Restoring E-Cadherin Expression Increases Sensitivity to Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cell Lines

Samir E. Witta, Robert M. Gemmill, Fred R. Hirsch, Christopher D. Coldren, Karla Hedman, Larisa Ravel, Barbara Helfrich, Rafael Dziadziuszko, Daniel C. Chan, Michio Sugita, Zeng Chan, Anna Baron, Wilbur Franklin, Harry A. Drabkin, Luc Girard, Adi F. Gazdar, John D. Minna, and Paul A. Bunn, Jr.

Abstract

The epidermal growth factor receptor (EGFR) is overexpressed in the majority of non–small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib, produce 9% to 27% response rates in NSCLC patients. E-Cadherin, a calcium-dependent adhesion molecule, plays an important role in NSCLC prognosis and progression, and interacts with EGFR. The zinc finger transcriptional repressor, ZEB1, inhibits E-cadherin expression by recruiting histone deacetylases (HDAC). We identified a significant correlation between sensitivity to gefitinib and expression of E-cadherin, and ZEB1, suggesting their predictive value for responsiveness to EGFR-tyrosine kinase inhibitors. E-Cadherin transfection into a gefitinib-resistant line increased its sensitivity to gefitinib. Pretreating resistant cell lines with the HDAC inhibitor, MS-275, induced E-cadherin along with EGFR and led to a growth-inhibitory and apoptotic effect of gefitinib similar to that in gefitinib-sensitive NSCLC cell lines including those harboring EGFR mutations. Thus, combined HDAC inhibitor and gefitinib treatment represents a novel pharmacologic strategy for overcoming resistance to EGFR inhibitors in patients with lung cancer. (Cancer Res 2006; 66(2): 944-50)

Introduction

Lung cancer is the leading cause of cancer death in men and women in the U.S. (1). Epidermal growth factor receptor (EGFR) is overexpressed in a large proportion of non–small cell lung cancers (NSCLC; ref. 2). The EGFR tyrosine kinase inhibitors (TKI) gefitinib (ZD1839, Iressa, AstraZeneca, Alderley Park, United Kingdom), and erlotinib (OSI 774, Tarceva, OSI/Genentech, South San Francisco, CA) were initially approved for use in the U.S. because they produce radiographic regression of 9% to 27% of tumors and erlotinib improves survival when compared with placebo in patients with chemotherapy-refractory advanced NSCLC (3–5). However, as many as 50% of patients have progressive disease within 8 months of therapy initiation and have no benefit. Recent studies indicate that the presence of activating mutations in the EGFR tyrosine kinase domain (6–9), increased EGFR copy number and/or expression of EGFR protein using immunohistochemistry (9–11), correlate with response and survival after EGFR TKI therapy.

EGFR interacts with the cell adhesion molecule E-cadherin (E-cad, CDH1; refs. 12–14). E-Cadherin modulates EGFR activation and signaling through its downstream targets. Whereas E-cadherin can inhibit ligand activation of EGFR (13), it enhances AKT activation in neighboring cells (14). High levels of phosphorylated AKT may also predict for response to EGFR TKIs (15). In lung cancer cell lines, E-cadherin expression is regulated by β-catenin signaling and by zinc finger proteins including the Slug/Snail family, SIP1 and ZEB1 (TF-8, ZFHX1A, AREG6, and 6EFl; ref. 16). These transcription factors regulate the expression of genes via interaction with two 5′-CACCTG (E-box) promoter sequences (17). This regulation is facilitated by interaction with the transcriptional corepressor, CtBP, which recruits histone deacetylases (HDAC) leading to chromatin condensation and gene silencing (18). Inhibiting HDACs using trichostatin A in lung cancer cell lines led to reactivation of E-cadherin expression (16).

HDAC inhibitors are an emerging class of therapeutic agents that promote differentiation and apoptosis in hematologic and solid malignancies through chromatin remodeling and regulation of gene expression (19). MS-275 (Schering AG, Berlin, Germany), a benzamide HDAC inhibitor undergoing phase I investigation leading to chromatin condensation and gene silencing, is being developed as a chemosensitizer. Clinical trials based on this observation are planned.

