Generation of Antitumor Responses by Genetic Modification of Primary Human T Cells with a Chimeric NKG2D Receptor

Tong Zhang, Amorette Barber, and Charles L. Sentman

Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire

Abstract

To create more effective T cells against human tumors, we have designed a strategy to allow T cells to recognize tumor cells using natural killer (NK) cell receptors but retain the effector responses of T lymphocytes. NKG2D is an activating cell surface receptor expressed on NK cells and on some T-cell subsets. Its ligands are primarily expressed on tumor cells. We have shown that by linking mouse NKG2D to the CD3ζ chain, it was possible to generate a chimeric NKG2D (chNKG2D) receptor that allowed activation of murine T cells on engagement with NKG2D ligand-positive tumor cells leading to antitumor responses in mice. In this study, a human version of the chNKG2D receptor was expressed on primary human T cells, and antitumor responses were determined. Human peripheral blood mononuclear cell–derived T cells were retrovirally transduced with a human chNKG2D receptor gene. These chNKG2D-bearing human T cells responded to NKG2D ligand-positive tumor cells by producing T-helper 1 cytokines, proinflammatory chemokines, and significant cellular cytotoxicity. This response could be blocked by anti-NKG2D antibodies, and it was dependent on NKG2D ligand expression on the target cells but not on expression of MHC molecules. In addition, the activity of chNKG2D-bearing T cells remained unimpaired after exposure to a soluble NKG2D ligand, soluble MICA, at concentrations as high as 1.5 μg/mL. These data indicate the feasibility of using chNKG2D receptors in primary human T cells and suggest that this approach may be a promising means for cancer immunotherapy. (Cancer Res 2006; 66(11): 5927-33)

Introduction

As a part of innate immunity, natural killer (NK) cells play an important role in prevention of tumor growth. NK cells attack tumors in the absence of MHC restriction using a combination of signals from activating and inhibitory receptors (1, 2). Adoptive transfer of activated or allogeneic NK cells is effective in treatment of certain types of leukemia and solid tumors (3, 4). However, in many cases, NK cell–mediated antitumor responses are weak, which may be due to the expression of inhibitory receptors, poor capacity for survival, or limited migration of effector cells into tumor sites (3, 5, 6). In contrast, T cells can migrate efficiently into various tissues and proliferate well in response to antigen stimulation (4, 7). However, T cells have strict specificities dictated by antigen-specific T-cell receptors (TCR). Propagation of large numbers (>1010) of tumor-specific T cells for adoptive transfer from a small percentage (usually <0.01%) of the whole T-cell repertoire is difficult (7, 8). By transducing T cells with modified NK cell–activating receptors, it may be possible to combine the broad specificity of NK cells with the efficient migration, expansion, and memory capacity of T cells. This combination of NK cell recognition and T-cell effector functions may lead to stronger antitumor responses.

NK cells can use multiple activating receptors to recognize target cells. However, the ligands for many of them remain poorly defined, and some are expressed on normal tissues (1, 2). For cancer immunotherapy, it would be ideal to use those activating NK receptors, where ligand expression is preferentially on tumor cells to minimize the risk of autoimmunity. In humans, NKG2D receptors are expressed on NK cells, NKT cells, γδ T cells, and CD8αα T cells (9). Ligands for human NKG2D include MICA, MICB, UL-16-binding proteins, and Letal (9, 10). NKG2D ligands are primarily expressed on tumor cells but are absent on most normal tissues. In a previous study, we described a novel strategy to redirect murine T cells against tumors through a chimeric NKG2D (chNKG2D) receptor (11). The chNKG2D receptor contains NKG2D fused to a CD3ζ cytoplasmic domain, which allows direct activation of T cells via the Syk family tyrosine kinase cascade after engagement with NKG2D ligand-positive tumor cells. Besides direct killing of NKG2D ligand-positive tumor cells, the chNKG2D-bearing T cells were able to induce host immunity against related tumors that did not express NKG2D ligands in mice (11).

