In vitro and In vivo Antitumor Effects of the Dual Insulin-Like Growth Factor-I/Insulin Receptor Inhibitor, BMS-554417

Paul Haluska,1 Joan M. Carboni,4 David A. Loegering,2 Francis Y. Lee,4 Mark Wittman,5 Mark G. Saulnier,7 David B. Frennesson,5 Kimberly R. Kalli,7 Cheryl A. Conover,5 Ricardo M. Attar,1 Scott H. Kaufmann,5 Marco Gottardis,7 and Charles Erlichman1

Divisions of 1Medical Oncology, 2Developmental Oncology Research, and 3Endocrinology and Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota; 4Oncology Drug Discovery, Pharmaceutical Research Institute, Bristol-Myers Squibb Co., Princeton, New Jersey; and 5Discovery Chemistry, Bristol-Myers Squibb Co., Wallingford, Connecticut

Abstract

The insulin-like growth factor receptor (IGF-IR) and insulin receptor are either overactivated and/or overexpressed in a wide range of tumor types and contribute to tumorigenicity, proliferation, metastasis, and drug resistance. Here, we show that BMS-554417, a novel small molecule developed as an inhibitor of IGF-IR, inhibits IGF-IR and insulin receptor kinase activity and proliferation in vitro, and reduces tumor xenograft size in vivo. In a series of carcinoma cell lines, the IC50 for proliferation ranged from 120 nmol/L (Colo205) to >8.5 µmol/L (OV202). The addition of stimulatory ligands was unnecessary for the antiproliferative effect in MCF-7 and OV202 cells. BMS-554417 treatment inhibited IGF-IR and insulin receptor signaling through extracellular signal-related kinase as well as the phosphoinositide 3-kinase/Akt pathway, as evidenced by decreased Akt phosphorylation at Ser473. At doses that inhibited proliferation, the compound also caused a G0–G1 arrest and prevented nuclear accumulation of cyclin D1 at the G1-S transition as well as Akt, which phosphorylates a series of polypeptides that regulate both of the major caspase activation pathways (14). Akt-mediated inhibition of the mitochondrial pathway reflects phosphorylation and sequestration of the proapoptotic Bcl-2 family member Bad (15), altered synthesis of microtubule-associated Bhs only protein Bim (16), effects on other mitochondrial polypeptides that regulate cytochrome c release (17), and possible modification of procaspase-9 (18). Due to its critical role in IGF-I-mediated mitogenesis and inhibition of apoptosis, the IGF-IR has been a major focus for the development of novel anticancer therapies. Inhibition of the IGF-IR by a variety of strategies has shown activity in a wide range of hematologic and solid tumors in vitro and in vivo (19). Although the insulin receptor plays a critical stimulatory role in the IGF-1 system, most strategies have been deliberately designed for selectivity against the IGF-IR and not the insulin receptor, due to potential metabolic consequences of inhibiting the latter. However, emerging data suggest that elevated levels of insulin receptor isoform A and IGF-II in certain cancers may establish an autocrine growth loop (6, 20–22). In addition to proliferative effects, the insulin receptor may influence migration, differentiation, and survival (4, 22–24). Furthermore, IGF-IR and insulin receptor isoform A can form hybrid receptors that bind IGF-I and IGF-II at physiologic concentrations, suggesting that inhibition of both receptors may necessary for inhibiting IGF-mediated proliferation (4, 20).

Here, we report the effects of BMS-554417, a member of a class of inhibitors identified as part of a drug discovery program aimed at developing small molecule inhibitors of the IGF-IR. BMS-554417 inhibits both the insulin receptor and IGF-IR with similar potency in both cell-free and intact cell assays. Further analysis indicates that BMS-554417 affects cell proliferation by inhibiting Akt and extracellular signal-related kinase (ERK) activation and prevents nuclear accumulation of cyclin D1 at the G1-S transition as well as inhibition of apoptosis through the mitochondrial pathway. BMS-554417 administered orally also has significant activity in vitro and leads to temporary hyperglycemia at efficacious doses (25).

Introduction

The insulin-like growth factor (IGF) system contains two receptor tyrosine kinases that are involved in propagating mitogenic signaling. The IGF receptor (IGF-IR) mediates proliferation when activated by the stimulatory ligands IGF-I and IGF-II (1–3). The insulin receptor is also a key component of the IGF signaling pathway. Although the classic insulin receptor isoform B only binds insulin and elicits metabolic effects, insulin receptor isoform A binds IGF-2 in addition to insulin and initiates mitogenic signaling (4). In normal cells, activation of IGF-IR and insulin receptor is tightly regulated by the action of IGF binding proteins (IGFBP) and the nonstimulatory receptor IGF-IR. Dysregulation of the IGF-I system has been implicated in the proliferation of numerous neoplasms, including multiple myeloma, as well as breast, prostate, colon, ovarian, and lung cancers (5, 6). IGF-I signaling also seems to play a vital role in malignant transformation, metastasis, angiogenesis, and the development of resistance to clinically useful anticancer treatments, including hormonal agents, biological growth factor inhibitors, radiation, and cytoxic chemotherapy (7–13).

