NFKB1 Is a Direct Target of the TAL1 Oncoprotein in Human T Leukemia Cells

Pei-Yun Chang, Kyle Draheim, Michelle A. Kelliher, and Shigeki Miyamoto

Abstract

We recently showed that a subset of human T acute lymphoblastic leukemia (T-ALL) cell lines expresses low basal levels of p50, a nuclear factor-κB (NF-κB)/Rel family member, resulting in their capacity to activate the atypical p65cRel complex rather than the classic p50:p65 dimer. Here, we show that the transcription factor TAL1 (also known as SCL) binds to the promoter of the NFKB1 gene that encodes p50 and represses its transcription to set up this unique response in T-ALL cells. When TAL1 expression is reduced in CEM T leukemia cells, basal NFKB1 expression is increased, and the levels of p65cRel complex and transcription of its target gene, such as intercellular adhesion molecule-1 (ICAM-1), are reduced in response to etoposide treatment. Moreover, a significant negative correlation between NFKB1 and TAL1 or LMO1 was found in primary treatment. Moreover, a significant negative correlation increased, and the levels of p65:cRel complex and transcription reduced in CEM T leukemia cells, basal NFKB1 expression is unique response in T-ALL cells. When TAL1 expression is known as SCL) binds to the promoter of the NFKB1 gene that encodes the p50 protein, is a novel target of TAL1 to set up this unique response in T-ALL cells.

Introduction

T-cell acute lymphocytic leukemia 1 (TAL1, also known as the stem cell factor SCL) is a member of the basic helix-loop-helix family of transcription factors and is normally involved in regulation of hematopoiesis (1). In the T-cell lineage, TAL1 is active only at early thymocyte stages and regulates expression of pre-Tα, Rag2, and cyclin D1 (2–4). Ablurant expression of TAL1 in later stages of T-cell development is associated with T-ALL (5). We have recently described that certain T-ALL cell lines express low basal levels of p50, a member of the nuclear factor-κB (NF-κB)/Rel family of transcription factors (6). This is associated with the formation of an atypical p65cRel heterodimer, instead of the canonical p50:p65 heterodimer, and activation of p65cRel target genes, such as the intercellular adhesion molecule-1 (ICAM-1) gene (7). When these cells are exposed to repetitive NF-κB activation stimuli, an augmented NF-κB response can be observed, leading to an enhanced cell survival response against an anticancer agent etoposide (6). Below, we describe evidence that NFKB1, which encodes the p50 protein, is a novel target of TAL1 to set up this unique response in T-ALL cells.

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Requests for reprints: Shigeki Miyamoto, Department of Pharmacology, University of Wisconsin, 301 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706. Phone: 608-262-9281; Fax: 608-262-1257; E-mail: smiyamot@wisc.edu.

2006 American Association for Cancer Research. doi:10.1158/0008-5472.CAN-06-0194

Materials and Methods

Antibodies and chemicals. Immunoglobulin G (IgG) antibodies against actin (C-11), p65 (C-20), and RelB (C-19) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-cRel antibody (SA-172) was obtained from Biomol (Plymouth Meeting, PA). Anti-p52 (06-113) and anti-p50 (06-886) antibodies were obtained from Upstate Biotechnology (Lake Placid, NY). Horseradish peroxidase–conjugated protein A and horseradish peroxidase–conjugated anti-rabbit and anti-mouse antibodies were obtained from Amersham Pharmacia Biotech (Piscataway, NJ). Etoposide (VP16) was purchased from Sigma-Aldrich (St. Louis, MO).

General protocols. Electrophoretic mobility shift assays (EMSA; including the Igκ-κ-B and p21-κ-B probe oligonucleotide probe) were performed as previously described (6). The ICAMI-κ-B probe is 5′-TTAGCTTG-GAAATTCGGACGAGGCGGAT-3′. Immunoprecipitation and Western blotting were done as described previously (6). All experiments were repeated at least thrice unless otherwise specified, and the results were quantitated by exposing dried EMSA gels to a phosphoimager screen and analyzed by the IQMac1 program.