In this study, we describe a version of the chNKG2D receptor for use in primary human T cells. Our results showed that chNKG2D-modified T cells produced large amounts of T-helper 1 cytokines and lysed target cells in a NKG2D ligand-dependent manner. chNKG2D-mediated responses require the presence of NKG2D ligands but not MHC expression on target cells. In addition, chNKG2D-bearing T cells were resistant to inhibition by high concentrations of soluble MICA (sMICA). These data support the possibility of immunotherapy of human cancers using chNKG2D-modified T cells.

Materials and Methods

Cell lines. Cell lines Bosc23, PT67, P815, K652 (human myeloid leukemia cell line), U937 (human promonocytic leukemia cell line), and Jurkat were obtained from the American Type Culture Collection (Rockville, MD). Breast cancer cell lines MCF-7 and T47D were provided by Dr. James Dinenzo (Dartmouth Medical School, Lebanon, NH). Pancreatic cancer cell line Panc-1 was provided by Dr. Murray Korc (Dartmouth Medical School). Prostate cancer cell lines PC-3 and DU145 and melanoma cell line A375 were provided by Dr. Marc Ernstoff (Dartmouth Medical School). Packaging cells Bosc23 and PT67 were grown in DMEM with a high glucose concentration (4.5 g/L) supplemented with 10% heat-inactivated fetal bovine serum (HyClone, Logan, UT), 100 units/mL penicillin, 100 μg/mL streptomycin, 1 mM/L pyruvate, 10 mM/L HEPES, 0.1 mM/L...
nosential amino acids, and 50 μM 2-mercaptoethanol. All other cell lines were cultured in RPMI plus the same supplements as in DMEM.

Retroviral vector construction. The full-length human NGK2D cDNA was purchased from Open Biosystems (Huntsville, AL). Human CD3ζ chain and Dap10 cDNAs were cloned by reverse transcription-PCR (RT-PCR) using RNAs from Jurkat and U937 cells, respectively. All PCRs were done using High-Fidelity DNA Polymerase (Fermentas, Hanover, MD) and were performed at an annealing temperature of 55°C for 1 minute (annealing), with 5-minute incubation at 72°C after each cycle of amplification. The resulting cDNA, corresponding to 33 ng of total RNA, was subjected to PCR amplification in a total volume of 20 μl buffer, including 0.5 μM of each primer, 0.2 mM/L of each deoxynucleotide triphosphate, and 1 unit Taq DNA polymerase (New England Biolabs). The primers used for amplification of the human β-actin sequence were 5'-GATCATTGCTCCTCCTGTGACG'-3' (β-actin sense) and 5'-CGTCTACACTGCTGTACGTAGT-3' (β-actin antisense). The primers used for amplification of the wtNGK2D sequence were 5'-CACACGCTGGAGATGATGTA-3' (wtNGK2D sense) and 5'-TCAGGCGCATAGTGTCACACG-3' (wtNGK2D antisense). The PCR conditions were as follows: 95°C for 5 minutes followed by 30 cycles of 95°C for 30 seconds (denaturation), 57°C for 45 seconds (annealing), and 72°C for 1 minute (extension), with 5-minute incubation at 72°C at the end. The PCR products were run on agarose gels and visualized by staining with ethidium bromide.

Flow cytometry and magnetic cell sorting. For fluorescence-activated cell sorting analysis of NGK2D ligand expression, human tumor cells were stained with human NGK2D-mIgG1 fusion protein followed by staining with PE-labeled anti-mouse IgG (A85-1, BD PharMingen, San Diego, CA). MIC expression on PB15 cells as determined by the human NGK2D/Ce chimeric (R&D Systems, Minneapolis, MN) followed by staining with FITC-goat F(ab)2 anti-human IgG (Caltag, Burlingame, CA). Purified anti-NGK2D antibody (1D11, mouse IgG1) was obtained from BD PharMingen. APC-anti-CD3 (S4.1) and PE-anti-NGK2D (1D11) were obtained from Caltag, FITC-anti-CD8 (RPA-T8), anti-CD4 (OKT4), and all isotype controls were obtained from ebiosciences (San Diego, CA). CD8+ T cells were purified by a magnetic cell sorting kit (Miltenyi Biotec, Inc., Auburn, CA) according to the manufacturer's instructions and expanded for 2 more days without G418 before use as effector cells. Cell fluorescence was monitored using a FACSCalibur cytometer (Becton Dickinson, San Jose, CA). Cell sorting was done on a FACSAria sorter (Becton Dickinson).