According to current understanding, activation of IGF-IR and insulin receptor antagonizes apoptotic cell death. In particular, signaling by these receptors activates the serine/threonine kinase Akt, which phosphorylates a series of polypeptides that regulate both of the major caspase activation pathways (14). Akt-mediated inhibition of the mitochondrial pathway reflects phosphorylation and sequestration of the proapoptotic Bcl-2 family member Bad (15), altered synthesis of microtubule-associated Bhs only protein Bim (16), effects on other mitochondrial polypeptides that regulate cytochrome c release (17), and possible modification of procaspase-9 (18). Due to its critical role in IGF-I-mediated mitogenesis and inhibition of apoptosis, the IGF-IR has been a major focus for the development of novel anticancer therapies. Inhibition of the IGF-IR by a variety of strategies has shown activity in a wide range of hematologic and solid tumors in vitro and in vivo (19). Although the insulin receptor plays a critical stimulatory role in the IGF-1 system, most strategies have been deliberately designed for selectivity against the IGF-IR and not the insulin receptor, due to potential metabolic consequences of inhibiting the latter. However, emerging data suggest that elevated levels of insulin receptor isoform A and IGF-II in certain cancers may establish an autocrine growth loop (6, 20–22). In addition to proliferative effects, the insulin receptor may influence migration, differentiation, and survival (4, 22–24). Furthermore, IGF-IR and insulin receptor isoform A can form hybrid receptors that bind IGF-I and IGF-II at physiologic concentrations, suggesting that inhibition of both receptors may necessary for inhibiting IGF-mediated proliferation (4, 20).

Here, we report the effects of BMS-554417, a member of a class of inhibitors identified as part of a drug discovery program aimed at developing small molecule inhibitors of the IGF-IR. BMS-554417 inhibits both the insulin receptor and IGF-IR with similar potency in both cell-free and intact cell assays. Further analysis indicates that BMS-554417 affects cell proliferation by inhibiting Akt and extracellular signal-related kinase (ERK) activation and prevents nuclear accumulation of cyclin D1 at the G1-S transition as well as inducing apoptosis through the mitochondrial pathway. BMS-554417 administered orally also has significant activity in vitro and leads to temporary hyperglycemia at efficacious doses (25).
Protein A-Sepharose CL-4B from Sigma (St. Louis, MO); SDS-PAGE reagents from Bio-Rad (Hercules, CA); fetal bovine serum (FBS) and trypsin-EDTA from Life Technologies/Invitrogen (Grand Island, NY); Long polymerase (LR3 IGF-I) from Gro Pep (Thebarton, South Australia, Australia); IEDT(Ome)-fmk from ICN (Irvine, CA); zVAD(Ome)-fmk from Biomol (Plymouth Meeting, PA); Protease Inhibitor Cocktail Set III from Calbiochem (San Diego, CA); and CellTiter 96 Non-Radioactive Cell Proliferation Assay Kit from Promega (Madison, WI). Polyclonal antibodies were obtained from the following suppliers: insulin receptor β-subunit (C-19), IGF-IR β-subunit, and actin from Santa Cruz Biotechnology (Santa Cruz, CA); Akt, phospho-Akt pSer16, ERK1/2, phospho-ERK1/2 pThr202/pTyr204, phospho-IGF-IR pTyr1131/insulin receptor pTyr1163, stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pThr183/pTyr185 and phospho-tyrosine (p-Tyr100) from Cell Signaling Technology (Beverly, MA); phospho-Akt pThr308, cyclin D1, phospho-FAK pTyr925 from Upstate Biotechnology (Lake Placid, NY); and anti-Bcl-xL from DAKO (Carpinteria, CA).

Monoclonal antibodies were obtained from the following suppliers: phospho-SAPK/JNK pThr183/pTyr185 and phospho-tyrosine (p-Tyr100) from Cell Signaling Technology; IGF-IR/β and focal adhesion kinase (FAK) from Upstate Biotechnology; and insulin receptor β-subunit (29B4) from Santa Cruz Biotechnology. Monoclonal antibody to poly(ADP-ribose) polymerase-1 (PARP-1) was a kind gift from Gyu Point (Laval University, Ste-Foy, Quebec). Peroxidase-coupled secondary antibodies were supplied by Pierce (Rockford, IL.). Fluorescein-labeled affinity purified antibody to rabbit IgG was supplied by KPL (Gaithersburg, MD).

