same antibody or with antiphosphotyrosine antibodies (Fig. 5A). As expected, Western blot analysis showed that EGF stimulated phosphorylation of its own receptor. Remarkably, EGFR phosphorylation was strongly reduced when the cells were stimulated by the growth factor in the presence of antihormones. This finding suggests a novel, steroid-independent regulatory role of steroid receptors on EGFR. This conclusion is further confirmed by the strong inhibitory effect on EGFR phosphorylation detected after the knockdown of ERα or AR gene in MCF-7 cells (Fig. 5B).

We then conducted experiments to verify whether Src was involved in EGFR phosphorylation in MCF-7 cells. In the experiment shown in Fig. 5C, cells were transfected with the wild-type Src or with a kinase-inactive Src and then stimulated with EGF. The growth factor induced rapid EGFR tyrosine phosphorylation in cells expressing wild-type Src. This phosphorylation was much more reduced when Src was kinase inactive, confirming a role of Src in EGFR phosphorylation.

Figure 3. Role of phosphorylation on ERα tyrosine 537 in the EGF-elicited ER/AR/Src association in MCF-7 and Cos cells. A to D, quiescent MCF-7 cells were untreated or treated with EGF (100 ng/mL) for 5 minutes in the absence or presence of the indicated compounds. Iressa and herceptin were used at 0.5 μmol/L and 10 μg/mL, respectively. The antiestrogen was used at 10 μmol/L. A and B, lysates were immunoprecipitated with either anti-ER (anti-ER ab) or control antibodies. C, lysates were immunoprecipitated with either anti-Src or control antibodies. Immunoprecipitated proteins were blotted with the antibodies against the indicated proteins or antiphosphotyrosine (pY) antibodies. D, Cos cells were transfected with the indicated plasmids and then left unstimulated or stimulated for 5 minutes with 100 ng/mL EGF. Lysates were immunoprecipitated with anti-Src antibodies and immunocomplexes were blotted with antibodies against the indicated proteins (right). Left, expression of steroid receptors evaluated by immunoblots with appropriate antibodies. HEG0 is the hERα, 537 is the hERα carrying the Y537F mutation, and AR is the hAR.

1 In preparation.
the empty vector or ERα- and AR-expressing plasmids shows that in the presence of the two steroid receptors a much stronger EGFR phosphorylation is triggered by EGF (Fig. 5D).

Epidermal growth factor–elicited effects are inhibited by steroid antagonists in LNCaP cells. In LNCaP cells, like in MCF-7 cells, EGF induced RNA synthesis. This response was similar to that evoked in the same cells by the synthetic androgen R1881. Antiandrogen and antiestrogen abolished this stimulation (Fig. 6A). The antagonists also prevented EGF-induced cytoskeleton changes (Fig. 6B) and the growth factor–stimulated Src activation (Fig. 6C). EGF induced association of ERβ and AR with Src. This association was inhibited by steroid antagonists (Fig. 6C). These findings slightly indicate that mammary cancer cells and prostate cancer cells are similarly affected by EGF and steroid antagonists.

Discussion
Steroid receptors can be activated in the absence of their cognate ligands. Dopamine indeed causes nuclear translocation of the chicken progesterone receptor (23). EGF enhances nuclear localization of ERα, induces a nuclear form of ERα, and stimulates RNA synthesis in mouse uterus (2). Remarkably, such a stimulation requires the expression of ERα (3). Herregulin induces tyrosine phosphorylation of ERα in MCF-7 cells, interaction of ERα with estrogen responsive element, and progesterone receptor induction (24). EGF stimulates serine and tyrosine phosphorylation of ERα and its coimmunoprecipitation with ERβ (25). Androgen receptor is transcriptionally activated in a ligand-independent manner by IGF-I, EGF, and keratinocyte growth factor in human prostate tumor cell lines (26). HER-2/neu activates the AR pathway in the absence of ligand and increases AR responses in the presence of low levels of androgen in prostate cancer cells (4). From these and many other reports, it seems that cross-talk between growth factors and steroid receptors, which occurs at multiple levels, is involved in cancer progression and in endocrine resistance (27, 28).

Here, we report evidence of a novel interplay between the EGF-activated ERβ, its partner erb-B2, and steroid receptors. In this regard, it is noteworthy that an ERβ/erb-B2 heterocomplex has been identified (29) and an association between erb-B2 and Src has been detected in human breast cancer cell lines (see references in ref. 7). The results concerning EGF tyrosine phosphorylation warrant particular attention. In MCF-7 cells, the EGF-stimulated phosphorylation of ERα was greatly reduced by either ER and AR antagonists or knockdown by siRNA of each of the two steroid receptors. The role of the two steroid receptors in this phosphorylation is further underlined by the observation that in Cos cells, EGF tyrosine phosphorylation is greatly increased by expression of ERα and AR.