Cytokine production by gene-modified T cells. For tumor cells grown in suspension, coculture with gene-modified primary human T cells (105) was done in round-bottom 96-well plates at a ratio of 1:1, whereas adherent tumor cells (2.5 × 105) were cocultured with T cells in flat-bottom plates. Tumor cells were irradiated (120 Gy) before use. Cell-free supernatants were collected after 24 and 72 hours. Seventy-two-hour supernatants were assayed for INF-γ by ELISA using DUOSET ELISA kits (R&D Systems). Seventy-two-hour supernatants were used for detection of other cytokines using Bio-Plex kits (Bio-Rad, Hercules, CA) based on the manufacturer's protocol. Bio-Plex analysis was done by the Immune Monitoring Laboratory of the Norris Cotton Cancer Center (Lebanon, NH).

Cytotoxicity assay. Lysis of target cells was determined by a 4-hour 51Cr release assay as described previously (11). To block NGK2D receptors, T cells were preincubated for an hour with the anti-NGK2D antibody (clone: 1D11, 20 μg/mL, sodium azide-free) before addition to the target cells. Inhibition experiments using sMICA (0-15 μg/mL) were done in a similar way except that the ratio of effector to target (E:T) was fixed at 10:1.

β-red staining. The LacZ activity in B3Z cells was determined by using a β-galactosidase assay kit (EMD Biosciences, San Diego, CA) according to the manufacturer's instructions.

Statistical analysis. Differences between groups were analyzed using the Student’s t test. P < 0.05 were considered significant.

Results

Construction and expression of human chNGK2D receptors. The human chNGK2D receptor was made by fusing the cytoplasmic domain of human CD3ζ chain to the NH2-terminal domain of the human NGK2D receptor. NGK2D is a type II protein, in which the NH2-terminal is located intracellularly, whereas the CD3ζ chain...
transfected. NKG2D surface expression was analyzed by flow cytometry in the GFP⁺ cell population. As expected, Bosc:23 cells did not express either NKG2D or Dap10, and transfection with only one of the two components did not cause surface expression of NKG2D (Fig. 2A). However, cotransfection of a NKG2D gene along with an adaptor protein gene led to significant membrane expression of NKG2D. Surface expression of NKG2D was comparable after transfection with chNKG2D to those where the wtNKG2D gene was used. Thus, like wtNKG2D, human chNKG2D needs to be associated with an adaptor protein Dap10 for surface expression. chNKG2D and wtNKG2D expression in primary human T cells was initially determined by RT-PCR 7 days after retroviral transduction, only a small percentage of CD4⁺ T cells was determined. As shown in Fig. 2B, wtNKG2D was expressed in vector-, wtNKG2D-, and chNKG2D-transduced human T cells, whereas chNKG2D expression was only found in chNKG2D-transduced T cells. The intensity of the wtNKG2D signal is greater in chNKG2D-transduced T cells because both wtNKG2D and chNKG2D can be templates for the wtNKG2D primers. This result indicated that chNKG2D could be expressed in primary T cells. Flow cytometry was then done on primary human T cells. Seven days after retroviral transduction, only a small percentage of CD4⁺ T cells (data not shown) were positive for NKG2D, whereas majority of CD8⁺ T cells expressed NKG2D (Fig. 2C). Compared with vector-transduced T cells, wtNKG2D and chNKG2D-modified CD8⁺ T cells had higher NKG2D surface expression (>100-400% increase in geometric mean fluorescent intensity), supporting that the exogenously transduced chNKG2D gene can be expressed on the surface of T cells.