Kinase assays. To assess the specificity of BMS-554417, the activities of various baculovirus-expressed kinases were assayed by measuring the incorporation of radio labeled ATP into synthetic peptides or protein substrates. The reactions were done in 96-well plates and included relevant kinase, substrate, ATP, and appropriate cofactors at concentrations optimized for each individual kinase. Reactions were stopped by the addition of trichloroacetic acid. After the precipitates were collected, the samples were washed twice with ice-cold PBS, then lysed in 4X sample buffer [250 mmol/L Tris-HCl (pH 8.0), 8% SDS, 20% glycerol, 0.0075% bromphenol blue] or radioimmunoprecipitation assay (RIPA) buffer [50 mmol/L Tris-HCl (pH 7.4), 150 mmol/L NaCl, 0.5% NP-40, 0.5% Triton X-100, 0.25% sodium deoxycholate with freshly added 10 mmol/L sodium pyrophosphate, 1 mmol/L NaF, 1 mmol/L sodium orthovanadate, 2 mmol/L phenylmethylsulfonfluoride, 1 mmol/L AEBSE, 800 mmol/L aprotinin, 500 mmol/L bestatin, 15 mmol/L E-64, 20 mmol/L leupeptin, and 10 mmol/L pepstatin A]. Lysates were then sonicated and frozen at −20°C or assayed for total protein by the bicinchoninic acid method (29) and immediately used for immunoprecipitation. Western blotting, samples were boiled at 95°C for 15 minutes with 100 mmol/L DTT and separated by SDS-PAGE. After proteins were transferred to nitrocellulose or polyvinylidene difluoride membranes, membranes were blocked for 1 hour in PBS-T (5% nonfat milk or BSA and probed overnight with primary antibodies. After three washes in PBS-T, blots were probed with horseradish peroxidase-conjugated secondary antibody for 1 hour. After three additional washes, bands were visualized with enhanced chemiluminescence reagent (Amersham Pharmacia Biotech, Little Chalfont, United Kingdom) for 3 hours, trypsinized, harvested onto UniFilter-96, GF/B plates (Perkin-Elmer, Boston, MA), and counted on a TopCount NXT (Packard Instrument) scintillation counter. Results are expressed as an IC50, which is the drug concentration required to inhibit cell proliferation by 50% compared with that of untreated control cells.

Western blotting and immunoprecipitation. Cells were grown to 70% to 80% confluence and then switched to serum-free medium for 24 hours. Replicate plates were then exposed to serum-free medium, DMSO, or BMS-554417 for 1 hour at the approximated IC80 concentration (MCF-7, 5 μmol/L; OV202, 20 μmol/L). Fifteen minutes before the end of the 1-hour exposure, either ligand diluent (10 mmol/L HCl/0.1% BSA), LR3 IGF-I (10 mmol/L), or insulin (10 mmol/L) was added to the cells. Cells were washed twice with ice-cold PBS, then lysed in 4X sample buffer [250 mmol/L Tris-HCl (pH 6.8), 8% SDS, 20% glycerol, 0.0075% bromphenol blue] or radioimmunoprecipitation assay (RIPA) buffer [50 mmol/L Tris-HCl (pH 7.4), 150 mmol/L NaCl, 0.5% NP-40, 0.5% Triton X-100, 0.25% sodium deoxycholate with freshly added 10 mmol/L sodium pyrophosphate, 1 mmol/L NaF, 1 mmol/L sodium orthovanadate, 2 mmol/L phenylmethylsulfonfluoride, 1 mmol/L AEBSE, 800 mmol/L aprotinin, 500 mmol/L bestatin, 15 mmol/L E-64, 20 mmol/L leupeptin, and 10 mmol/L pepstatin A]. Lysates were then sonicated and frozen at −20°C or assayed for total protein by the bicinchoninic acid method (29) and immediately used for immunoprecipitation. Western blotting, samples were boiled at 95°C for 15 minutes with 100 mmol/L DTT and separated by SDS-PAGE. After proteins were transferred to nitrocellulose or polyvinylidene difluoride membranes, membranes were blocked for 1 hour in PBS-T (5% nonfat milk or BSA and probed overnight with primary antibodies. After three washes in PBS-T, blots were probed with horseradish peroxidase-conjugated secondary antibody for 1 hour. After three additional washes, bands were visualized with enhanced chemiluminescence reagent (Amersham, Piscataway, NJ) on XOMAT film (Kodak, Rochester, NY).

For immunoprecipitations, 1,000 to 2,000 μg of protein diluted to 1 mL with RIPA buffer was centrifuged at 10,000 × g for 10 minutes at 4°C to remove cellular debris. The supernatant was precentrifuged with 20 μL of a 50% slurry of Protein A-Sepharose and 1.0 μg of control anti-rabbit or anti-mouse IgG for 30 minutes at 4°C. After samples were centrifuged at 1,000 × g for 30 seconds at 4°C, the supernatant was removed and treated with 4 μg of anti-IGF-IR (Upstate Biotechnology) or 2 μg anti-IgG (29B4; Santa Cruz Biotechnology) with 20 μL of a 50% Protein A-Sepharose slurry for 2 hours at 4°C. The immunoprecipitates were collected by centrifugation at 1,000 × g for 30 seconds, washed twice with RIPA buffer, solubilized by boiling for 15 minutes in 4X sample buffer/100 μmol/L DTT, loaded onto SDS-PAGE gels, and processed for Western blotting as above. Experiments were repeated at least three times.

