Linkage and Microarray Analyses of Susceptibility Genes in ACI/Seg Rats: A Model for Prostate Cancers in the Aged

Satoshi Yamashita,1 Shugo Suzuki,2 Tomoko Nomoto,1 Yasushi Kondo,3 Kuniko Wakazono,1 Yoshimi Tsujino,1 Takashi Sugimura,1 Tomoyuki Shirai,1 Yukio Homma,1 and Toshikazu Ushijima1

1Carcinogenesis Division, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo, Japan; 2Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Minato-cho, Mizuho-ku, Nagoya, Japan; and 3Department of Urology, Graduate School of Medicine, University of Tokyo, 1753-1 Hongo, Bunkyo-ku, Tokyo, Japan

Abstract

ACI/Seg (ACI) rats develop prostate cancers spontaneously with aging, similar to humans. Here, to identify genes involved in prostate cancer susceptibility, we did linkage analysis and oligonucleotide microarray analysis. Linkage analysis was done using 118 effective rats, and prostate cancer susceptibility 1 (Pcs1), whose ACI allele dominantly induced prostate cancers, was mapped on chromosome 19 [logarithm of odds (LOD) score of 5.0]. PC resistance 1 (Pcr1), whose ACI allele dominantly and paradoxically suppressed the size of prostate cancers, was mapped on chromosome 2 (LOD score of 5.0). When linkage analysis was done in 51 rats with single or no macroscopic testicular tumors, which had larger prostates and higher testosterone levels than those with bilateral testicular tumors, Pcs2 and Pcr2 were mapped on chromosomes 20 and 1, respectively. By oligonucleotide microarray analysis with 8,800 probe sets and confirmation by quantitative reverse transcription-PCR, only two genes within these four loci were found to be differentially expressed >1.8-fold. Membrane metalloendopeptidase (Mme), known to inhibit androgen-independent growth of prostate cancers, on Pcr1 was expressed 2.0- to 5.5-fold higher in the ACI prostate, in accordance with its paradoxical effect. Cdkn1a on Pcs2 was expressed 1.5- to 4.5-fold lower in the ACI prostate. Additionally, genes responsible for testicular tumors and unilateral renal agenesis were mapped on chromosomes 11 and 14, respectively. These results showed that prostate cancer susceptibility of ACI rats involves at least four loci, and suggested Mme and Cdkn1a as candidates for Pcr1 and Pcs2. (Cancer Res 2005; 65(7): 2610-6)

Introduction

Prostate cancer is one of the leading causes of cancer-related death in men in most developed countries, and its incidence is increasing in Japan (1). A variety of genetic and environmental factors are considered involved in the initiation and progression of human prostate cancers (2, 3), and clarification of these factors is urgently required. Genes that are likely to confer dominant susceptibility to prostate cancers have been mapped by linkage analysis of familial prostate cancers at 1q24-25 (4), 1q42-43 (5), 1p36 (6), Xq27-28 (7), 20q13 (8), 17p (9), and 8p22-23 (10). Three putative prostate cancer susceptibility genes, RNASEL/HPC1 at 1q25 (11), MSRI at 8p22 (10), and ELAC2/HPC2 at 17p11 (9), have been recently identified. In addition, polymorphisms of the prostate-specific antigen, isoforms of cytochrome P450, androgen receptor (12), vitamin D receptor (13), and steroid 5α-reductase 2 (SRD5A2; ref. 14) have been proposed to be related to prostate cancer risks. In spite of the efforts and expertise in the field, identification of a responsible gene in each locus and clarification of the interaction among the genes are still facing difficulties due to the complex interactions among these genetic factors in individuals who have been exposed to different levels of various environmental factors.

Experimental animal models are useful because a population of animals can be exposed to the same homogeneous environmental factors and the number of genes involved is limited. As for prostate cancers, a number of rodent models are reported (15). Among these, ACI/Seg (ACI) rats are unique in that they spontaneously develop a high incidence of microscopic cancers of the ventral prostate along with aging (16-18). By 33 months of age, 95% to 100% of the rats develop intra-alveolar dysplasia in the ventral lobe, and 35% to 40% develop invasive carcinomas (17). The high incidence of microscopic cancers and the lower incidence of macroscopic cancers are considered to mimic the natural history of human prostate cancers, where the incidence of microscopic cancers is very high and that of clinical diseases is much lower (19, 20). The ACI model was used to show that a high-fat diet had a promotional effect on the early stage of prostate carcinogenesis (21), that 5α-reductase inhibitor suppresses prostate carcinogenesis (22), and that long-term feeding of a 1% cholesterol diet promotes prostate carcinogenesis, possibly by increasing tissue oxidative stress (23). However, no information is available for the genetic loci or genes responsible for the predisposition of ACI rats to prostate cancers.