Chimeric NKG2D-expressing T cells produce proinflammatory cytokines and chemokines on engagement with NKG2D ligand-positive tumor cells. A panel of human tumor cell lines was screened for NKG2D ligand expression using soluble human NKG2D-Ig fusion proteins. As shown in Supplementary Fig. S1, both hematopoietic and epithelial tumor cell lines are positive for NKG2D ligands. We determined whether the chNKG2D-transduced human T cells were able to recognize these NKG2D ligand-positive tumor cells. Because most CD4⁺ T cells did not express NKG2D, we used purified CD8⁺ T cells as effectors in all experiments. As shown in Table 1, chNKG2D-bearing T cells produced significant amounts of IFN-γ after coculture with NKG2D ligand-positive cells but not with ligand-negative P815 cells, indicating that these chNKG2D-modified T cells could functionally recognize NKG2D ligand-bearing tumor cells. In contrast, vector or wtNKG2D-modified T cells did not show any significant response to the stimulation by NKG2D ligand-positive cells. All T cells produce IFN-γ in the presence of RPMI8866 cells, although chNKG2D-bearing T cells produced 13-fold more IFN-γ than vector- or wtNKG2D-modified T cells. In addition, on chNKG2D engagement, chNKG2D-modified T cells also released significant amounts of proinflammatory chemokines (CCL3 (Fig. 3A) and CCL5 (Fig. 3B)) as well as other T-helper 1–type cytokines, granulocyte macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-α (TNF-α; Fig. 3C and D), but not T-helper 2 cytokine IL-10 (Supplementary Fig. S2). These data indicate that a chNKG2D-modified chimeric receptor induces human T cells to produce T-helper 1–type cytokines.

chNKG2D-bearing human CD8⁺ T cells lyse NKG2D ligand-positive tumor cells. The cytotoxic activity of chNKG2D-modified human CD8⁺ T cells against various tumor cell lines was determined. As shown in Fig. 4A, chNKG2D-bearing T cells were able to lyse NKG2D ligand-positive target cells (P815/MICA, T47D, MCF-7, Panc-1, A375, K562, and RPMI8866) but not the ligand-negative cell line P815 in vitro. Similar to cytokine production, no significant killing was observed when either vector or wtNKG2D-modified T cells were used. In view of the fact that P815/MICA cells lack expression of human MHC class I and class II antigens and K562 cells are also negative for HLA class I antigens (13, 14), our data indicate that the chNKG2D-bearing T-cell–mediated killing of NKG2D ligand-positive tumor cells is MHC independent. To show the dependence of the cytotoxicity on NKG2D, we tested whether blocking antibodies to NKG2D reduced cytotoxic activity. As shown in Fig. 4B, chNKG2D-transduced T cells kill K562 and RPMI8866 cells, and this activity was reduced when anti-NKG2D antibodies were added. Vector-transduced T cells were unable to kill the target cells, and the activity was not changed with the addition of anti-NKG2D antibodies. These results showed that chNKG2D-bearing T cells kill ligand-positive tumor cells, and direct interaction between chNKG2D and NKG2D ligands is essential for chNKG2D-mediated functions.

Functional activity of chNKG2D-bearing T cells cannot be reduced by physiologic concentrations of sMICA. It has been reported that some cancer patients have elevated levels of sMICA, and NKG2D-mediated responses by NK and T cells were impaired by these cancer cell–derived soluble ligands (15, 16). To determine