Cell cycle/fluorescence-activated cell sorting analysis. MCF-7 cells were grown to ~70% confluence in complete medium, washed, and incubated for 72 hours in serum-free/phenol red-free medium (“free” medium). Cells were then incubated for an additional 24 hours in serum-free medium with diluent or LR3 IGF-I (10 mmol/L) ± BMS-554417 at IC50.
(5 μmol/L). After 24 hours, cells were trypsinized, washed in ice-cold PBS, pelleted by centrifugation at 600 × g for 10 minutes, resuspended in PBS, and fixed for at least 12 hours with an equal volume of 95% ethanol. Cells were rehydrated with ice-cold PBS, treated with 1 mg/mL RNase A in 0.1% sodium citrate for 15 minutes at 37°C, stained with 50 μg/mL propidium iodide for 15 minutes at room temperature in the dark, and immediately analyzed using a FACScan cytometer (Becton Dickinson, San Jose, CA); 20,000 events were collected and analyzed using ModFit LT software (Verify Software, Topsham, ME). Experiments were repeated at least thrice.

Immunohistochemistry. MCF-7 cells seeded onto sterile slides or slide chambers were grown and treated as in the previous section. After fixation and permeabilization in acetone for 15 minutes at 20°C, slides were washed four times with PBS and blocked in TSM [150 mmol/L NaCl, 10 mmol/L Tris-HCl (pH 7.4), 10% nonfat milk, 100 units/mL penicillin, 100 μg/mL streptomycin, 1 mmol/L sodium azide]. Slides were incubated in anti-cyclin D1 at 20 μg/mL in TSM for 48 hours at 4°C, washed with PBS, incubated with fluorescein-conjugated anti-rabbit IgG in TSM for 1 hour at 4°C, washed again with PBS, incubated with Hoechst dye 33258 (1 μg/mL) for 15 minutes at room temperature, mounted, and examined using a Zeiss LSM 510 Confocal Laser Scanning Microscope.

Apoptosis induction. Solid tumor cell lines were grown to 70% confluence in complete medium. After 24 hours of incubation in serum-deficient medium, cells were treated with BMS-554417 at the IC50 concentration or, as a control, 0.1% DMSO before examination for apoptosis induction. After addition of potential modulating agents as indicated in the figure legends, Jurkat cells were treated for 72 hours with the indicated BMS-554417 concentration or, as a control, 0.1% DMSO before examination for apoptotic morphologic changes as indicated above. Approximately 500 cells per slide were counted.

Murine tumor allograft models. IGFR1-Sal tumors were generated as previously described (31). Briefly, ~20 mg of established tumor was injected s.c. into eight nude mice per treatment group using a 13-gauge trocar and allowed to propagate to a target volume of 1,000 mm3 as determined by caliper measurements. Treatment was initiated in each mouse once tumors reached a volume of ~100 mm3, which was calculated using the formula (L × W2) / 2. Animals were then treated with either vehicle alone (80% polyethylene glycol 400 in water) alone or with BMS-554417. All animal procedures were approved by the Bristol-Myers Squibb (BMS) Institutional Animal Care and Use Committee. The animal care and use program at BMS has been fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (Rockville, MD).

Oral glucose tolerance test. After a 2-hour fasting period, nude mice were dosed orally with vehicle or without BMS-554417 at a single dose 4 hours before an oral glucose challenge (1 g/kg). Serum glucose was monitored at 0, 15, 30, 60, 90, and 120 minutes after glucose challenge using a blood glucometer (Elite XL, Bayer, Elkhart, IN). Serum insulin was measured at 120 minutes post glucose challenge by ELISA (INSSK-R020, Crystal Chem, Downers Grove, IL).

Table 1. In vitro inhibitory activity and selectivity of BMS-554417

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>IC50, nmol/L (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>50.6 (44.6-57.4)</td>
</tr>
<tr>
<td>IGF-1R</td>
<td>67.9 (53.1-86.9)</td>
</tr>
<tr>
<td>FAK</td>
<td>94.0 (85.7-103)</td>
</tr>
<tr>
<td>MEK</td>
<td>356 (217-583)</td>
</tr>
<tr>
<td>Emt</td>
<td>346 (288-416)</td>
</tr>
<tr>
<td>PKCα</td>
<td>397 (340-463)</td>
</tr>
<tr>
<td>Syk</td>
<td>615 (422-897)</td>
</tr>
<tr>
<td>VEGFR2</td>
<td>>1,000</td>
</tr>
<tr>
<td>Lck</td>
<td>>1,500</td>
</tr>
<tr>
<td>PKCβ</td>
<td>>2,700</td>
</tr>
<tr>
<td>Her1</td>
<td>>3,000</td>
</tr>
<tr>
<td>p38</td>
<td>>10,000</td>
</tr>
<tr>
<td>CDK2</td>
<td>>10,000</td>
</tr>
<tr>
<td>HER2</td>
<td>>17,000</td>
</tr>
<tr>
<td>PDE 3</td>
<td>>20,000</td>
</tr>
<tr>
<td>CaMKII</td>
<td>>20,000</td>
</tr>
<tr>
<td>Akt</td>
<td>>20,000</td>
</tr>
<tr>
<td>GSK 3</td>
<td>>27,000</td>
</tr>
<tr>
<td>PDE 4</td>
<td>~40,000</td>
</tr>
<tr>
<td>PDE 7</td>
<td>~40,000</td>
</tr>
</tbody>
</table>

NOTE: In vitro kinase assays were done with the purified recombinant kinases in the absence or presence of increasing concentrations of BMS-554417, as described in Materials and Methods.