In this study, we did linkage and oligonucleotide microarray analyses to identify candidate gene(s) involved in the genetic predisposition of ACI rats to prostate cancers. Linkage analysis was done in F2 intercross rats produced by crossing ACI rats with F344 rats, which were less susceptible to prostate cancers (24) but more susceptible to spontaneous testicular tumors (25). Oligonucleotide microarray analysis was done considering that if genes differentially expressed in the prostates of ACI and F344 rats are present in the mapped loci, they are good candidates for the responsible genes. Additionally, genes responsible for testicular tumors and unilateral renal agenesis (URA) were mapped.

Materials and Methods

Animals and carcinogenicity test. ACI/SegHgd (ACI) and F344/Jcl (F344) rats were purchased from Harlan (Indianapolis, IN) and CLEA Japan, Inc. (Tokyo, Japan), respectively. Male ACI and female F344 rats were mated to produce F1 progeny. F1 rats were intercrossed to produce F2 intercross
rats. A total of 21 male ACI rats, 22 male F344 rats, 21 male F1 rats, and 219 male F2 intercross rats were fed an Oriental MF (Oriental Yeast Co., Tokyo, Japan) diet and housed three per plastic cage on woodchip bedding in an air-conditioned animal room at a temperature of 21°C to 25°C and a humidity of 40% to 60% with a 12-hour light 12-hour dark cycle. Moribund rats were sacrificed to clarify the cause of death, and the remaining rats were sacrificed at the age of 30 months. The animal experiments followed the Guidelines for the Care and Use of Laboratory Animals of Nagoya City University Medical School and were approved by the Institutional Animal Care and Use Committee.

Histologic and serum analysis. The male sex organs and bladder were resected en bloc and were examined for gross abnormalities and fixed in 10% buffered formalin. After fixation, the ventral prostate was removed and was en bloc sagittal slice through the ventral prostate was embedded in paraffin, and from the base of the bladder neck and the entire organ weighed. One experience pathologists (To.S and S.S.) and a urologist (Y.H.).

