Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma

Iñigo Tirapu,1 Eduardo Huarte,1 Cristina Guiducci,3 Ainhoa Arina,1 Mikel Zaratiegui,1 Oihana Murillo,1 Alvaro Gonzalez,2 Carmen Berasain,1 Pedro Berraondo,2 Puri Fortes,1 Jesús Prieto,1 Mario P. Colombo,3 Lieping Chen,4 and Ignacio Melero1

1Gene Therapy Unit, Department of Medicine, Centro de Investigación Médica Aplicada and Clínica Universitaria, University of Navarra School of Medicine; 2Department of Biochemistry, Clinica Universitaria, University of Navarra, Pamplona, Spain; 3Department of Experimental Oncology, Immunotherapy and Gene Therapy Unit, Istituto Nazionale Tumori, Milan, Italy; and 4Department of Oncology and Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

Artificially enforced expression of CD80 (B7-1) and CD86 (B7-2) on tumor cells renders them more immunogenic by triggering the CD28 receptor on T cells. The enigma is that such B7s interact with much higher affinity with CTLA-4 (CD152), an inhibitory receptor expressed by activated T cells. We show that unmutated CD80 is spontaneously expressed at low levels by mouse colon carcinoma cell lines and other transplantable tumor cell lines of various tissue origins. Silencing of CD80 by interfering RNA led to loss of tumorigenicity of CT26 colon carcinoma in immunocompetent mice, but not in immunodeficient Rag−/− mice. CT26 tumor cells bind CTLA-4Ig, but much more faintly with a similar CD828Ig chimeric protein, thus providing an explanation for the dominant inhibitory effects on tumor immunity displayed by CD80 at that expression level. Interestingly, CD80-negative tumor cell lines such as MC38 colon carcinoma and B16 melanoma express CD80 at dim levels during in vivo growth in syngeneic mice. Therefore, low CD80 surface expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the...
activation (34, 36, 37). In the case of B7-H1, various mouse and human tumors express the molecule as a tumor escape mechanism (38), that if interfered with using blocking antibodies, fosters immunotherapy (39).

The expression of low levels of CD80 and CD86 has been detected on an important fraction of human melanomas (40, 41), myelomas (42), and acute myeloid leukemias (43). Moreover, low levels of expression of CD80 and CD86 detected by RT-PCR and surface staining has been reported in a series of cell lines derived from human carcinomas including some of colorectal origin (44). Interestingly, expression of CD86 was found to be associated with poor prognosis of leukemia and myeloma (42, 43). However, the mechanism underlying these clinical observations remains unknown.

In this study, we found CD80 surface expression at relatively low levels in various colon carcinoma cells that are widely used as cancer therapy models upon grafting onto immunocompetent syngeneic mice, as well as in other mouse malignant cell lines. We carried out experiments in immunocompetent versus immunodeficient mice to assess the relative immunogenicity displayed by carcinoma cells that express CD80 spontaneously, or the same cell lines transfected either to specifically silence or to overexpress CD80. Our results suggest that a low level of CD80 expression confers an advantage for tumor growth, thus helping to avoid tumor rejection, whereas high-level CD80 induces immunemediated tumor regression.

Materials and Methods

Mice and cells. BALB/c, athymic nude, and C57BL/6 mice were obtained from Harlan (Barcelona, Spain) and were used between 7 and 14 weeks of age. A breeding pair of Rag2\(^{-/-}\) in BALB/c background mice was purchased from Harlan and bred in our animal facility under pathogen-free conditions. All animal handling and laboratory procedures were approved by the institutional animal facility ethical committee and are in accordance with Spanish regulations.

Five murine colon adenocarcinoma cell lines were used. Three of BALB/c origin (CT26, C26, and C51) and two of C57BL/6 origin (MC38 and C38). C51 and MC38 cells were transfected with a previously described recombinant retrovirus expressing murine b7-1 gene (3, 45). Transfections were done by incubating supernatant of the packaging cell line cultured as previously described (47). A cell line from a spontaneous line cultured as previously described (47). A cell line from a spontaneous line cultured as previously described (47).

CD11c splenic cells were purified (>98%) with immunomagnetic beads from Miltenyi Biotech (Gladbach, Germany) according to manufacturer-recommended procedures in an Automacs instrument. Dendritic cell maturation was induced with 24 hours of culture in the presence of 10 \(\mu\)g/mL of lipopolysaccharide (Sigma-Aldrich). Tumor model and in vivo experiments. For assessment of the tumorigenicity of the CT26 cell line, 5 \(\times\) 10\(^5\) cells were injected s.c. in the right flank of BALB/c, Rag2\(^{-/-}\), and athymic nude mice. Similarly, 5 \(\times\) 10\(^5\) MC38 and MC38-B7 cells were injected into C57BL/6 mice. Tumor growth was monitored weekly by measuring two perpendicular diameters using a Vernier caliper. Tumor explants were obtained after animal sacrifice by grinding a minced fragment of solid tumor and plating it in 24-well plates.