IC50 represents the calculated mean value for the concentration of BMS-554417 that inhibits the ability of each kinase to phosphorylate its synthetic substrate by 50%. Ninety-five percent confidence intervals shown for IC50 <1,000 nmol/L.

Abbreviations: IR, insulin receptor; PKC, protein kinase C; CaMKII, calcium/calmodulin-dependent protein kinase II; MEK, mitogen-activated protein kinase kinase; PDE, phosphodiesterase; CDK2, cyclin-dependent kinase 2; GSK 3, glycogen synthase kinase 3.

![Chemical structure of BMS-554417](image1.png)

Figure 1. Chemical structure of BMS-554417.
used for nonparametric comparison of in vivo tumor growth delay to target volume. The Kruskal-Wallis test was used for pairwise comparisons of in vivo tumor volume. Results were considered significant at $P < 0.05$.

Results

BMS-554417 shows selectivity towards IGF-IR and insulin receptor in vitro. BMS-554417 is a 2-(4-substituted-2-oxo-1,2-dihydropyridin-3-yl)-benzimidazole derivative that has selectivity towards the IGF-IR and insulin receptor (Fig. 1; Table 1; ref. 32). BMS-554417 inhibited IGF-IR kinase activity with an IC$_{50}$ of 68 nmol/L. Similarly, it was also a potent inhibitor of insulin receptor and FAK kinase activity with IC$_{50}$ values of 51 and 94 nmol/L, respectively. BMS-554417 displayed >5-fold selectivity over other kinases assayed, as shown in Table 1. The insulin receptor and IGF-IR kinases were the only receptor tyrosine kinases inhibited at submicromolar concentrations.

BMS-554417 inhibits proliferation in a dose-dependent manner and in multiple tissue types. To assess activity of BMS-554417 in tumor cell lines, the IC$_{50}$ and IC$_{90}$ concentrations were determined using MTS assays (Fig. 2). These assays were done in the absence or presence of insulin (10 nmol/L) or LR3 IGF-I (10 nmol/L), an IGF-I analogue that activates IGF-IR irrespective of IGFBP levels (33). MCF-7 cells exhibited a dose-dependent decrease in MTS dye reduction compared with untreated cells (Fig. 2A). The IC$_{50}$ for this antiproliferative effect was in the submicromolar range with or without added ligands.

OV202 cells also exhibited a dose-dependent inhibition of proliferation but were 18- to 42-fold less sensitive to BMS-554417 compared with MCF-7 cells (Fig. 2B). There was no significant difference in the sensitivity of OV202 cells to BMS-554417 in the presence of either LR3 IGF-I or insulin versus no growth factor at any concentration tested.

In a panel of human tumor cell lines, the IC$_{50}$ of BMS-554417 ranged from 146 nmol/L to 2.21 μmol/L (Fig. 2C). Although differential sensitivity was seen among the different tumor types, the colon cancer cell lines tested were relatively more sensitive as a group. The sarcoma and breast cancer cell lines tested had a greater than a log-fold range in sensitivity as measured by thymidine incorporation. The prostate cancer cell lines showed a nearly log-fold range of sensitivity.

BMS-554417 inhibits IGF-IR and insulin receptor phosphorylation in intact cells. To show the ability of BMS-554417 to inhibit the activity of the IGF-IR and insulin receptor tyrosine kinase in intact cells, receptor phosphorylation was examined in the presence or absence of drug and stimulatory ligands (Fig. 3). IGF-IR and insulin receptor were immunoprecipitated from treated cells and analyzed by Western blotting using a phosphotyrosine-specific antibody. In MCF-7 cells (Fig. 3A), there was no detectable phosphorylation of the immunoprecipitated IGF-IR and insulin receptor without the addition of growth factors. However, in the presence of growth factors LR3 IGF-I (10 nmol/L) or insulin (25 nmol/L), there was detectable phosphorylation of the IGF-IR and insulin receptor, respectively. The phosphorylation of IGF-IR and insulin receptor by their cognate ligands in the presence of BMS-554417, but not DMSO, was inhibited to nonstimulated levels. There was no change in the amount of IGF-IR or insulin receptor immunoprecipitated between the various treatment groups as determined by Western blotting for total receptors. In OV202 cells (Fig. 3B), there was no detectable phosphorylation of the immunoprecipitated insulin receptor in the presence or absence of growth factors (up to 50 nmol/L), which is consistent with previous data (20). There was detectable phosphorylation of the IGF-IR in cells that were incubated in serum-free medium. The degree of IGF-IR phosphorylation increased in response to treatment with LR3 IGF-I.
Phosphorylation of IGF-IR in the presence or absence of growth factors was greatly reduced in the presence of BMS-554417 but not DMSO. As observed in MCF-7 cells, there was no appreciable change in the level of IGF-IR and insulin receptor among the various treatment groups.