Table 1. Results of the carcinogenicity test

<table>
<thead>
<tr>
<th></th>
<th>ACI/Seg (n = 12)</th>
<th>F344/Jcl (n = 8)</th>
<th>(F344 × ACI)F1 (n = 14)</th>
<th>(F344 × ACI)F2 (n = 118)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body and organ weights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>419.6 ± 65.8 (309.2–506.9)</td>
<td>330.7 ± 29.7 (309.3–391.6)</td>
<td>509.5 ± 67.5 (315.2–583.3)</td>
<td>418.9 ± 77.5 (195.9–652.9)</td>
</tr>
<tr>
<td>Prostate weight (g)</td>
<td>1.54 ± 0.83 (0.61–3.00)</td>
<td>0.92 ± 0.19 (0.67–1.26)</td>
<td>1.61 ± 0.75 (0.86–2.91)</td>
<td>1.64 ± 1.58 (0.38–11.75)</td>
</tr>
<tr>
<td>Ventral prostate weight (g)</td>
<td>0.32 ± 0.14 (0.13–0.58)</td>
<td>0.27 ± 0.07 (0.19–0.42)</td>
<td>0.36 ± 0.12 (0.22–0.59)</td>
<td>0.35 ± 0.32 (0.07–2.20)</td>
</tr>
<tr>
<td>Testes weight (g)</td>
<td>2.81 ± 0.50 (2.04–3.59)</td>
<td>6.62 ± 2.51 (2.48–9.84)</td>
<td>7.73 ± 9.10 (2.57–33.93)</td>
<td>4.20 ± 2.50 (0.67–21.16)</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>11.3 ± 1.4 (8.5–12.7)</td>
<td>12.7 ± 3.4 (9.6–19.0)</td>
<td>15.0 ± 4.8 (1.5–20.3)</td>
<td>13.2 ± 2.9 (4.7–31.3)</td>
</tr>
<tr>
<td>Spleen weight (g)</td>
<td>0.80 ± 0.14 (0.57–1.06)</td>
<td>2.34 ± 1.74 (1.11–5.68)</td>
<td>1.10 ± 0.23 (0.82–1.63)</td>
<td>1.31 ± 0.79 (0.34–5.57)</td>
</tr>
<tr>
<td>Any lesions in prostate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence (%)</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>Number</td>
<td>5.3 ± 2.1</td>
<td>1.5 ± 1.9</td>
<td>4.5 ± 1.9</td>
<td>3.8 ± 3.3</td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>1.78 ± 1.22</td>
<td>0.22 ± 0.30</td>
<td>1.03 ± 0.80</td>
<td>1.11 ± 1.50</td>
</tr>
<tr>
<td>Area ratio (%)</td>
<td>1.61 ± 1.29</td>
<td>0.25 ± 0.33</td>
<td>0.84 ± 0.59</td>
<td>1.31 ± 1.75</td>
</tr>
<tr>
<td>Lesions with a solid structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence (%)</td>
<td>92</td>
<td>25</td>
<td>93</td>
<td>59</td>
</tr>
<tr>
<td>Number</td>
<td>3.0 ± 2.6</td>
<td>0.4 ± 0.7</td>
<td>2.0 ± 1.3</td>
<td>1.3 ± 1.6</td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>1.17 ± 1.25</td>
<td>0.06 ± 0.14</td>
<td>0.40 ± 0.35</td>
<td>0.40 ± 1.07</td>
</tr>
<tr>
<td>Area ratio (%)</td>
<td>1.09 ± 1.31</td>
<td>0.07 ± 0.15</td>
<td>0.38 ± 0.37</td>
<td>0.48 ± 1.27</td>
</tr>
<tr>
<td>Lesions with ACI-type nuclei</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence (%)</td>
<td>100</td>
<td>38</td>
<td>100</td>
<td>81</td>
</tr>
<tr>
<td>Number</td>
<td>5.1 ± 2.4</td>
<td>1.3 ± 1.8</td>
<td>3.3 ± 1.4</td>
<td>3.1 ± 3.0</td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>1.73 ± 1.24</td>
<td>0.22 ± 0.30</td>
<td>0.89 ± 0.74</td>
<td>0.90 ± 1.41</td>
</tr>
<tr>
<td>Area ratio (%)</td>
<td>1.57 ± 1.31</td>
<td>0.24 ± 0.33</td>
<td>0.73 ± 0.56</td>
<td>1.08 ± 1.68</td>
</tr>
</tbody>
</table>

Quantitative reverse transcription-PCR. cDNA was synthesized from 2 μg of total RNA with oligo (dT)12-18 primer. Real-time PCR analysis was done separately for the three rats in each group using an iCycler IQ detection system (Bio-Rad Laboratories, Hercules, CA) with SYBR Green PCR Core Reagents (Applied Biosystems, Foster City, CA). Primers with following sequences were used, Mme - TATGAGTTCTTGCGGCAATGA -3' and Cdkn1a - CCTACCGGCCAGAG-TATGCAG -3'. Primer pairs were chosen so that amplification could be obtained with a threshold of 0.01. The signal intensities were normalized so that the average of all the genes on a GeneChip would be equal, and the data were processed using Affymetrix Microarray Suite version 5.0 at the default variable. The annotation was according to RG_U34A Annotations (June 2004; Affymetrix).

Results

Incidences and sizes of prostate lesions in inbred and crossed rats. Twelve of 21 ACI, 8 of 22 F344, 14 of 21 F1, and 118 of 219 F2 intercross rats survived to 30 months of age,
premature deaths being caused by renal failure due to URA and leukemia. Hyperplastic and/or tumorous lesions in the ventral prostate were observed in 100%, 50%, 100%, and 89% of ACI, F344, F1, and F2 intercross rats, respectively (Table 1). The lesions in ACI and F344 rats had distinct morphologies (Fig. 1). Lesions in ACI rats showed a solid structure, and round, irregular (ACI-type) nuclei whereas those in F344 had a papillary or cribriform structure, and angled nuclei with regular sizes. The lesions in ACI rats were much larger (1.8 versus 0.2 mm², \(P = 0.001 \)), often associated with inflammatory infiltrates, and occasionally invaded into the adjacent alveoli. In contrast, lesions in F344 rats never developed into macroscopic cancers. Based on the structural and nuclear atypisms and sizes of tumors, ACI \((n = 12 \) and F344 \((n = 8 \) rats could be distinguished with 95% accuracy in a blinded manner.