Immunofluorescence and flow cytometry. Cells were washed and labeled with FITC anti-mouse CD80 (BD PharMingen, San Diego, CA) for 30 minutes at 4°C. Unbound mAb was removed by washing twice with ice-cold PBS and immunostaining was determined by flow-cytometry (FACScalibur, Becton Dickinson, San Jose, CA). An isotype-matched FITC-tagged mAb was used as a negative control. CD28 and CTLA-4 were purchased from R&D (Abingdon, United Kingdom) and used in indirect immunofluorescence staining with the appropriate FITC-tagged secondary antibody purchased from Caltag (Burlingame, CA). Anti-CD45 mAb (BD PharMingen) was used to gate out myeloid-derived cells in cell suspensions of explanted tumors.

Northern blot and probe preparation. Total cellular RNA was extracted by the guanidiniothiocyanate technique, run in 20 \(\mu\)g aliquots on 1.0% agarose-formaldehyde gel, transferred onto nylon membrane (Hybond-N; Amersham, United Kingdom) by Northern blot. Blots were hybridized with the HpaII-XhoI fragment of pLm87-1SH plasmid, containing the murine B7-1 cDNA and labeled with \(^{32}\)P-dCTP by means of Multiprime kit from Amersham.

Cloning and sequencing of murine CD80. Tumor RNA was extracted by ULTRASPEC-II RNA isolation system (Biotex, Houston, TX) and cDNA obtained by reverse transcription using random primers. A DNA fragment encoding the open reading frame of murine B7-1 was amplified by PCR using the primers: 5'CCCATCATGGTGTCTCAGAGAC', 5'ACTAAAGGGAAGCCGTCTTTCA3'. Another pair of primers was used for B7-1 detection as described (48). In this series of PCRs, the antisense primer was located in exon 3, which is spliced off to generate a B7-1a molecule. Therefore, these primers only amplified mCD80 cDNA but not B7-1a cDNA. PCR products were analyzed by 1% agarose gel electrophoresis and DNA bands were isolated using Concert Rapid Gel Extraction System (Life Technologies, Eggestein-Leopoldshafen, Germany) and TA-cloned into pcDNAs3.1/HindIII TOP (Invitrogen, Groningen, the Netherlands). Ten clones were selected and plasmids were isolated using Qiagen Spin Miniprep Kit (Qiagen, Hilden, Germany) and fully sequenced (ABI PRISM 310 Genetic Analyzer, Applied Biosystems, Foster City, CA).

Gene silencing of CD80. pMSCVpuro (Clontech, Mountain View, CA) was modified to accommodate the small interfering RNA (siRNA) expression cassette by sequential digestion and religation of materials and methods. A plasmid expression cassette by sequential digestion and religation of materials and methods. A plasmid expression cassette by sequential digestion and religation of materials and methods. A plasmid expression cassette by sequential digestion and religation of materials and methods.
Plasmids were transfected into CT26 cells by using a 22-kDa linear polyethylenimine from Polyplus Transfection (Illkirch, France) as described (51). Twenty-four hours posttransfection, the medium was removed, cells were washed and fed with fresh medium containing 8 μg/mL of Puromycin (Sigma-Aldrich). Stable transfectants were picked 10 days later and subcultured for analysis.

Results

Constitutive expression of CD80 on murine tumor cell lines. We assessed CD80 expression in CT26, C26, C51, and MC38 murine colon carcinoma cell lines by immunofluorescence and flow-cytometry analysis. To this end, we used a FITC-conjugated monoclonal antibody specific for murine CD80 (Fig. 1). CT26 and C26 expressed mouse CD80 (mCD80) at similar dim levels, whereas mCD80 was almost undetectable on C51 cells and was consistently undetectable on MC38 cells, thus indicating that CD80 expression is not a constant feature in murine colon cancer. As shown in Fig. 1, anti-CD80 mAb also stained the surface of Lewis lung carcinoma, RENCA (renal cell carcinoma), BNL (hepatocellular carcinoma), HOPC (multiple myeloma), and a spontaneous T cell lymphoma cell line derived from C57BL/6 mice that has been recently derived in our laboratory from a peripheral lymph node. These data indicate that the low level of expression of CD80 is not an exclusive property of colon cancer but is a feature shared by many types of transplantable mouse malignancies, including MB49 bladder carcinoma and PANC02 pancreatic carcinoma (data not shown). However, there exist clear exceptions because cultured B16 melanoma and MC38 colon carcinoma cells do not express surface CD80 (Fig. 1).