Materials and Methods

Cell culture, drugs and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyloxazole bromide assay. Twenty-one NSCLC cell lines were used: squamous (H157, HCC95, HCC15, and H520), large cell (H460, H1299, H2126, and H1264, a derivative of H460), adenocarcinoma (A549, H1703, H2122, H1648, HCC78, HCC193, H2009, HCC44, and H3255), and bronchioalveolar (H58 and H222). The NSCLC cell lines HCC78, H2126, HCC95, H1299, HCC193, HCC44, HCC15, and H2009 were obtained from Drs. John Minna and Adi Gazdar (University of Texas Southwest Medical School, Dallas, TX). The H225 cell line was a gift from Dr. Bruce Johnson (Dana-Farber Cancer Center, Boston, MA). All the other cell lines were obtained from American Type Culture Collection (Rockville, MD). Gefitinib was a gift from AstraZeneca. MS-275 was a gift from Nihon Schering K.K. (Osaka, Japan). Epidermal growth factor (EGF) was purchased from R&D Systems, Inc.
Sensitivity to EGFR Inhibitors in Lung Cell Lines

Growth inhibition was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as described previously (21). The growth-inhibitory effect was based on cultures treated with gefitinib for 6 consecutive days (Table 1; Fig. 3). In Fig. 4, cell lines were treated with gefitinib for 5 days due to the increased sensitivity to the combination of MS275 and gefitinib.

Cell lysis, Western blots, and immunohistochemistry. Cells were disrupted in lysis buffer [10 mmol/L Tris-HCl (pH 7.5)/150 mmol/L NaCl/0.5% IGEPEL/0.5 mmol/L phenylmethylsulfonyl fluoride/10 μg/mL leupeptin/5 μg/mL pepstatin A/2.1 μg/mL aprotinin] on ice. After sonication, the Bradford assay was used for protein quantification. Protein lysates (30–50 μg) were separated by gel electrophoresis on 7.5% to 10% polyacrylamide and analyzed by Western blot using polyvinylidene difluoride membranes (Bio-Rad Laboratories, Inc., Richmond, CA). Anti-EGFR and the phospho-specific EGFR (pY1068) antibodies (Cell Signaling, Beverly, MA) were used at 1:1,000 dilutions. E-Cadherin and β-actin antibodies (BD Biosciences, San Jose, CA; Sigma-Aldrich, A5316, St. Louis, MO) were used at 1:3,000 and 1:5,000 dilutions, respectively. Detection was by horseradish peroxidase–conjugated secondary antibodies and chemiluminescence (Amersham Biosciences, Inc., Piscataway, NJ).

The anti-E-cadherin antibody (mouse monoclonal, clone 36; Transduction Laboratories, Lexington, KY) was applied at a 1:1,000 dilution to sectioned paraffin-embedded cell lines. Antigen retrieval was done in citrate buffer using a Biocare Medical (Walnut Creek, CA) decloaking chamber. Blocking was done with Powerblock (Biogenics, San Ramon, CA) or avidin/biotin block. After incubation of primary antibodies for 1 hour at 37°C, the secondary antibody (Dako Biotinylated Multi-Link antimouse, immunoglobulin with 40% human serum) was applied for 30 minutes at room temperature. This was followed by application of streptavidin horseradish peroxidase enzyme complex and diaminobenzidine chromogen and hematoxylin counterstained.