Therefore, all the lesions were classified according to their structural and nuclear atypisms (Table 1). A solid structure was present in 92%, 25%, 93%, and 59% of ACI, F344, F1, and F2 intercross rats, respectively. ACI-type nuclei were present in 100%, 38%, 100%, and 81%, respectively. In ACI and F2 intercross rats, 100% and 99%, respectively, of lesions with a solid structure had ACI-type nuclei.

Testicular tumors, unilateral renal agenesis, leukemia, and subcutaneous tumors. Testicular tumors, histologically diagnosed as Leydig cell tumors, were observed in 92%, 100%, 100%, and 92% of ACI, F344, F1 and F2 intercross rats, respectively. Bilateral macroscopic testicular tumors were observed in 25%, 88%, 100%, and 57%, respectively. URA was observed in 24%, 0%, 0%, and 11%, respectively, at 30 months. Leukemia was observed in 0%, 25%, 0%, and 9%, respectively, at 30 months. S.c. tumors were observed in 0%, 38%, 0%, and 10%, respectively.

Linkage mapping of a gene that affects the development and the size of prostate cancers. Linkage analysis with the presence of (i) any lesions, (ii) lesions with a solid structure, and (iii) lesions with ACI-type nuclei was done in the 118 F2 intercross rats, and one QTL was identified in the vicinity of \(D19Rat75 \) (LOD scores of 2.9, 3.0 and 5.0, respectively; Table 2). The same QTL was mapped using the numbers of these three kinds of lesions. When F2 intercross rats were classified by the genotypes at \(D19Rat75 \), lesions with ACI-type nuclei were observed in 85% (22 of 26), 92% (60 of 65), and 52% (14 of 27) of rats with the ACI/ACI, ACI/F344, and F344/F344 genotypes, respectively. This locus, *prostate cancer susceptibility 1* (*Pcs1*), therefore conferred ACI-dominant prostate cancer susceptibility (Fig. 2A). This region \((D19Rat75-D19Rat46 \) corresponded to rat 19q11-12.

Linkage analysis was done using areas containing the three kinds of lesions, and a QTL was identified in the vicinity of \(D2Rat161 \) (LOD scores of 3.6, 2.3, and 2.7, respectively; Table 2). The same QTL was mapped using the area ratio. Notably, this locus conferred ACI-dominant resistance to an increase in size, and the effect was clearer using areas with any lesion than with using areas with lesions characteristic to ACI rats. F2 intercross rats with the ACI/ACI, ACI/F344, and F344/F344 genotypes at \(D2Rat161 \) had area ratios of 0.8 ± 1.2% (mean ± SD), 0.9 ± 1.0%, and 2.5 ± 2.6%, respectively (Fig. 3). This locus, *prostate cancer resistance 1* (*Pcr1*), had a paradoxical effect on the size of prostate cancers (Fig. 2B). This region \((D2Rat26-D2Rat40 \) corresponded to rat 2q23-q32.

Effect of bilateral testicular tumors on prostate cancers. The size of the ventral prostate was significantly smaller in F2 intercross rats with bilateral macroscopic testicular tumors (0.24 ± 0.13 g, \(n = 67 \)) than in those with single or no tumors (0.49 ± 0.42 g, \(n = 51, P < 0.005 \)). However, the incidences and mean areas of tumorous lesions in the ventral prostate were not different (60 of 67 and 1.0 ± 1.4 mm² in the former rats, and 45 of 51 and 1.3 ± 1.6 mm² in the latter rats). The mean serum testosterone level at 30 months was 0.1 ± 0.2 ng/mL in rats with bilateral tumors and 1.3 ± 5.6 ng/mL (0.3 ± 0.4 ng/mL when two extremely high values were excluded) in rats without bilateral tumors. Although the presence of bilateral testicular tumors did not affect the incidence or area of tumorous/hyperplastic lesions in the prostate, two new QTLs were mapped when linkage analysis was done in rats without bilateral testicular tumors (Table 3). One QTL in the vicinity of \(D20Rat3, Pcs2 \), conferred an ACI-dominant increase in the incidence of lesions