![Structure of chNKG2D and retroviral constructs.](image-url)
whether soluble NKG2D ligands can modulate the functional activity of chNKG2D-bearing T cells, a recombinant sMICA protein that contains the extracellular domain of the MICA was produced. As shown in Fig. 5A, the expressed sMICA was ~55 kDa in a SDS-PAGE gel, consistent with previous findings (17). To confirm that the recombinant sMICA was functional, we tested whether plate-bound sMICA could activate B3Z cells that expressed chNKG2D. Because B3Z cells contain the IL-2 promoter-controlled LacZ gene as a reporter, after activation, B3Z cells will express LacZ (β-galactosidase). The ability of immobilized sMICA to stimulate chNKG2D-expressing B3Z cells was evaluated by measurement of the A570 nm values after addition of a β-red substrate. As shown in Fig. 5B, incubation of chNKG2D-bearing B3Z cells, but not wtNKG2D-bearing B3Z cells with immobilized sMICA, led to cell activation in a dose-dependent manner, indicating that the recombinant sMICA is functional. Next, we determined the extent to which the sMICA affects the activity of chNKG2D-bearing primary human T cells. There was no significant drop in the cytotoxicity of chNKG2D-bearing T cells against K562 and RPMI8866 cells when sMICA was added at a concentration of as high as 1.5 μg/mL (Fig. 5C and D). Reduced cytotoxicity (44.2%) against RPMI8866 was observed after addition of a high concentration of sMICA (15 μg/mL). However, the cytotoxicity against K562 remained unimpaired in the presence of sMICA at this concentration. These sMICA concentrations are much higher than those reported in sera from cancer patients (0.2-10 ng/mL). These data suggest that sMICA in cancer patients may not inhibit the function of chNKG2D-modified human T cells in vivo.

Discussion

Genetic modification of T cells with immune receptors, which are specific for tumor antigens or tumor cell–related surface proteins, provides a novel means for T cells to target tumor cells (18, 19). Gene transfer of TCR α and β chains has been shown to have an effect in T-cell–mediated killing of tumor cells both in vitro and in vivo (18–20). Down-regulation of HLA molecules on tumors, which is a common way for tumor cells to evade T-cell recognition, will render this strategy less effective (18). To overcome the dependence on the "MHC restriction" by TCR, chimeric antigen receptors (CAR) are designed to recognize intact membrane proteins. Most of CARs are "T bodies," which consist of a single-chain antibody (extracellular domain) that can bind a membrane

| Table 1. IFN-γ production by chNKG2D-modified human T cells |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Tumor cells | Vector | wtNKG2D | chNKG2D | No T cells |
| P815 | ND | ND | ND | ND |
| P815/MICA | ND | 230 ± 19 | ND | ND |
| RPMI8866 | 1,062 ± 84* | 393 ± 27 | 13,942 ± 1,543 | ND |
| K562 | 111 ± 14 | ND | 3,964 ± 347 | ND |
| Jurkat | ND | 217 ± 23 | ND | ND |
| T47D | ND | 252 ± 8 | ND | ND |
| MCF-7 | ND | 987 ± 181 | ND | ND |
| Panc-1 | ND | 1,906 ± 122 | ND | ND |
| DU145 | ND | 1,766 ± 122 | ND | ND |
| A375 | ND | 520 ± 39 | ND | ND |
| PC-3 | ND | 1,504 ± 31 | ND | ND |

Abbreviation: ND, not detectable (<37 pg/mL).

*A representative result (mean ± SD of triplicates) of two or three independent experiments.
antigen on the tumor cells, fused to a cytoplasmic signaling domain, such as the CD3ζ chain and Fc receptor γ chain (18–21). However, for a given tumor antigen, either high-affinity HLA-restricted TCRs or T bodies have to be identified and tested, which is not an easy task in many cases. In addition, the potential immunogenicity of the extracellular domain of T bodies may pose a problem for repeated infusion of T body–modified T cells (18–20).

Here, we reported that chNKG2D-modified human T cells were able to respond to NKG2D ligand-positive tumor cells in vitro, showing this as a possibility for immunotherapy of human cancers. One of the major advantages of this strategy is that chNKG2D-modified T cells can be used for immunotherapy of multiple types of malignant tumors, as long as tumors express NKG2D ligands. In this sense, chNKG2D receptor is a useful addition to the "CAR family". Many human cancers, such as colon cancer, leukemia, lymphoma, myeloma, cervical cancer, ovarian cancer, prostate cancer, and melanoma, have been found to express NKG2D ligands (9, 22–24). The ability of chNKG2D-bearing T cells to kill the pancreatic tumor cell line Panc-1 is especially interesting. Pancreatic cancer is the fourth leading cause of cancer death in the United States, accounting for ~30,000 death yearly (25). Therefore, infusion of chNKG2D-bearing T cells may be a potential

Figure 3. Chimeric NKG2D expressing T-cells secrete proinflammatory cytokines after coculture with ligand-expressing tumor cells. Human T cells transduced with wtNKG2D (gray columns) or chNKG2D (black columns) were cocultured with irradiated tumor cells for 72 hours. White columns, tumor cells. Culture supernatants were analyzed for the levels of chemokines (A) CCL3 or (B) CCL5 and cytokines (C) GM-CSF and (D) TNF-α by luminex. Columns, mean of two experiments done in triplicate; bars, SD.