Table 1. Relative expression of E-cadherin and ZEB-1 in NSCLC cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Gefitinib (IC50)</th>
<th>E-Cadherin</th>
<th>ZEB1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT-PCR</td>
<td>Microarray</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Sensitive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3225</td>
<td>0.015</td>
<td>13,926</td>
<td>7,018</td>
</tr>
<tr>
<td>H338</td>
<td>0.18</td>
<td>10,453</td>
<td>4,701</td>
</tr>
<tr>
<td>H322</td>
<td>0.25</td>
<td>6,642</td>
<td>5,861</td>
</tr>
<tr>
<td>Calu3</td>
<td>0.3</td>
<td>4,359</td>
<td>5,532</td>
</tr>
<tr>
<td>H1648</td>
<td>0.38</td>
<td>6,642</td>
<td>2,825</td>
</tr>
<tr>
<td>HCC78</td>
<td>0.6</td>
<td>1,214</td>
<td>3,673</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1216</td>
<td>1</td>
<td>709</td>
<td>3,946</td>
</tr>
<tr>
<td>HCC95</td>
<td>3</td>
<td>137</td>
<td>1,577</td>
</tr>
<tr>
<td>H441</td>
<td>4</td>
<td>925</td>
<td>926</td>
</tr>
<tr>
<td>HCC193</td>
<td>4</td>
<td>0.06</td>
<td>3,149</td>
</tr>
<tr>
<td>Colo699</td>
<td>4.2</td>
<td>9.8E-06</td>
<td>5</td>
</tr>
<tr>
<td>H1212</td>
<td>5.9</td>
<td>840</td>
<td>1,671</td>
</tr>
<tr>
<td>A549</td>
<td>8.2</td>
<td>132</td>
<td>1,508</td>
</tr>
<tr>
<td>HCC44</td>
<td>8.4</td>
<td>0.5</td>
<td>6</td>
</tr>
<tr>
<td>H1229</td>
<td>8.6</td>
<td>1.0E-04</td>
<td>5</td>
</tr>
<tr>
<td>H2009</td>
<td>9.8</td>
<td>558</td>
<td>6,959</td>
</tr>
<tr>
<td>Resistant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCC15</td>
<td>10</td>
<td>17</td>
<td>186</td>
</tr>
<tr>
<td>H1703</td>
<td>12</td>
<td>2.1E-02</td>
<td>5.4</td>
</tr>
<tr>
<td>H157</td>
<td>12.8</td>
<td>1.98E-04</td>
<td>5</td>
</tr>
<tr>
<td>H1264</td>
<td>12.9</td>
<td>3.4E-05</td>
<td>5</td>
</tr>
<tr>
<td>H460</td>
<td>12.9</td>
<td>1.4E-01</td>
<td>5</td>
</tr>
<tr>
<td>H520</td>
<td>13.6</td>
<td>58</td>
<td>84</td>
</tr>
</tbody>
</table>

| r | -0.78 | -0.76 | 0.76 | <0.001 |
| P | <0.001 | <0.001 | <0.001| <0.001 |

www.aacrjournals.org 945 Cancer Res 2006; 66: (2). January 15, 2006

Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 2006 American Association for Cancer Research.
Results

Sensitivity of NSCLC cell lines to gefitinib and correlated molecules. We analyzed a set of 22 NSCLC cell lines for their sensitivity to gefitinib using the MTT assay (Table 1). Six of these cell lines (H3255, H358, H322, Calu3, H1648, and HCC78) had an IC50 of < 1 mol/L, six (HCC15, H157, H460, H1703, H1264, and H520) had an IC50 of ≥ 10 mol/L, and the remaining 10 had an IC50 of 1 to 10 mol/L.

This diverse growth response to gefitinib was used to identify genes differentially expressed in sensitive versus resistant cell lines. RNA isolated from 22 cell lines was used to interrogate Affymetrix oligonucleotide microarrays. Expression of E-cadherin and related molecules in the Wnt pathway (Wnt1, Wnt5A, Wnt5B, Wnt6, Wnt7A, frizzled, axin1, disheveled, GSK3 α-catenin, β-catenin, and δ-catenin) were compared in the six sensitive and six resistant lines (Fig. 1A). Expression of E-cadherin and δ-catenin was significantly different between the sensitive and resistant cell lines (P = 0.004 and P = 0.016, respectively). When expression of E-cadherin and δ-catenin was evaluated in all the 22 cell lines, a significant correlation with gefitinib sensitivity was evident (E-cadherin, r = 0.76; P < 0.001; δ-catenin, r = 0.69; P < 0.001). The highest E-cadherin RNA expression was detected in the most sensitive cell line, H3255 (IC50 = 0.015 mol/L) that harbors the EGFR mutation L858R (Table 1; refs. 6, 7).

This correlation was confirmed in the 22 lines using real-time reverse transcription-PCR (r = 0.78, P < 0.001; Table 1). The data from the two methods of E-cadherin expression evaluation, real-time reverse transcription-PCR, and microarray analysis, correlated significantly (r = 0.85, P < 0.0001).