Chromatin immunoprecipitation analysis. Chromatin immunoprecipitation experiments were performed as previously described (3). Quantitative real-time data are presented by setting the untreated serum precipitated samples as unity. The average and SDs were calculated by the Microsoft Excel program and plotted by the KaleidaGraph software. Forward-NFKB1-promoter primer 5′-GAATTCTAGGGATGCGAGGATGATCCATAT-3′ and reverse-NFKB1-promoter primer 5′-GAATTCTAGGCTCATGCTTCTACCTCC-3′. Quantitative reverse transcription-PCR analysis. Total RNA from various cell types was extracted with the Qiagen RNeasy kit. cDNA was synthesized as previously described (6). Quantitative real-time reverse transcription-PCR (RT-PCR) reactions (25 L) contained 2 mL of cDNA, 12.5 mL of SYBR Green (Applied Biosystems, Foster City, CA), and the appropriate primers. Product accumulation was monitored by SYBR Green fluorescence with ABI Prism 7000 Sequence Detection Systems. The relative expression levels were determined from a standard curve of serial dilutions of cDNA samples. Forward and reverse primers for real-time RT-PCR were previously described (5, 6). The average and SDs were calculated by the Microsoft Excel program and plotted by the KaleidaGraph software.

Generation of stable AS-TAL1 CEM cells. The human TAL1 cDNA was cloned in the antisense orientation by digesting the plasmid pMSCL (8) with EcoRI and religation into the pcDNA3 vector. The EcoRI sites come from the plasmid polylinker. The integrity of the expression vector was confirmed by direct sequencing. These constructs were then electrotransfected into CEM cells and selected with G418 (1 mg/mL).

Isolation of thymocytes and thymomas. Generation of transgenic animals. Tumor were described previously (9). Tumors were isolated from leukemic transgenic mice and converted into cell culture. Thymi were isolated from 4-week-old mice. For protein extraction, cells were lysed in NP40 lysis buffer [150 mmol/L NaCl, 1% NP40, 50 mmol/L Tris (pH 8)]. Whole RNA extracts were prepared using TRIZol reagent (Invitrogen, San Diego, CA).

Statistical analysis. The statistical analysis was done by GraphPad Prism program (t test, polynomial, or logarithmic regression) and plotted with Microsoft Excel program.
Results

When different human T-ALL cell lines were exposed to a certain stimulus, such as VP16, and activation of NF-κB was analyzed by EMSA, different DNA-binding complexes (denoted complexes I and II) were observed. Complex I was supershifted by antibodies against p65 and p50, whereas complex II was supershifted by anti-p65 and anti-c-Rel antibodies but not by anti-p50 antibody (Fig. 1B; others not shown). Antibodies against p52 and RelB had little or no effect on both of these complexes (data not shown). Thus, complex I seems to be composed primarily of the classic p50:p65 NF-κB heterodimer, whereas complex II is primarily a p65cRel heterodimer.

We recently showed that low basal expression of p50 correlated with the reduced capacity of T-ALL cell lines to activate p50:p65 complex (6). Figure 1C shows that whereas the expression of cRel and p65 was variable between different T-cell lines, a consistent reduction of p50 expression was seen in MOLT-4 and RPMI8402 cells that displayed reduced p50:p65 binding. Although p50 protein levels seemed similar in CEM and ALL-SIL cells, p65 and cRel levels were higher in CEM cells. These results, combined with our previous finding (6), suggested that lower p50 expression levels relative to p65 and cRel contributed to reduced formation of the classic p50:p65 complexes in certain T-ALL cell lines.

Low basal expression of p105/p50 has also been observed in diffuse large B-cell lymphoma cells (10), and the proto-oncoprotein BCL-6 is implicated in direct transcriptional repression of the NFKB1 gene in this tumor type (11). However, BCL-6 is not expressed in T cells (12). Thus, we examined a potential relationship between expression levels of NFKB1 and oncogenes implicated in T leukemia (5). Among the genes, the expression of TAL1 was generally associated with low NFKB1 expression, except for MOLT-16 and PF382 (Fig. 1A; Supplementary Fig. S1). TAL1 was undetectable in MOLT-16 cells by Western blot analysis, whereas it was readily detectable in PF382 cells (data not shown).