Northern blot analysis of RNA isolated from these colon cancer cell lines readily showed the presence of two bands (3.9 and 2.2 kb) when using a mCD80-specific probe. These two bands correspond with the previously reported splicing alternatives of the cd80 gene and were also detected on RNA from lipopolysaccharide-stimulated splenocytes or IFN-γ-stimulated macrophages (Fig. 2A).

cDNA was synthesized from colon carcinoma cell lines using random primers revealed that CD80 has two variants arising by alternative splicing that are expressed on the plasma membrane, one with IgV (membrane distal) + IgC (membrane proximal) domains, whereas the other contains only the IgV domain (B7-1a; ref. 52). Both isoforms have similar ligand-binding properties that map to the IgV domain. Therefore, two different PCRs were done. One was used for mCD80 mRNA detection with a sense primer located in the IgV-like domain whereas the antisense primer is located in the IgC-like domain. The IgC-like fragment of the CD80 protein is encoded by exon 3 which is spliced off to generate B7-1a molecule (IgV-only isoform). Accordingly, these primers only amplified cDNA but not B7-1a cDNA. As a control, these primers amplified a similar band from RNA isolated from murine bone marrow-derived dendritic cells (Fig. 2B). A second series of PCRs were done in which another pair of primers were used to amplify cDNA encoding the whole mCD80 open reading frame. In this PCR, the two alternative splicing variants were found to coexist in CT26 (Fig. 2B).

Full-length CD80 cDNA was TA-cloned in pCDNA3.1 in order to verify its sequence. The sequence of at least two independent clones from CT26 total cDNA was identical to the one published. The shorter alternative splicing isoform (B7-1a; ref. 53) was also cloned and sequenced without finding any change when compared with the published sequence (data not shown). These experiments conclude that the unmutated, wild-type, and alternative splicing forms of the cd80 gene are expressed on three murine colon carcinoma cell lines widely used in tumor immunology experiments on transplantation to syngeneic mice.

Selective binding of CTLA-4 by spontaneously expressed CD80 on CT26 colon cancer cells. CT26 cells were brightly
stained at the cell surface by chimeric proteins containing the extracellular portion of CTLA-4 and an immunoglobulin tail, indicating that the tumor molecule was functional at least for binding this inhibitory ligand (Fig. 3A). However, a similar chimeric protein containing the extracellular domains of CD28 barely bind CT26 cells even at 100 μg/mL, whereas readily stained MC38 cells that had been retrovirally transfected to stably express high levels of CD80 (Fig. 3B). These data indicate that CD80 at the levels displayed by CT26 cell shows selective binding for the inhibitory receptor CTLA-4 if compared with CD28. The CD80 levels on CT26 resemble those detected on immature dendritic cells, represented in Fig. 3C by the D1 immortalized dendritic cell line that also preferentially binds CTLA-4Ig. By contrast, splenic mature dendritic cells express high levels of CD80 that bind both CTLA-4Ig and CD28Ig (Fig. 3D). Our observations on tumor cells echo those by other authors that strongly suggest a role in immune down-regulation for low, but not completely negative, levels of CD80 and CD86 expression on immature dendritic cells (23–25).

Transfection of cd80 gene into colon cancer cells results in increased immunogenicity and tumor rejection. MC38 is another mouse colon carcinoma cell line that is negative for CD80 surface expression by fluorescence-activated cell sorting stained MC38 cells that had been retrovirally transfected to stably express high levels of CD80 (Fig. 3B). These data indicate that CD80 at the levels displayed by CT26 cell shows selective binding for the inhibitory receptor CTLA-4 if compared with CD28. The CD80 levels on CT26 resemble those detected on immature dendritic cells, represented in Fig. 3C by the D1 immortalized dendritic cell line that also preferentially binds CTLA-4Ig. By contrast, splenic mature dendritic cells express high levels of CD80 that bind both CTLA-4Ig and CD28Ig (Fig. 3D). Our observations on tumor cells echo those by other authors that strongly suggest a role in immune down-regulation for low, but not completely negative, levels of CD80 and CD86 expression on immature dendritic cells (23–25).
its expression. For this purpose, we cloned the pSUPER expression
tumors, stable transfectants were generated to express siRNAs
in the ability of CT26 colon carcinoma to graft as progressive
tumorigenicity.