At the protein level, expression of E-cadherin was evaluated in 11 NSCLC cell lines by Western blot (Fig. 1B). E-Cadherin protein was present in the sensitive lines and undetectable in the resistant lines. We verified that these differences were readily detected by immunohistochemistry. E-Cadherin expression was detected in the sensitive cell line, Calu3, whereas expression was absent in the resistant cell line H157 (Fig. 1C).

E-cadherin expression is regulated by four zinc finger transcription factors: ZEB1, slug, snail, and SIP1. Evaluation of the microarray data of the six sensitive cell lines and the six more resistant cell lines revealed that expression of ZEB1 significantly correlated with resistance to gefitinib (P = 0.004; Fig. 1A) and this correlation was maintained when data on all 22 lines were included (r = 0.75, P < 0.001; Table 1). Expression levels of ZEB1 in all 22 cell lines were reevaluated using real-time reverse transcription-PCR and the correlation was maintained (r = -0.76, P < 0.001; Table 1). Significant negative correlations were evident between ZEB1 expression and either E-cadherin expression and either E-cadherin expression (r = -0.82, P < 0.0001) or δ-catenin (r = -0.62, P = 0.002).

E-cadherin modulates gefitinib-induced apoptosis and EGFR activation in NSCLC. The correlation between E-cadherin and sensitivity to gefitinib led us to ask if E-cadherin could directly influence gefitinib responses. To address this question, an E-cadherin-negative, EGFR-positive gefitinib-resistant cell line, H157, was transfected with an E-cadherin expressing construct. Two stable G418-resistant clones were developed, H157-E-cad-3 (E3) and H157-E-cad-8 (E8), and E-cadherin expression was confirmed (Fig. 2, lanes 2-3).

The effect of E-cadherin transfection on EGFR activation was measured by pEGFR (PY1068) immunoblot. In the absence of EGF, transfection of E-cadherin did not lead to constitutive EGFR activation (phosphorylation; Fig. 2, lane 1-3). However, altered phosphorylation dynamics were detected on EGF treatment (Fig. 2, lanes 8, 9, 11, and 12). A sustained increase in pEGFR was detected in the E-cadherin-transfected cell lines compared with controls. This is in contrast with previous findings where E-cadherin inhibited activation of EGFR by EGF (13). There was no change in E-cadherin expression following treatment with 10 ng/mL EGF.

The effect of E-cadherin transfection on cell growth was evaluated with or without gefitinib treatment using the MTT assay. Reexpression of E-cadherin in the transfected cell lines, E3
and E8, resulted in a significant 30% \((P = 0.002) \) and 45% \((P < 0.001) \) decrease in growth compared with the parental cell line, respectively (Fig 3.4). This effect was further enhanced in the presence of gefitinib (Fig. 3B). E-Cadherin transfectants, E3 and E8, became more sensitive (gefitinib IC\(_{50} \) of 6 and 3 \(\mu \)mol/L, respectively) to gefitinib compared with parental H157 cell line (IC\(_{50} \) = 12 \(\mu \)mol/L; Fig. 3B).

The effect of E-cadherin on cell death (apoptosis) in the presence and absence of gefitinib was evaluated using Annexin V and PI staining. Using Annexin V labeling, 3- and 9-fold increases in the ratio of apoptotic to viable cells was detected in E3 and E8, respectively, as compared with the control cell line H157-GFP (\(P = 0.083 \) and \(P = 0.013 \); respectively; Fig. 3C). Significant 6- and 13-fold increases in the ratio of apoptotic to viable cells were detected in the E3 and E8 cell lines compared with control cells when treated with gefitinib (\(P = 0.004 \) and \(P = 0.03 \); respectively; Fig. 3C); This indicated that expression of E-cadherin alone is able to drive some cell death and the apoptotic effect was further enhanced by gefitinib.