Figure 4. Specific lysis of NKG2D ligand-positive tumor cells by chNKG2D modified human CD8+ T cells. A, primary human T cells transduced with empty vector (□), wtNKG2D (●), or chNKG2D (▲) were used as effector cells in a 51Cr release assay. The ratios of effector to targets (E:T ratios) were 25:1, 5:1, and 1:1. chNKG2D-transduced T cells showed significantly higher (P < 0.05) cytotoxicity against NKG2D ligand-positive tumors (P815/MICA, T47D, MCF-7, Panc-1, and A375) but not ligand-negative P815 cells than vector- or wtNKG2D-transduced T cells at all ratios. B, for NK02D blocking experiments, wtNKG2D-bearing (circle) or chNKG2D-bearing (triangle) CD8+ T cells were incubated with saturating amounts of anti-NKG2D (1D11, filled symbols) or with control Ig (open symbols) before exposure to tumor cells. Blocking antibody 1D11 significantly reduced the cytotoxicity of chNKG2D-transduced T cells against K562 and RPMI8866 cells (P < 0.05) at all ratios compared with control antibody. Points, mean of two to three experiments done in triplicate; bars, SD.
with varying concentrations of sMICA and then tested in a 51Cr assay with y bars, RPMI8866 (untreated control).

Figure 5. sMICA does not inhibit specific lysis of ligand expressing tumor cells at physiologic concentrations. A, lane 2, purified sMICA in the SDS-PAGE gel. Lane 1, molecular weight markers. B, B3Z, B3Z/wtNKG2D, and B3Z/chNKG2D cells were cultured in sMICA-coated plates, and the response to the ligand was measured by A 570 nm (C and D). Human primary T cells transduced with empty vector (●), wtNKG2D (▲), or chNKG2D (▼) were preincubated with varying concentrations of sMICA and then tested in a 51Cr assay with RPMI8866 (C) or K562 (D) at an E:T ratio of 10:1. Points, mean of two experiments done in triplicate; bars, SD. * P < 0.05, significant differences between the treated samples (in the presence of 15,000 ng/mL sMICA) and the untreated control.

Treatment modality for this type of cancer. Unlike T bodies, chNKG2D has the same extracellular domain as wtNKG2D; thus, it would not be expected to induce an immune response against it.

After engagement with NKG2D ligand-positive tumor cells, chNKG2D-bearing human T cells produced significant amounts of IFN-γ, GM-CSF, and TNF-α, which were similar to what has been observed from activated human tumor-specific CTLs (26, 27). IFN-γ has been shown to activate antigen-presenting cells (such as dendritic cells and macrophages) to promote antigen presentation to CTLs (28). GM-CSF alone or in combination with TNF-α plays important roles in generation of mature dendritic cells as well as in tumor antigen presentation (29, 30). Phase I clinical trials using GM-CSF-modified tumor vaccines showed therapeutic effects in some cancer patients (31, 32). Therefore, interaction between chNKG2D-bearing T cells and NKG2D ligand-positive tumor cells may not only allow these T cells to kill tumor cells but also promote tumor antigen presentation due to local production of GM-CSF and IFN-γ. We observed differences in the amounts of cytokines produced when chimeric receptor-bearing T cells were cultured with different tumor cells. This may be due to the expression of different ligands for NKG2D on the tumor cell lines or different amounts of cytokine receptors expressed on the various tumor cell lines. Production of proinflammatory chemokines CCL3 (MIP-1α) and CCL5 (RANTES) has also been shown beneficial to antitumor immunity (33, 34). Taken together, production of T-helper 1 cytokines and proinflammatory chemokines by chNKG2D-bearing T cells is likely to promote host antitumor immunity.

