
















It would be impossible, both logistically and ethically, to test the
light at night/breast cancer hypothesis in humans by chronically
exposing healthy women to bright light each night under
controlled laboratory conditions. Thus, the perfusion of tissue-

isolated tumors in situ with whole blood collected from healthy
human female volunteers represents a unique approach to directly
assess the effect of the human nocturnal, circadian melatonin
output signal on proliferative, metabolic, and signal transduction

Figure 5. Ocular exposure of human subjects to light at night. A, flow chart showing the sequence of exposure of human subjects to light at night and blood collection at
Thomas Jefferson University and shipment of samples to the Bassett Research Institute for perfusion through tumors in situ. B, schematic diagram of setup for
perfusion of tissue-isolated tumors (rat hepatoma 7288CTC or SR� MCF-7 human breast cancer xenografts) in situ with human whole blood collected from human
volunteers exposed to light at night. C, columns, mean plasma melatonin levels in 9 of 12 healthy premenopausal female volunteers during the mid-light phase
(1200 hours), mid-dark phase (0230 hours), or following 90 minutes of ocular exposure to 2,800 lx of indirect, white fluorescent light (measured at subject eye level)
during the mid-dark phase; bars, SE. D-G, columns, mean tumor cAMP levels (nmol/g), linoleic acid (LA) uptake (% supply), and MEK activation (D and E),
13-HODE formation (ng/min/g), [3H]thymidine incorporation into DNA (dpm/Ag DNA), and ERK1/2 activation (F and G) in tissue-isolated rat hepatoma 7288CTC and
SR� MCF-7 human breast cancer xenograft following perfusion in situ for 1 hour with human donor whole blood harvested during the light phase (L), dark phase (D),
or following 90 minutes of ocular exposure to 580 AW/cm2 (i.e., 2,800 lx) of light during the dark phase (D/L-Rx); bars, SE. Other groups of tumors were perfused with
D/L-Rx donor blood to which a physiological nocturnal concentration (500 pmol/L or 116 pg/mL) of synthetic melatonin (MLT) was added; other tumors were perfused
with D donor blood to which MT1/MT2 receptor antagonist S20928 (1 Amol/L) was added; n = 3 human donor blood samples per subject (one blood sample per
three tumors) or n = 9 tumors per subject = 108 perfused tumors. *, P < 0.05, D versus L, D/L-Rx and D + S20928. **, P < 0.05, D/L-Rx + MLT versus D/L-Rx.
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activity in human breast cancer xenografts. In fact, in our opinion,
this is the only strategy available to evaluate the potential
consequences of circadian disruption of the human melatonin
signal, by ocular exposure of human subjects to bright, white light
at night, on human tumor growth activity. Consistent with the
results of perfusion in situ of rat hepatomas (22, 23) and human
breast cancer xenografts (see above) with rat donor whole blood to
which exogenous melatonin was added at a nocturnal physiologic
concentration, the present findings show that physiologically
melatonin-rich blood, collected during the night from human
subjects, markedly inhibited signal transduction activity (i.e.,
cAMP, MEK, ERK1/2), linoleic acid uptake/metabolism to 13-
HODE and proliferative activity (i.e., [3H]thymidine incorporation
into DNA, DNA content) in both rat hepatoma and human breast
cancer xenografts (i.e., both SR� and SR+ tumors). Each of these
oncostatic effects were completely eliminated upon suppression of
the nocturnal, circadian melatonin signal following the exposure of
human subjects to 90 minutes of 2,800 lx (580 AW/cm2) of indirect,
white fluorescent light. These tumor-suppressive effects of
nighttime-collected, melatonin-rich blood were also totally blocked
by the nonselective melatonin receptor (MT1/MT2) antagonist
S20928 (36), indicating that they were, in fact, due to the presence
of physiologically elevated levels of circulating melatonin acting
via a melatonin receptor–mediated process. This is further
supported by the ability of melatonin, added at a physiologic
nocturnal concentration, to melatonin-deficient blood collected
following light exposure at night, to restore the tumor-inhibitory
responses.
To our knowledge, the present findings are the first to establish a

role for the nocturnal, physiologic melatonin signal from the pineal
in the prevention and progression of an overt human disease. More
specifically, melatonin is now the first soluble, nocturnal anticancer
signal to be identified in humans that directly links the central
circadian clock with some of the important mechanisms regulating
human breast carcinogenesis and possibly the progression of other
malignancies as well. These findings also provide the first definitive

nexus between the exposure of healthy premenopausal female
human subjects to bright white light at night and the enhancement
of human breast oncogenesis via disruption (i.e., suppression) of
the circadian, oncostatic melatonin signal. The suppression of
circadian melatonin production by ocular exposure to bright white
light at night, leading to augmented nocturnal tumor uptake of
dietary linoleic acid and its conversion to mitogenically active 13-
HODE, can now be afforded serious consideration as a new risk
factor for human breast cancer (4, 5) and a significant public health
issue (55). The high nocturnal dietary intake of fat, particularly
linoleic acid, reported for night shift workers (56, 57), coupled with
melatonin suppression by exposure to light at night provide a firm
mechanistic basis upon which to explain, in part, the increased risk
of breast cancer in some women who work night shifts for many
years (9–11). Thus, strategies to preserve the integrity of the
circadian melatonin signal (i.e., avoidance of bright light at night,
intelligent lighting design, circadian-timed physiologic melatonin
supplementation) coupled with modifications in nocturnal dietary
fat intake may offer a unique approach to the prevention of breast
cancer, and perhaps other melatonin-sensitive cancers, in our
increasingly 24-hour society.
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