The apoptotic effect of gefitinib in the presence of E-cadherin was compared in the transfected cell lines to that in cell lines sensitive to and resistant to gefitinib using PI staining (Fig. 3D). Treatment with 10 \(\mu \)mol/L gefitinib induced a 9-fold increase in the ratio of apoptotic to viable cells in the E8 transfectant as compared with control cells. At the same gefitinib concentration, there was a 2.4- to 6.3- and 63-fold increase in cell death in the gefitinib-sensitive with wild-type EGFR cell lines (H322, H358, and Calu3) or the EGFR mutant cell line H3255, respectively (Fig. 3D). Only slight apoptotic or necrotic effects were detected in the more resistant cell lines. This indicated that transfection of E-cadherin significantly enhances the apoptotic effect of gefitinib on resistant cell lines.

The degree of gefitinib sensitivity in the E-cadherin-transfected cell line was not significantly different from that in the wild-type sensitive cell lines (\(P = 0.102 \)) or in the EGFR mutant cell line, H3255 (\(P = 0.387 \)).

HDAC inhibitors reverse resistance to gefitinib. We tested whether the HDAC inhibitor MS-275 could increase expression of E-cadherin and EGFR, and thus increase response to gefitinib. E-Cadherin expression increased by 26- to 190-fold in the gefitinib-resistant NSCLC cell lines H157, H520, and H1703 following 24-hour exposure to MS-275 (Fig. 4A). In H520 cells that express neither E-cadherin nor EGFR, expression of EGFR increased by 27-fold after MS-275 exposure (data not shown).

The MS-275 IC\(_{50} \) in the gefitinib-resistant lines H157, H460, H520, and H1703 was between 0.5 and 4 \(\mu \)mol/L (Fig. 4B). The H157 cell line was treated separately with MS-275, gefitinib, or the sequential combination of MS-275 followed by gefitinib 24 hours later and evaluated for cell growth using MTT assay (Fig. 4C). An 81% inhibition in cell growth was detected with 1 \(\mu \)mol/L of gefitinib when H157 was pretreated with 1 \(\mu \)mol/L of MS-275 (from 99% to 18%; Fig. 1C). A synergistic effect was detected with the sequential use of MS-275 followed by gefitinib in this cell line. We calculated the combination index for each set of concentrations using the isobologram method (23). A combination index <1, indicating synergy, was detected in the combination of gefitinib with MS-275 at most concentrations of each drug (Fig. 4D).

Next, we evaluated the effect of pretreatment with MS-275 on the apoptotic effect of gefitinib in the gefitinib-resistant NSCLC cell lines H157 and H520. A synergistic effect was detected with the sequential use of MS-275 followed by gefitinib in both of these cell lines. Increasing doses of MS-275 (0.5-4 \(\mu \)mol/L) resulted in a small increase in cell death in both H157 and H520 (4- to 6.7-fold and 2.4- to 4.8-fold increase, respectively; Fig. 5A and B). Similarly, treatment of these cells with increasing doses of gefitinib (10-14 \(\mu \)mol/L) resulted in almost no effect on apoptosis in these two cell lines (0.9- to 1.1-fold and 1.2- to 1.6-fold increase, respectively).

Figure 2. Western blot for E-cadherin, pEGFR (pY1068) and EGFR with H157 cell line transfected with control (H157-GFP, G) or E-cadherin (H157-E-cad-8, E8 and H157-E-cad-3, E3) treated in the absence (0) or presence of 10 nmol/mL EGF and collected at 10, 30, and 60 minutes. The lower blot was stripped and reprobed with EGFR antibody.

Figure 3. A, cell growth in H157 cell line transfected with control (H157-GFP, G) or E-cadherin (H157-E-cad-3, E3 and H157-E-cad-8, E8) measured by MTT assay. B, cell growth of E3, E8, and G in the absence (100%) or presence of gefitinib. C, cell death in E3, E8, and G cell lines in the absence (\(\cdot \)) or presence of 10 \(\mu \)mol/L gefitinib. Apoptosis was evaluated using Annexin V and the ratio of apoptotic to viable cells normalized to untreated H157-GFP (green fluorescent protein) is presented. D, relative apoptotic cells (PI) to live cells normalized to the untreated control in cell lines grown in the absence or presence of 10 \(\mu \)mol/L gefitinib for 48 hours.
were chosen because they fall within IC25-75 for growth inhibition in the H520 cell line (Fig. 5). Similar treatments led to a 16- to 22-fold increase of cell death in the tested cell lines. When the two cell lines were treated with increasing doses of MS-275 for 24 hours prior to treatment with gefitinib, a significant and synergistic increase in cell death was detected. When the H157 cell line was treated with MS275 at 4 μmol/L followed by gefitinib, CI < 1 indicates synergism, CI = 1 indicates additive effects, and CI > 1 indicates antagonism.