The ability to generate functional activity by engagement of chNKG2D receptor suggests that this receptor leads to full activation of T cells, which is predicted due to the presence of CD3ζ signaling domain. Some studies have shown that inclusion of CD28 signaling domain into CARs could enhance the signal initiated by CD3ζ because CD28 provides a costimulatory signal (18, 19). Similar to CD28, Dap10 transduces a costimulatory signal via a phosphatidylinositol 3-kinase pathway (9). In T cells, NKG2D associates with Dap10. Therefore, engagement of chNKG2D may activate T cells using both a primary signal through CD3ζ and a costimulatory signal through Dap10. However, further studies will be needed to clarify the details of chNKG2D-mediated signaling pathways.

It has been shown that human tumor cells produce soluble forms of NKG2D ligands and may lead to evasion from NK and T-cell surveillance (16, 17, 35); therefore, it was important to determine whether soluble ligands altered the function of chNKG2D-bearing T cells. Using a cytotoxicity assay, we have shown that chNKG2D-modified T cells remained functionally intact in the presence of sMICA at a level >1.5 µg/mL, which is a higher level (150-7,500-fold more) than those that found in sera of cancer patients (15, 36). However, it is possible that the levels of soluble NKG2D ligands at local tumor areas are different from that in sera. The mechanism for sMICA inhibition of cytotoxicity may be blocking of chNKG2D receptors or down-modulation of receptor expression. The cytotoxicity against RPMI8866 cells is more sensitive to sMICA as well as anti-NKG2D blocking antibody than that against K562 cells. The reason may be that RPMI8866 cells express lower level of NKG2D ligands.

There are two major safety concerns related to the use of chNKG2D. First, genetic modification of T cells may cause transformation of T cells due to preferable integration near transcriptional units, although the occurrence is rare (18, 19, 37). Use of nonviral vectors, such as transposon-based integration vector, may reduce the chance of transformation (38). Second, the risk of autoimmunity following infusion of autologous tumor-reactive T cells exists because NKG2D ligands have been found to be expressed by some normal tissues besides tumors, such as gut epithelial cells (9). One promising strategy to control the potential transformation and autoimmunity elicited by transferred T cells is coexpression of a “suicidal gene” along with the chNKG2D gene. Several suicidal genes, including a thymidine kinase (TK) gene from human herpes simplex virus and a Fas-based “artificial suicide gene,” have been evaluated in terms of the ability to eliminate T cells (18, 19). A recent study showed that a modified human caspase-9-based molecular switch in combination with a small-molecule pharmaceutical drug (at concentration of 10 nmol/L) could induce apoptosis in 99% of transduced T cells both in vitro and in vivo (39). Engineering a suitable “suicide gene” into the vector along with the chNKG2D gene will enable the elimination of transferred T cells to prevent potential autoimmunity or T-cell transformation.

In summary, the present study suggests a new strategy for cancer immunotherapy using chNKG2D-modified human T cells, which can kill multiple types of human cancer cells (NKG2D ligand-positive) and produce T-helper 1 cytokines and proinflammatory chemokines simultaneously in vitro.

Acknowledgments

Received 1/12/2006; revised 3/5/2006; accepted 3/17/2006.

Grant support: Department of Microbiology and Immunology, Dartmouth College.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Gary A. Ward (Englert Cell Analysis Laboratory, Norris Cotton Cancer Center) for cell sorting and the immune monitoring laboratory (Norris Cotton Cancer Center) for assistance in luminex analysis.

Cancer Res 2006; 66: (11). June 1, 2006

5932 www.aacrjournals.org
Generation of Antitumor Responses by Genetic Modification of Primary Human T Cells with a Chimeric NKG2D Receptor

Tong Zhang, Amorette Barber and Charles L. Sentman

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/66/11/5927

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2006/06/09/66.11.5927.DC1

Cited articles
This article cites 39 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/66/11/5927.full.html#ref-list-1

Citing articles
This article has been cited by 16 HighWire-hosted articles. Access the articles at:
/content/66/11/5927.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.