TAL1 can mediate both transcriptional activation and repression (3). To determine if TAL1 was involved in reduced expression of the NFKB1 gene in T-ALL cells, we generated CEM cells that stably expressed an antisense-TAL1 construct (AS-TAL1 cells) with markedly reduced TAL1 expression (Fig. 2A). TAL1 reduction was associated with an increase in basal NFKB1 gene and p105/p50 protein expression (Fig. 2A; others not shown). TAL1 can associate with E box binding proteins, such as transcription factor E2A products (E12/E47) and HEB, and represses expression of genes regulated by these transcription activators (3). The NFKB1 promoter contains κB and ETS sites (Fig. 2B), which are regulated by NF-κB (p65) and ELF1 upon exposure of CEM cells to a phorbol ester (6). An E box (CAGTGG) is also present in this promoter sequence. We did a supershift analysis with antibodies against TAL1 using the NFKB1 promoter probe and total extracts isolated from unstimulated CEM cells. The protein complex formed on the NFKB1 promoter probe could be supershifted with anti-TAL1 antibody (Fig. 2C, lane 4). An antibody against HEB (lane 3) but not E12/E47 (lane 2) reduced the binding of the complex, suggesting that HEB

3 P.Y. Chang, unpublished observations.
The above analysis suggested the possibility that both TAL1 and LMO1 could be involved in repression of NFKB1 gene expression. All T-ALL cell lines expressed varying levels of LMO1 (Supplementary Fig. S1). To test whether reduction in LMO1 expression affects NFKB1 expression, we introduced small interfering RNA (siRNA) against LMO1 in CEM cells. Although knockdown of LMO1 expression alone had a minimal effect, it augmented NFKB1 expression induced by TAL1 knockdown (Fig. 4C). siRNA designed

Figure 1. Reduced basal NFKB1 expression and p105/p50 synthesis correlates with the presence of TAL1. A, cells were either left untreated or treated with VP16 (10 \textmu mol/L) for 3 hours. Total protein extracts were used for EMSA with an Ig \textsubscript{g} Bs site. B, extracts from CEM cells were used for supershift analyses with anti-p65, anti-p50, and anti-cRel antibodies as indicated. C, untreated cellular extracts were used for Western blot analysis using anti-p105/p50, anti-cRel, anti-p65m and anti-actin antibodies. D, total RNA was extracted from T-ALL cell lines and analyzed by quantitative RT-PCR for the expression of NFKB1 and TAL1 using GAPDH as a normalization control.
for TAL1 resulted in reduced LMO1 expression (Supplementary Fig. S3B). Although an off-target effect of the TAL1 siRNA cannot be ruled out, it is possible that the expression of LMO1 may be regulated by TAL1 as a strong positive correlation between TAL1 and LMO1 expression levels was observed between TAL1 and LMO1 in primary patient T-ALL samples (Supplementary Fig. S3A). A similar trend was observed in RPMI8402 cells (data not shown). These results suggested that LMO1 participates in TAL1-dependent NFKB1 gene repression in certain human T-ALL cells.

Discussion

Human T-cell leukemogenesis is often associated with the aberrant expression of TAL1 (3, 5). However, the repertoire of TAL1 direct target genes in T-ALL cells is not well understood. Our current study identified NFKB1 as a novel TAL1-repressed gene. This repression is likely mediated via the E-box present on the NFKB1 promotor and may involve HEB, LMO1, and HDAC1. Furthermore, we found a negative correlation between expression levels of NFKB1 and TAL1 or LMO1 in TAL1+/LMO1+ primary T-ALL cells.

Figure 2. TAL1 associates with the NFKB1 promoter. A, expression of p50 and TAL1 in CEM and CEM cells stably expressing an AS-TAL1 construct was analyzed by Western blotting. B, sequences used for EMSA in (C). C, left, extracts from CEM cells were used for supershift analyses using the p105-ΔB element with anti-E12/E47, HEB, and TAL1 antibodies as indicated. Right, extracts from CEM cells were used for EMSA analyses using either the wild-type p105 promoter element or ones with E box mutations. D, chromatin immunoprecipitation analysis was done using anti-TAL1 and anti-HDAC1 antibodies in parental CEM and AS-TAL1 cells. Results from two independent experiments were plotted.