Discussion

In this study, we show that NSCLC cell lines highly sensitive to EGFR TKIs express E-cadherin, whereas resistant lines do not. These data are consistent with the finding that E-cadherin expression is lost when a NSCLC cell line becomes erlotinib-resistant after exposing it to increasing levels of erlotinib (24). Our results suggest that E-cadherin expression would be a clinically relevant biomarker for a patient's selection of EGFR TKI therapy and responsiveness to EGFR TKIs. Cadherins are cell surface transmembrane molecules that play a major role in epithelial cell adhesion and connect the extracellular environment to the contractile cytoskeleton leading to the activation of certain nuclear responses (25, 26). In this study, we show that E-cadherin augments EGFR activation by EGF, which could serve as another way to regulate downstream events in the EGFR signaling pathway.

Repression of E-cadherin by transcriptional regulation, e.g., ZEB1, might be involved in both epithelial to mesenchymal transition and resistance to EGFR TKIs. EGFR is localized in junctions and associates with the cadherin-catenin complex (31). EGF treatment of human tumor cells results in the disruption of cell-cell contacts and EGFR overexpression correlates with tumor progression, metastasis, and poor clinical prognosis (32, 33). Cell adhesion and growth factor receptor signaling are closely linked processes involved in tumor progression and invasiveness. The ability of cadherins to act as signal transducing molecules was shown in recent work indicating that assembly of E-cadherin-mediated adherens junctions is sufficient to trigger the activation of the phosphatidylinositol-3'-OH kinase/Akt cascade in epithelial cells (14). Furthermore, E-cadherin-mediated formation of calcium-dependent adherens junctions leads to ligand-independent activation of EGFRs and a rapid increase in the state of activation of mitogen-activated protein kinase (34), a process completely abolished by a EGFR TKI (34). These studies indicated that E-cadherin is involved with EGFR in activating downstream signaling pathways.

It is not fully understood why a subset of NSCLC EGFR-expressing tumors progress on treatment with EGFR TKI. EGFR TK mutations or the presence of EGFR-interacting molecules may predispose tumors for the action of EGFR TKI. A recent study showed that ErbB3 couples EGFR to the phosphoinositide-3-kinase/Akt pathway in gefitinib-sensitive NSCLC cell lines harboring wild-type and mutant EGFRs (35). In this study, we show that E-cadherin affects EGFR activation by EGFR, which could serve as another way to regulate downstream events in the EGFR signaling pathway.

Figure 5. Cell death in H157 (A) and H520 (B) cell line grown in the absence or presence of 10, 12, or 14 μmol/L gefitinib or 0.5, 2, or 4 μmol/L MS-275 or with MS-275 for 24 hours followed by gefitinib for 48 hours. Apoptosis in H3255 cell line in response to 10 or 14 μmol/L gefitinib is displayed for comparison. Graphs show the ratio of apoptotic cells as measured by PI and YOPRO and divided by viable cells.
The value of identifying differentially expressed genes and proteins resides not only in developing biomarkers but also in strategies to overcome resistance to EGFR inhibitors. We evaluated the effect of E-cadherin on response to gefitinib in a cell line that expresses EGFR and is gefitinib-resistant (H157). Transfection of E-cadherin resulted in an increased activation of EGFR by EGF (Fig. 2). Recent studies indicated that the most EGFR TKI-sensitive cell lines have higher levels of EGFR activation (6), suggesting that expression of E-cadherin in cell lines increases dependence on EGFR for growth and survival.

Increasing E-cadherin expression both by transfection of E-cadherin and by exposure to MS-275 increased sensitivity to gefitinib to levels observed in NSCLC cell lines (Figs. 3-5). E-Cadherin transfection resulted in a 2- and 3-fold decrease in the IC_{50} of gefitinib and an apoptotic effect similar to that in wild-type gefitinib-sensitive cell lines (Fig. 3C and D). In lung cancer cells, we suggest that E-cadherin expression is not only a potential marker of response to EGFR inhibitors but also plays a role in the mechanism underlying response to these drugs.