BMS-554417 disrupts IGF-IR and insulin receptor signaling through the ERK and Akt pathways but not through p38 or JNK.

To elucidate the mechanism by which BMS-554417 inhibits proliferation, we investigated the pathways known to be important in IGF-I and insulin-induced growth and mitogenesis (2, 34). Lysates were made from MCF-7 and OV202 cells treated with diluent or BMS-554417 in the absence or presence of LR3 IGF-I or insulin. In MCF-7 cells (Fig. 3C), there was relatively low phosphorylation of ERK1/2 and Akt in the unstimulated state. The addition of LR3 IGF-I and, to a lesser extent, insulin resulted in an increase in ERK1/2 phosphoisoforms 3-kinase-dependent kinase-1 (PDK-1)-mediated phosphorylation of Akt at Ser73. BMS-554417 inhibited this ligand-induced phosphorylation. In OV202 cells (Fig. 3D), ERK1/2 phosphorylation was detectable in the unstimulated state and was not as responsive to ligand stimulation. Nonetheless, BMS-554417 also inhibited ERK1/2 phosphorylation in both unstimulated and stimulated OV202 cells. PDK-1-mediated Akt phosphorylation was barely detectable in the unstimulated and insulin-treated OV202 cells. In the presence of LR3 IGF-I, Akt phosphorylation increased. BMS-554417 inhibited both stimulated and unstimulated Akt phosphorylation. Total ERK1/2 or Akt expression was not affected by any experimental conditions tested. Akt phosphorylation at Thr-308, which reflects phosphorylation by other kinases, was unaffected by treatment (data not shown). In both MCF-7 and OV202 cells, expression of p38 and JNK was not altered in response to LR3 IGF-I, insulin, DMSO, or BMS-554417. Phosphorylation of these kinases was undetectable after 2, 5, 10, 15, or 30 minutes of treatment (data not shown).

BMS-554417 abrogates IGF-I-mediated G1 to S transition and nuclear accumulation of cyclin D1. IGF-I is a well-established mitogen that stimulates G1 to S phase progression through phosphoinositide 3-kinase and ERK activation, increased cyclin D1 expression and nuclear localization, and retinoblastoma hyperphosphorylation (35). To investigate the ability of BMS-554417 to interfere with functional effects of IGF-I-mediated signaling, we analyzed MCF-7 cell cycle distribution and cyclin D1 localization in response to IGF-I with and without drug. MCF-7 cells in serum-free medium were either subjected to continuous growth in serum-free medium or LR3 IGF-I stimulation in the presence or absence of BMS-554417 for 24 hours (Fig. 4A). A small percentage of serum-deprived cells were found to be in the S phase (11.4 ± 2.0%). Stimulation with LR3 IGF-I induced a significant increase in S-phase cells (45.1 ± 8.8%). This S-phase increase was completely abolished by 5 μmol/L BMS-554417 (6.5 ± 2.6%). Similarly treated cells were stained for cyclin D1 expression and localization (Fig. 4B). Cells in serum-free medium expressed low levels of cyclin D1, which seemed largely excluded from the nucleus. Upon stimulation with LR3 IGF-I, there was a dramatic increase in overall cyclin D1 expression and intense nuclear staining. Upon concurrent treatment with BMS-554417, the effects of LR3 IGF-I on overall cyclin D1 staining intensity and nuclear localization were dramatically reduced.

MCF-7 and OV202 cells undergo apoptotic cell death upon BMS-554417 exposure. Because BMS-554417 treatment decreased MTS dye reduction and inhibited IGF-I-induced activation of Akt, a kinase that regulates apoptosis in a number of ways (14), we investigated whether BMS-554417 treatment could initiate apoptosis. MCF-7 and OV202 cells were incubated in serum-free medium in the absence or presence of BMS-554417. After treatment, both adherent and nonadherent cells were collected and subjected to Western blotting with antibodies to PARP-1, a caspase substrate that is cleaved in
a variety of cells undergoing apoptosis (Fig. 5A) or examined for apoptotic morphologic changes (Fig. 5B; refs. 36–38). Both MCF-7 and OV202 cells exhibited PARP-1 cleavage and nuclear fragmentation in response to BMS-554417 treatment but not DMSO.