<table>
<thead>
<tr>
<th>Table 2. Results of QTL analysis in F2 intercross rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesions used for linkage analysis</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Any lesions in prostate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lesions with a solid structure</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lesions with ACI-type nuclei</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Distinct histological features of prostate cancers in ACI and F344 rats. Lesions of ACI rats (A and B) were characterized by high incidences of solid structures (A) and round, irregular nuclei (B). Lesions of F344 rats (C and D) were characterized by a papillary or cribriform pattern (C) and nuclei with angles and relatively regular sizes (D). Lesions in ACI rats were larger and invaded into flanking lobules showing their more malignant characteristics.
(LOD scores of 1.9-3.3; Fig. 2C). Another QTL in the vicinity of D1Rat211, Pcr2, conferred a paradoxical effect, ACI-dominant suppression of the area ratio (LOD scores of 3.9-4.3; Fig. 2D). Pcs2 (D20Rat41-D20Rat5) and Pcr2 (D1Rat121-D15Rat45) corresponded to rat 20p12-11 and 1p12-q11, respectively.

Oligonucleotide microarray analysis of genes within the loci. By oligonucleotide microarray analysis using the prostates of ACI and F344 rats at 8 weeks, 219 and 143 probes were found to be expressed higher and lower, respectively, at ≥1.8-fold in the ACI prostates. At 48 weeks, 371 and 154 probes were expressed higher and lower, respectively, in the ACI prostates. Forty-eight and 34 genes were expressed higher and lower both at 8 and 48 weeks (Supplementary Table S2). Among these genes, those located within the Pcs1, Pcr1, Pcs2, and Pcr2 regions were RT1 class II (locus DMa; 2.1- to 3.0-fold), membrane metalloendopeptidase (Mme; 1.9- to 3.7-fold), and Gstt2 (3.0- to 6.1-fold).

RT1 and Gstt2 in Pcs2 were found to have sequence polymorphisms in their oligonucleotide probes, which caused apparent expression difference in the microarray analysis (35). In contrast,

Figure 2. LOD score obtained for linkage with prostate lesions and testicular tumors. A, LOD score obtained by the presence of lesions with ACI-type nuclei in the 118 F2 intercross rats. ACI allele in this locus dominantly promoted induction of the lesions. B, LOD score obtained by the area ratio of any lesions in the 118 F2 intercross rats. ACI allele in this locus dominantly and paradoxically suppressed the growth of the lesions. C, LOD score obtained by the presence of lesions with ACI-type nuclei in the F2 intercross rats with single or no testicular tumors. ACI allele in this locus dominantly promoted the growth of the lesions in this subgroup of rats. D, LOD score obtained by the area ratio of any lesions in the F2 intercross rats with single or no testicular tumors. ACI allele in this locus dominantly and paradoxically suppressed the growth of the lesions in this subgroup. E, LOD score obtained by development of testicular tumors. The F344 allele in this locus promoted development of testicular tumors. Dashed line, Lander-Kruglark threshold for “significance” (LOD score of 4.3 in intercross), and “suggestive” (LOD score of 2.8 in intercross) linkage (32).
had lower testosterone levels in this study. Therefore, as a

associated with a tendency towards feminization (37). Although

rats with such tumors. Testicular tumors of rats are known to be

susceptibility of ACI rats to prostate cancers is determined by

genetic predisposition of ACI rats. It was therefore shown that

these genes were combined, these did not fully explain the

paradoxically decreased the area and area ratio of lesions, and

expression in F344 rats was confirmed by quantitative RT-PCR (1.5-

presence of testicular tumors was done in the 118 F2 intercross

for

Pcs2

and its location in the

region suggested

Cdkn1a

is a well-established negative

regulator of the cell cycle, and a structural abnormality in its 5’

of promoter region has been identified.4

Chromosomal regions around

Pcs1, Per1, Pcs2, and Per2 corresponded to human 19p13, 4q28-31, and 16q21-22; 3q26-27, 13q12-14, 3q21-26, and 4q32; 6p21, 21q22, 22q11, and 10q21; and 6q23-25 and 5p15, respectively. As for

linkage of Swedish familial prostate cancers to 19p13 (40) and frequent loss of heterozygosity in human prostate cancers (16q22; refs. 41, 42) are

possible mechanism for the differential effects of

Pcs2 and

Per2, involvement of different molecular pathways in the development of prostate cancers depending upon testosterone levels was considered. Because

Pcs2 promotes and

Per2 suppresses prostate cancers and many other unmapped genes are potentially involved, the incidence and area of prostate cancers were not
different between rats with and without bilateral macroscopic testicular tumors. Temporal analysis on the development of prostate cancers, that of testicular tumors, and testosterone levels is necessary to clarify possible involvement.