Epigenetic changes leading to gene silencing are primary mechanisms modulating gene expression in cancerous cells (36). Histone acetylation and deacetylation is one mechanism that permits or halts gene expression, respectively (37). HDAC inhibitors act to restore gene expression leading to growth arrest, differentiation, and apoptosis of transformed cells (38). E-Cadherin expression is regulated by HDACs and its expression is restored with HDAC inhibitors (16). E-Cadherin can also be regulated by tumor acquired DNA promoter methylation, however, E-cadherin only undergoes methylation in ~18% of NSCLCs indicating that histone acetylation is probably the major mechanism of inactivation of E-cadherin expression in these tumors (39).

These findings have made it possible to test a clinically applicable treatment that would enhance E-cadherin expression and test the influence of response to gefitinib. We found a synergistic effect on growth inhibition and apoptosis from sequential treatment with MS-275 and gefitinib. In the presence of 1 μmol/L MS-275, cell line growth was inhibited by 81% with 1 μmol/L of gefitinib, a dose that does not lead to any growth inhibition in the absence of MS-275 (Fig. 4C). Those concentrations are clinically relevant as the maximum plasma concentrations (C_{max}) achievable were 0.25 to 5 μmol/L for gefitinib and 0.5 to 2 μmol/L for MS-275 (20, 40). Pretreatment with MS-275 also resulted in a 16- to 50-fold increase in apoptosis in the gefitinib-resistant cell lines tested. This increase in cell death was similar to what was detected in the mutant cell line H3255 treated with gefitinib alone (Fig. 5). The magnitude of increase in cell death exceeds what we detected with the ectopic expression of E-cadherin in H157 (Fig. 3D), indicating that other favorable genetic changes may also predispose these cell lines for the action of gefitinib or increase their apoptosis following treatment with MS-275. This enhancement in the apoptotic effect of gefitinib was detected even in a cell line that lacks EGFR expression. However, this response could be explained by restoring EGFR expression by the pretreatment with MS275. HDACs affect many pathways (41–43), including those that favorably affect tumorigenesis such as the transforming growth factor-β RI and RII and p21WAF1/Cip1.

We confirmed the activation of these molecules by MS275 in gefitinib-resistant NSCLC cell lines (data not shown). This indicates that the synergistic effect of MS275 and gefitinib in the NSCLC cell lines could be, in part, a result of enhancing response to EGFR inhibitors by expressing molecules such as E-cadherin, and in part, affecting other pathways. This enhanced antitumor effect was previously reported when an HDAC inhibitor, NVP-LAQ842 was combined with a vascular endothelial growth factor receptor TKI, PTK787/ZK222584 (44).

In summary, we show that the cell adhesion molecule E-cadherin predicts and influences response to gefitinib in NSCLC cell lines and pretreatment of cells with the HDAC inhibitor MS-275 increases response to gefitinib. Drug concentrations that led to synergistic effects on cell growth are clinically achievable. Clinical trials are planned to evaluate the sequential combination of HDAC inhibitors and EGFR TKI in patients with advanced stage NSCLC.

Acknowledgments
Received 6/7/2005; revised 10/24/2005; accepted 11/1/2005.
Grant support: Supported in part by the Colorado Cancer League, Specialized Programs of Research Excellence grant (PSO C0658187 and PSO C7A07907), National Cancer Institute Cancer Center Support grant (PSO C7A07907), ATP 010003-0139-2003, DOD/581XWH0410112022P5 and the International Association for the Study of Lung Cancer/Cancer Prevention and Research Foundation Fellowship. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References
Restoring E-Cadherin Expression Increases Sensitivity to Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cell Lines

Samir E. Witta, Robert M. Gemmill, Fred R. Hirsch, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/66/2/944

Cited articles
This article cites 44 articles, 24 of which you can access for free at:
http://cancerres.aacrjournals.org/content/66/2/944.full.html#ref-list-1

Citing articles
This article has been cited by 74 HighWire-hosted articles. Access the articles at:
/content/66/2/944.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.