BMS-554417–induced caspase activation occurs through the mitochondrial pathway. We then decided to elucidate the biochemical pathway involved in BMS-554417-induced apoptosis. As indicated previously, IGF-IR- and insulin receptor-initiated signals can inhibit both the mitochondrial and death receptor pathways. Conversely, inhibition of IGFR1 and insulin receptor signaling might facilitate activation of either pathway. In view of recent data showing activity of IGR-1R inhibitors against leukemia (39) and the availability of a variety of isogenic Jurkat leukemia cell lines differing in expression of only one or two pathway components, studies examining BMS-554417-induced death pathway activation were done in this cell type.
As shown in Fig. 6A, Jurkat cells and their variants expressed both IGF-IR and insulin receptor. MTS assays showed that BMS-554417 exhibited dose-dependent antiproliferative effects in parental Jurkat cells with and IC₅₀ of 9 ± 1 μmol/L (n = 7; Fig. 6B). After 72 hours of drug treatment, the percentage of cells with apoptotic morphologic changes (illustrated in Fig. 6C, inset) also increased in a dose-dependent manner (Fig. 6C). To assess the possibility that induction of apoptosis reflected BMS-554417-induced activation of the death receptor pathway, Jurkat cells were treated with BMS-554417 in the presence of Nok1, a neutralizing antibody to Fas ligand (40); a death receptor 5:Fc fusion protein, which blocks TRAIL-induced receptor activation (41, 42); or the caspase-8-selective inhibitor IETD(OMe)-fmk, which inhibits the death receptor pathway preferentially at low concentrations (41). None of these treatments inhibited BMS-554417-induced apoptosis in Jurkat cells. However, treatment with the broad-spectrum caspase inhibitor ZVAD(OMe)-fmk inhibited the induction of apoptosis in Jurkat cells treated with BMS-554417 (Fig. 6D; ref. 43). Consistent with these results, a Jurkat variant lacking expression of FADD (I2.1 cells), the adaptor required for death receptor–initiated caspase activation (44), remained sensitive to BMS-554417 (Fig. 6E). In contrast, forced overexpression of Bcl-2 (JB-6 cells) or Bcl-xL (5B4 cells) markedly diminished sensitivity to BMS-554417-induced apoptosis in Jurkat cells (Fig. 6E; refs. 45, 46). Collectively, these results suggest that BMS-554417 induces apoptosis in Jurkat cells by a process that does not involve Fas ligand, TRAIL, or FADD but does involve the mitochondrial pathway of caspase activation.

BMS-554417 shows activity in vivo. To investigate the activity of BMS-554417 in vivo, we used a mouse allograft model (IGF-IR Sal) that expressed a constitutively activated IGF-IR (31). Fourteen days after s.c. implantation of IGF-IR Sal tumor fragments, mice were treated with vehicle in the absence or presence of BMS-554417 at 200 mg/kg/dose. This resulted in significant antitumor activity as measured by decrease in days to target volume (19.3 versus 35.5, P = 0.0004) and mean tumor volume at days 17 to 28 (Fig. 7A). The concentration of BMS-554417 (mean ± SD) detected in the serum of treated mice at 6 hours after administration was 30.0 ± 4.16 μmol/L. This concentration was significantly higher than the IC₅₀ of the most resistant cell line tested (OV202, P = 0.0007).

To evaluate the acute metabolic effects of BMS-554417 in vivo, we did an oral glucose tolerance test (OGTT) on mice treated with vehicle alone or with BMS-554417 at 200 mg/kg (Fig. 7B). Before administration of the glucose load, there was a small but
Discussion

BMS-554417 is the first dual-kinase small-molecule inhibitor of the IGF-IR and insulin receptor to show antiproliferative and proapoptotic activity in multiple cell types. The inhibition of IGF-IR and insulin receptor phosphorylation in treated cells was consistent with the similar degree of potent inhibition of the IGF-IR and insulin receptor in cell-free kinase assays. It seemed that inhibition of both kinases occurred without down-regulation of IGF-IR or insulin receptor protein expression. BMS-554417 had antiproliferative effects in multiple cancer cell line types and did not seem to require the addition of stimulatory ligands for this effect in MCF-7 or OV202 cells.

Using in vitro kinase assays, BMS-554417 also seemed to be a potent inhibitor of the FAK kinase activity. To test the ability of BMS-554417 to inhibit FAK in intact cells, we measured FAK phosphorylation at Tyr397, which is the major FAK autophosphorylation site and is important for FAK catalytic activity, binding of SH2 and Src family kinases, activation of focal adhesion proteins, and binding of the FAK-binding proteins Cas and Paxillin (47). Surprisingly, at doses that inhibited proliferation in MCF-7 and OV202 cells, BMS-554417 did not seem to affect the phosphorylation of FAK at Tyr397 in treated cells (data not shown). FAK expression and phosphorylation at Tyr397 was also not detectably altered by the presence of LR3 IGF-I or insulin (data not shown). Thus, under the conditions investigated in MCF-7 and OV202 cells, FAK may not be playing a major role in IGF-I signaling. It is conceivable that in other models where FAK plays a significant role in IGF-I or insulin-mediated signaling, an inhibitory effect may be observed (48). Alternatively, the recombinant FAK fragment used in the in vitro kinase assays may have a conformation and selectivity that differs from the native enzyme, as has been observed in similar studies with kinase inhibitors (49).