Present findings suggest that in MCF-7 and LNCaP cells steroid receptors regulate EGFR receptor phosphorylation through Src. Such a hypothesis is supported by the EGF-triggered association of EGF with ERα, AR, and Src. In addition, this phosphorylation is abolished in Cos cells by expression of the ERα mutant HEG537, which lacks the ability of interaction with Src. Overall, the present findings indicate that the ERα/AR/Src association is responsible for the Src-dependent EGF tyrosine phosphorylation. As a part of the described regulatory mechanism, EGF treatment of hormone-responsive cells led to ER tyrosine phosphorylation and triggered strong association of Src with androgen receptor and ERβ in MCF-7 and LNCaP cells, respectively. The crucial role of Src in EGF signaling is supported by the inhibition of EGF-triggered DNA synthesis and cytoskeletal changes observed in MCF-7 cells treated with the Src kinase family inhibitor, PP2, and the great reduction weaker in cells expressing kinase-active Src. All together, these results are consistent with the view that Src kinase activity plays a key role in the EGF-dependent EGFR phosphorylation in MCF-7 cells and suggest that this activity is under the control of the Src-associated steroid receptors. This possibility is strongly corroborated by the experiments in Fig. 5D. Cos cells were transiently cotransfected with hAR (AR) and the wild-type hERα (HEG0) or its mutant HEG353 (537), which lacks the property of interacting with Src in Cos cells stimulated by EGF (see Fig. 3D). EGF strongly stimulated EGFR tyrosine phosphorylation in Cos cells expressing HEG0, whereas a much weaker stimulation was detected in cells expressing HEG353. This shows that the ER/AR/Src complex has a key role in EGFR tyrosine phosphorylation. Remarkably, comparison of EGFR tyrosine phosphorylation in cells transfected with

Figure 4. Protein association in MCF-7 cells and in vitro. A, left, quiescent MCF-7 cells were untreated or treated with EGF (100 ng/mL) for 5 minutes. Lysates were incubated with control or anti-EGFR antibody (Ab). The immunoprecipitates were blotted with antibodies raised against the indicated proteins. Right, Cos cells were transfected with wild-type hERα (HEG0) or its mutant (HEG241) and were then stimulated with 100 ng EGF for 5 minutes. Lysates were immunoprecipitated and blotted as in (A, left). B, unstimulated MCF-7 cells were used. Lysates were immunoprecipitated with either anti-ERα or anti-AR antibodies. Loaded samples (Input), breakthroughs (BT), and immunocomplexes (EI) were blotted with antibodies against the indicated proteins. A NIH 1.61 image program showed that 8% of the total AR and ER were associated under basal conditions.

C

GST pull-down

hAR

A

EGF

EGFR

src

ER

AR

MNAR

Ab: ctrl anti-EGFR anti-EGFR

HEG0 HEG241

B

WB: anti-AR Ab

WB: anti-ERα Ab

IP: ctrl Ab ERα Ab ERα Ab ctrl Ab hAR ctrl Ab hAR ctrl Ab hAR hAR hAR anti-AR anti-AR anti-AR

EI BT (20%) EI BT (20%)

C

GST-agarose (GST) GST-HEG0, GST-HEG14, and GST-HEG15 were incubated with 32P-labeled AR. Eluted proteins were subjected to SDS-PAGE and revealed by fluorography. HEG15 and HEG14 are the amino-terminal half and the carboxyl-terminal half of HEG0 (hERα), respectively.
of EGF tyrosine phosphorylation in MCF-7 cells transfected with a dominant-negative form of Src.

Based on these results, one may envisage a new model of cross-talk between steroid receptors and EGF with a central role of the physical and functional interactions between EGF, steroidal receptors, and Src. The EGF-activated Src, which is associated with ER/AR dimer, acts strongly on EGF phosphorylation. Conversely, when ER and/or AR are locked in an inactive conformation (i.e., by hormone antagonists or when the steroid receptor levels are downregulated by siRNA), their action on Src and EGFR is missing or heavily impaired and EGF-induced EGFR tyrosine phosphorylation is minimal. Interestingly, in MCF-7 cells, steroid antagonists and silencing of steroid receptor genes abolished the EGF-elicited DNA synthesis, thus indicating that such an effect requires steroid receptors. Similarly, ERα is required for EGF-triggered DNA synthesis in uterine epithelial cells (3).

Our report indicates that steroidal receptors play a dominant role in regulating the functions of hormone-dependent cells, even in the absence of steroids, and that ER and AR represent checkpoints of EGF signaling.

The present findings call for additional comments. The complexity of the described cross-talk between EGF and the steroid receptor/Src complex is underlined by the observation that steroid receptors also control, through Src, the EGF-elicted cytoskeleton changes, a nongenomic effect in breast and prostate cancer cells. Association of AR with ER in MCF-7 and LNCaP cells under basal conditions represents another novel and, in our opinion, important aspect of the cross-talk between the two receptors previously analyzed (11). This study also reveals other aspects of the molecular assembly that govern nongenomic steroid receptor action. In the ER/AR/Src complex triggered by estradiol or androgen in MCF7, LNCaP, and T47D cells (11), phosphotyrosine in position 537 of ERα is crucial for the hormone-induced association of ERα with Src-SH2 and consequent Src activation and mitogenesis (11). The same phosphotyrosine residue is required for the association of ERα with Src triggered by EGF. Indeed, treatment of MCF-7 cells with Iressa or herceptin blocked EGF-stimulated tyrosine phosphorylation of ERα and the ERα/AR association with Src. It is worth mentioning, in this regard, that ERα in MCF-7 cells has a single phosphotyrosine residue in position 537 (30). Furthermore, the failure of EGF to induce the ER/AR/Src association in Cos cells cotransfected with AR and HEG537 cDNA shows that the ER phosphotyrosine in position 537 is the residue involved in the EGF-induced receptor association with Src.