By combining positional information obtained by linkage analysis and expression information obtained by oligonucleotide microarray analysis (38), two candidate genes were identified. GeneChip “Rat Genome U34A” covered 39 of 158 genes within

the region of

Pcs1, 77 of 308 in

Per1, 86 of 191 in

Pcs2, and 39 of 115 in

Per2, accounting for 31% of the genes within the mapped loci. In addition, the responsible genes in the loci are not necessarily differentially expressed. Therefore, the combination strategy is effective only when candidate genes are obtained, and no good candidates were found for

Pcs1 and

Pcs2 in this study. Nevertheless, Mme (also called Neutral endopeptidase, Cd10), which showed higher expression in ACI rats, was considered as a good candidate for

Per1 that had a paradoxical effect. Mme expression was known to suppress growth of androgen-independent prostate cancer cells and was decreased in androgen-independent prostate cancers (39). Therefore, its higher expression in ACI was in accordance with its paradoxical effect. Cdkn1a, which showed lower expression in ACI rats, was a good candidate for

Pcs2. Cdkn1a is a well-established negative regulator of the cell cycle, and a structural abnormality in its 5’

of promoter region has been identified.4

Figure 3. Effect of

Pcr1 locus on the area ratio of lesions. When F2 intercross rats were classified by their genotype at

D2Rat161, rats with the ACI allele(s) showed smaller area ratios.

Discussion

Prostate cancers in ACI rats occasionally progressed into invasive cancers, which were considered to model human clinically significant prostate cancers. In contrast, prostate cancers in F344 rats stayed as small lesions, if present, which was considered to model human indolent prostate cancers. By using these strains, two prostate cancer susceptibility and two resistance genes were mapped using F2 intercross progeny of ACI and F344 rats. Dominant ACI alleles of

Pcr1 (chromosome 19) and

Pcs2 (chromosome 20) increased the incidence and the number of prostate lesions, and these genes were considered to be involved in the development of prostate cancers. In contrast, dominant ACI alleles of

Pcr2 (chromosome 2) and

Pcs1 (chromosome 1) paradoxically decreased the area and area ratio of lesions, and these genes were considered to suppress the growth of prostate cancers. A similar example that an allele of a susceptible strain confers a resistance has been reported (27). Even when these four genes were combined, these did not fully explain the genetic predisposition of ACI rats. It was therefore shown that susceptibility of ACI rats to prostate cancers is determined by the four genes mapped here and many other weak genes.

The effect of

Pcs2 and

Per2 was clearly observed in rats without bilateral macroscopic testicular tumors and masked in rats with such tumors. Testicular tumors of rats are known to be associated with a tendency towards feminization (37). Although serum testosterone levels are known to be highly variable (26), 30-month-old rats with bilateral macroscopic testicular tumors had lower testosterone levels in this study. Therefore, as a

4 Yamashita et al., submitted for publication.
Introduction of human chromosome 19p13 into both rat and human prostate cancer cells suppressed tumorigenicity in nude mice (43). As for $Pcr1$, its candidate, Mme, is located on human 3q25. Frequent deletion of human 13q in prostate cancer is reported (44). As for $Pcs2$, in addition to $Cdkn1a$ on human 6p21, polymorphisms of $Gstt1$ on human 22q11 were reported to give differential risks to prostate cancers (3). As for $Pcr2$, $Srd5a1$, whose polymorphism is associated with the metastatic potential of prostate cancers (36), was located on $Pcr2$.

The genes involved in the development of testicular tumors ($Ttr1$) and URA ($Ura1$) were successfully mapped on chromosomes 11 and 14, respectively. These regions correspond to human chromosome 21q21-22 and human chromosome 4q11-12, respectively. Linkage analysis is almost impossible in humans for diseases with low penetrance, such as URA, and positional information obtained here would be useful if candidate genes are obtained from their functions.