Figure 3. TAL1-mediated NFKB1 repression is associated with enhanced p65:cRel activation. A, CEM parental and AS-TAL1 cells were left untreated or treated with VP16 (3 hours) and analyzed by EMSA with the classical IgκB, ICAM1-κB or p21-κB element. B, CEM parental and AS-TAL1 cells were left untreated or treated with VP16 (6 hours), and ICAM1 and p21 expression were analyzed by quantitative real-time PCR. GAPDH expression was analyzed as the control.
T-ALL samples. In addition, we also observed a general reduction in the levels of p50 expression in thymomas induced by different oncogenes in transgenic mouse models when compared with those in thymocytes of corresponding animals (Supplementary Fig. S3C). Reduction of p50 expression results in the increased capacity to activate the atypical p65:cRel heterodimer at the expense of a p50:p65 dimer. Thus, the capacity of T-ALL cells to induce p65:cRel-regulated genes, such as ICAM-1, is increased when these cells are exposed to anticancer genotoxic agents, such as VP16. Thus, one consequence of TAL1-dependent repression of NFKB1 gene is the selective alteration in the repertoire of NF-κB-regulated genes in T-ALL cells. In addition, when these T-ALL cells are repetitively stimulated with NF-κB-activating agents, an augmented p50:p65-dependent response can be seen after the second stimulus due to augmented p50 expression after the first stimulus (6). Thus, basal repression of NFKB1 gene expression by TAL1 results in both short- and long-term alterations of the NF-κB-dependent transcriptional program in T-ALL cells. Because NF-κB-regulated genes are implicated in cancer cell resistance, proliferation, adhesion, and migration (15), it is conceivable that TAL1-dependent alterations in NF-κB functions likely contribute to T-ALL leukemogenesis and drug resistance development.

Acknowledgments

Received 1/18/2006; revised 4/11/2006; accepted 5/5/2006.

Grant support: Predoctoral fellowships AHA-0510112Z and AHA-0310015Z (P-Y. Chang) and NIH grants R01-CA077474 and R01–CA081065 (S. Miyamoto).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank the Miyamoto lab members for helpful discussions; Drs. E. Bresnick and J. Chu and H. Im for assistance in chromatin immunoprecipitation and quantitative RT-PCR analyses; Drs. I. Kirsch and T. Hoang for the TAL1 expression constructs; Drs. R. Baer, E. Bresnick, and K. Pulford for providing the anti-TAL1 antibodies; Dr. A.T. Look for sharing microarray and RT-PCR data obtained from primary T-ALL samples; and Dr. D. Page for assistance in the statistical analysis.

Figure 4. NFKB1 expression inversely correlates with TAL1 and LMO1 expression in TAL1+/LMO1+ primary T-ALLs. A, polynomial regression analysis was done to examine the relationship between TAL1 and NFKB1 expression in five LMO1+/TAL1+ patient samples. B, logarithmic regression analysis was done to examine the relationship between LMO1 and NFKB1 expression in five LMO1+/TAL1+ patient samples. C, transient knockdown of LMO1, TAL1, and TAL1 + LMO1 was done in CEM cells. NFKB1 expression was analyzed by quantitative RT-PCR. D, model for NFKB1 transcriptional regulation in TAL1+/LMO1+ primary T-ALLs and T-ALL cells.

References

NFKB1 Is a Direct Target of the TAL1 Oncoprotein in Human T Leukemia Cells

Pei-Yun Chang, Kyle Draheim, Michelle A. Kelliher, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/66/12/6008

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2006/06/20/66.12.6008.DC1

Cited articles
This article cites 15 articles, 8 of which you can access for free at:
hp://cancerres.aacrjournals.org/content/66/12/6008.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/66/12/6008.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.