Consistent with the known role of the IGF-I system in cancer cells, treatment with BMS-554417 resulted in inhibition of ERK1/2 and Akt phosphorylation, diminution of IGF-I-mediated proliferation, and stimulation of apoptosis. Because ligation of IGF-IR and insulin receptor leads to activation of the serine/threonine kinase Akt, which can inhibit both the death receptor and mitochondrial pathways (14), it was not clear how treatment with BMS-554417 might lead to apoptosis. On one hand, inhibition of IGF-IR and insulin receptor signaling could potentially lead to increased expression of Fas ligand (50), which could induce caspase activation through the Fas receptor in an autocrine or paracrine fashion (51–54). Treatment of Jurkat cells with a variety of agents that inhibit the death receptor pathway, including the blocking antibody Nok-1 and the caspase-8-selective inhibitor IETD(OMe)-fmk, failed to inhibit BMS-554417-induced apoptosis (Fig. 6D). Likewise, loss of FADD expression failed to affect BMS-554417-induced apoptosis (Fig. 6D). Collectively, these results argue that BMS-554417-induced activation of death ligand expression is unlikely to be a major cause of the cytotoxicity induced by this agent. In contrast, overexpression of Bcl-2 or Bcl-xL markedly diminished the cytotoxic effect in MCF-7 or OV202 cells. Similarly, treatment with BMS-554417 did not seem to require the addition of stimulatory ligands for this effect in MCF-7 or OV202 cells.

At the most effective dose of BMS-554417 tested (200 mg/kg), transient hyperglycemia and supraphysiologic elevations of secreted insulin was observed. At lower doses of 80 and 120 mg/kg, we did observe modest increases in insulin (2.82 ± 0.950 and 5.97 ± 1.64 ng/mL, respectively), but this was not associated with hyperglycemia was not observed (data not shown). These results suggest that mice hypersecrete insulin in response to BMS-554417 as a compensatory mechanism. At increasing drug doses, it seems a critical threshold is reached, overwhelming this adaptive mechanism and hyperglycemia ensues. This phenomenon could
be used as a marker of a target effect of BMS-554417. Because this was a single-dose study, it is unclear if chronic exposure to BMS-554417 would cause more prolonged hyperglycemia or other adverse metabolic consequences. On the other hand, no weight loss was observed in the cohort of mice treated at the 200 mg/kg dose level. Further studies will be needed to define this potentially compensatory mechanism. In summary, BMS-554417 represents a member of a novel class of potent dual-kinase inhibitors of the IGF-IR and insulin receptor. Due to the dependence of multiple hematologic and nonhematologic malignancies on the IGF-I system for proliferation and inhibition of apoptosis, members of this drug class represent a potentially promising therapy. Furthermore, due to the effect of the IGF-I system on resistance to standard agents used in the treatment of cancer, studies combining dual-kinase inhibitors of the IGF-I system, such as BMS-554417 with chemotherapy, biological and hormonal agents, or radiation, might represent interesting combinations for future preclinical investigations.

Acknowledgments

Received 3/31/2005; revised 8/30/2005; accepted 10/5/2005.

Grant support: B01 CA69008 (S.H. Kaufmann) and Clinician Investigator Program of the Mayo Clinic (P. Halaska).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank the Mayo Clinic Flow Cytometry/Optical Morphology Share Resource for their help with confocal microscopy, Sumithra Mandrekar and Alfred Furth for statistical support, Aixin Li for selectivity testing and insulin measurements, Lorell Discenza for serum determinations of BMS-554417, Ann Greer for antiproliferative thymidine assays, Janet Dell for performing the OGT assay, and Laura E. Wustila for secretarial support.

References

signalling complexes in a FADD-dependent manner but
can not functionally substitute caspase-8. EMBO J 2002;
by Bcl-2; release of cytochrome c from mitochondria
blocked.[see comment]. Science 1997;275:1129–32.
46. Ibrado AM, Liu I, Bhalla K. Bcl-xL overexpression
inhibits progression of molecular events leading to
paclitaxel-induced apoptosis of human acute myeloid
47. Parsons JT. Focal adhesion kinase: the first ten years.
Obberghen E. p125Fak focal adhesion kinase is a
substrate for the insulin and insulin-like growth
In vivo antitumor activity of NVP-AEW541-A novel,
potent, and selective inhibitor of the IGF-IR kinase.
cell survival by phosphorylating and inhibiting a Fork-
51. Friesen C, Herr I, Krammer PH, Debatin KM.
Involvement of the CD95 (APO-1/FAS) receptor/ligand
system in drug-induced apoptosis in leukemia cells. Nat
52. Fulda S, Los M, Friesen C, Debatin KM. Chemo-
sensitivity of solid tumor cells in vitro is related to
53. Fulda S, Meyer E, Friesen C, Susin SA, Kroemer G,
Debatin KM. Cell type specific involvement of death
receptor and mitochondrial pathways in drug-induced
54. Fulda S, Sievert H, Friesen C, Herr I, Debatin KM.
The CD95 (APO-1/Fas) system mediates drug-induced
apoptosis in neuroblastoma cells. Cancer Res 1997;57:
3823–9.
In vitro and In vivo Antitumor Effects of the Dual Insulin-Like Growth Factor-I/Insulin Receptor Inhibitor, BMS-554417

Paul Haluska, Joan M. Carboni, David A. Loegering, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/66/1/362

Cited articles
This article cites 54 articles, 23 of which you can access for free at:
http://cancerres.aacrjournals.org/content/66/1/362.full#ref-list-1

Citing articles
This article has been cited by 41 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/66/1/362.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.