Figure 5. EGF tyrosine phosphorylation triggered by EGF is regulated by the ER/AR/Src complex. A, quiescent MCF-7 cells were untreated or treated for 5 minutes with the indicated compounds. EGF at a concentration of 100 ng/mL, the antiestrogen ICI 182,780, and the antiandrogen Casodex at a concentration of 10 μmol/L were added to the cell medium. Cell lysates were immunoprecipitated with control or anti-EGFR antibodies (anti-EGFR ab). Immunoprecipitates were either blotted with anti-EGFR antibodies or monoclonal antiphosphotyrosine antibodies. B, MCF-7 cells were transfected with control, nontargeting siRNA (nt), and ER targeting siRNA (siER) or AR-targeting siRNA (siAR), then stimulated with 100 ng EGF for 5 minutes. Cell lysates were immunoprecipitated and blotted like in (A). C, MCF-7 cells were transfected with the indicated plasmids and were then left unstimulated or stimulated with 100 ng/mL EGF. Lysates were either analyzed for the expression of wild-type Src and kinase-inactive Src by immunoblots with the appropriate antibody (right) or immunoprecipitated with control or anti-EGFR antibodies (left). The immunocomplexes were then blotted with anti-EGR or antiphosphotyrosine antibodies (left). D, Cos cells were transfected with the indicated plasmids and then made quiescent by serum starvation. The cells were left unstimulated or stimulated for 5 minutes with 100 ng/mL EGF. Lysates were immunoprecipitated with anti-EGFR antibody. The immunocomplexes were then blotted with anti-EGFR or antiphosphotyrosine antibodies (left). Coexpression of steroid receptors (wild-type hERα or AR or hERα-537 mutant) was verified by immunoblots with the appropriate antibodies (right).
On the basis of previous and present findings, the ER/AR/Src association is crucial for proliferation triggered by steroid hormones (11) or EGF in hormone-responsive cells. This is an important point because a large number of mammary and prostate cancers respond to steroid hormones and growth factors.

Acknowledgments

Received 3/18/2005; revised 7/14/2005; accepted 9/2/2005.

Grant support: Associazione Italiana per la Ricerca sul Cancro, Ministero dell’Università e della Ricerca Scientifica (Cofinanziamenti Ministero dell’Università e della Ricerca Scientifica a Tecnologica 2003 and 2004; Fondo per gli Investimenti della Ricerca di Base 2001), Ministero della Sanità (Programmi Speciali; Lgs. 229/99), and a Fondazione Italiana per la Ricerca sul Cancro fellowship (M. Lombardi).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank P. Chambon (Institut de genetique et de Biologie Moleculaire et Cellulaire, CNRS, Jeekirch, Strasbourg, France) for the HEG0-expressing plasmid, F. Ciardiello and G. Tortora (Dipartimento di Internistica Clinica e Sperimentale, II Universita’ degli Studi di Napoli e Dipartimento di Endocrinologia Molecolare, Universita’ Federico II, Napoli, Italy) for the kind gift of Iressa and Herceptin, Zeneca (Milan, Italy) for antiestrogen ICI 182,780 and Casodex, Jean Gilder for text editing, Flavia Vitale for the technical assistance, and Ester Calogero for collaborating in some of the presented experiments.

Figure 6. Steroid antagonist inhibition of the effects elicited by EGF in LNCaP cells. Quiescent LNCaP cells were used. A, cells were untreated or treated for 24 hours with the indicated compounds. The synthetic androgen R1881 was used at 10 nmol/L. After in vivo labeling with BrdUrd, DNA synthesis was analyzed and BrdUrd incorporation was expressed as a percentage of total nuclei. Columns, means; bars, SE. B, cells stained with Texas red phalloidin were visualized with a fluorescent microscope using a ×40 lens. Micrographs are representative of three independent experiments. C, the cells were left unstimulated or stimulated for 5 minutes with the indicated compounds. Lysates were immunoprecipitated with either anti-Src or control antibodies. Immunoprecipitates were either blotted with antibodies against the indicated proteins or assayed for Src kinase activity using enolase as a substrate (bottom).

References

8. Roche S, Koegel M, Barone MV, Boussel ME. Courtneidge SA. DNA synthesis induced by some but not all growth factors...
Steroid Receptor Regulation of Epidermal Growth Factor Signaling through Src in Breast and Prostate Cancer Cells: Steroid Antagonist Action

Antimo Migliaccio, Marina Di Domenico, Gabriella Castoria, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/65/22/10585

Cited articles
This article cites 28 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/65/22/10585.full#ref-list-1

Citing articles
This article has been cited by 15 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/65/22/10585.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/65/22/10585.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.