In summary, we were able to map four susceptibility and resistance genes involved in the prostate cancer susceptibility of ACI rats. A complex interaction of multiple susceptibility genes and effects of testicular tumors in prostate cancer susceptibility was shown. Combining the data with those obtained by oligonucleotide microarray, Mme and $Cdkn1a$ were identified as candidates.

Acknowledgments

Received 8/13/2004; revised 1/4/2005; accepted 1/28/2005. **Grant support:** 3rd-term Comprehensive Cancer Control Strategy; Ministry of Health, Labor and Welfare Cancer Research; Organization for Pharmaceutical Safety and Research of Japan program for promotion of fundamental studies in health sciences; and Foundation for Promotion of Cancer Research, Japan grant-in-aid.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The authors are grateful to Dr. Tadao Kakizoe (National Cancer Center) for his critical discussion.

Table 3. QTLs for prostate lesions in subgroups classified by testicular tumors and testosterone levels

<table>
<thead>
<tr>
<th>Population</th>
<th>Variable for linkage analysis</th>
<th>$Pcs1$ (chromosome 19)</th>
<th>$Pcr1$ (chromosome 2)</th>
<th>$Pcs2$ (chromosome 20)</th>
<th>$Pcr2$ (chromosome 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LOD scores</td>
<td>% Variance explained</td>
<td>LOD scores</td>
<td>% Variance explained</td>
</tr>
<tr>
<td>All F2 intercross rats ($N = 118$)</td>
<td>Presence of any lesions</td>
<td>2.9</td>
<td>10.6</td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Presence of lesions with ACI-type nucleus</td>
<td>5.0</td>
<td>17.6</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Area ratio of any lesions</td>
<td>0.2</td>
<td>0.8</td>
<td>5.0</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>Area ratio of lesions with ACI-type nucleus</td>
<td>0.1</td>
<td>0.5</td>
<td>4.0</td>
<td>15.6</td>
</tr>
<tr>
<td>Rats with no or unilateral testicular tumors ($N = 51$)</td>
<td>Presence of any lesions</td>
<td>0.8</td>
<td>7.1</td>
<td>0.7</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>Presence of lesions with ACI-type nucleus</td>
<td>1.6</td>
<td>13.7</td>
<td>0.6</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Area ratio of any lesions</td>
<td>1.3</td>
<td>11.1</td>
<td>2.0</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>Area ratio of lesions with ACI-type nucleus</td>
<td>0.8</td>
<td>6.8</td>
<td>1.3</td>
<td>11.1</td>
</tr>
<tr>
<td>Rats with bilateral testicular tumors ($N = 67$)</td>
<td>Presence of any lesions</td>
<td>2.7</td>
<td>17.2</td>
<td>0.6</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Presence of lesions with ACI-type nucleus</td>
<td>3.9</td>
<td>24.5</td>
<td>1.3</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>Area ratio of any lesions</td>
<td>0.6</td>
<td>3.9</td>
<td>3.4</td>
<td>22.9</td>
</tr>
<tr>
<td></td>
<td>Area ratio of lesions with ACI-type nucleus</td>
<td>0.5</td>
<td>3.1</td>
<td>2.8</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Table 4. Quantitative RT-PCR analyses for genes within the QTLs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Location</th>
<th>Gene expression levels copy number/β-actin ($\times 10^4$, mean, $n = 3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8 wks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACI</td>
</tr>
<tr>
<td>Mme</td>
<td>Per1 chromosome 2q31</td>
<td>1,413</td>
</tr>
<tr>
<td>$Cdkn1a$</td>
<td>Per2 chromosome 20p12</td>
<td>9.9</td>
</tr>
</tbody>
</table>

www.aacrjournals.org 2615 Cancer Res 2005; 65: (7). April 1, 2005
References

Linkage and Microarray Analyses of Susceptibility Genes in ACI/Seg Rats: A Model for Prostate Cancers in the Aged

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/65/7/2610

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2005/04/07/65.7.2610.DC1

Cited articles
This article cites 43 articles, 14 of which you can access for free at:
http://cancerres.aacrjournals.org/content/65/7/2610.full.html#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
/content/65/7/2610.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.