biological function.
did not tell whether the low spontaneous level of CD80 had any
transfected cells inversely correlated with tumor progression, but
experiments indicated that the intensity of CD80 expression on
the brightest expression of CD80 avoided tumor grafting. These
C
on plasma membrane (Fig. 4
transfected C51 in accordance with the levels of CD80 expression
levels of H2-K d when compared with CT26 wild-type (data not
shown). Moreover, one of the repeated culture passages of the clone
424 2.6 spontaneously gave rise to a variant that homogeneously
regained CD80 expression in spite of keeping resistance to puromycin (Supplementary Fig. S1A).

Silencing of CD80 expression in CT26 results in lack of
tumorigenicity. To study the role of CD80 endogenous expression
in the ability of CT26 colon carcinoma to graft as progressive
tumors, stable transfectants were generated to express siRNAs
targeted to different regions of the CD80's mRNA in order to silence
its expression. For this purpose, we cloned the pSUPER expression
cassette (49) into retroviral plasmid pMSCV3puro, and in this new
vector, we cloned a hairpin encoding oligonucleotides that would
yield siRNA directed to CD80 mRNA (Fig. 5A). As a control, we
used a scrambled sequence of roughly the same GC content as the
other siRNAs. Puromycin-selected stable transfectants from two
different RNAi constructions were cultured and cloned under
limiting dilutions. Expression of CD80 in two different clones and
in bulk culture cells transfected with an irrelevant scrambled
sequence as a control is shown in Fig. 5B.

The experiments on in vivo growth of each silenced or control
transfectant in normal BALB/c and Rag-2-/- mice are shown in Fig. 5B.
Transfectants in which CD80 expression at the protein level were
highly decreased, lost their capacity to graft as terminal tumors
in immunocompetent mice, but preserved tumorigenicity in
immunodeficient hosts of identical genetic background. Differences
were not attributable to changes in MHC class I levels of
expression because CD80-silenced cells express almost identical
levels of H2-K d when compared with CT26 wild-type (data not
shown). In addition, when those BALB/c mice who had rejected
CD80-silenced CT26 tumors were rechallenged 3 months later with
unmodified CT26 cells, those tumors were rejected in all mice,
indicating that the mice had been immunized by exposure to
CD80-silenced tumor cells (data not shown). As a whole, these data
indicate that CT26 tumor cells silenced for CD80 expression elicit
stronger antitumor immune responses.

Moreover, one of the repeated culture passages of the clone
424 2.6 spontaneously gave rise to a variant that homogeneously
regained CD80 expression in spite of keeping resistance to
puromycin (Supplementary Fig. S1A). This cell line progressed in
immunocompetent mice indicating that the revertant regaining
CD80 expression has an advantage against the antitumor immune
response. In addition, if these revertant cells were preincubated

Figure 4. Increased immunogenicity of cells
expressing high levels of CD80. A, comparative
study of s.c. tumor development of CD80-negative
MC38 cells and a retrovirally transfected MC38
cell line as detected by immunofluorescence with
anti-CD80 mAb (C). Sequential analysis of the
fraction of BALB/c mice (n = 7 per group)
developing lethal tumors after being injected s.c.
with C51 wild-type colon cancer cells expressing
high levels of surface CD80 or with cloned variants
that had been transfected with a retrovirus
encoding an expression cassette of CD80. These
variants were selected for bearing different levels
of stable and gradually brighter expression of
CD80 (shown in B).
and coinjected with 100 μg/mL of an anti-CD80 blocking antibody, those tumors were completely rejected in three out of six cases, whereas all tumors injected with control antibody progressed in another group of immunocompetent BALB/c mice (Supplementary Fig. S1B). These data further reinforce the notion that CD80 is the molecule involved in the escape mechanism and helps to rule out the possibility that the effects of the silencing could be explained by clonally variable immunogenicity among CT26 cells. In this regard, an independently generated polyclonal silenced variant of CT26 cells transfected with the 424 siRNA construction was also rejected in four out of six cases in immunocompetent mice, whereas it progressed in every case in T cell–deficient nude mice (Supplementary Fig. S1C).

Preservation of CD80 expression on in vivo passage. If low CD80 expression is considered as an advantageous feature in immunocompetent hosts, its expression will likely be evolutionarily preserved in tumor cells explanted from CT26 tumors growing in immunocompetent mice. This was confirmed in experiments shown in Supplementary Fig. S2, in which the relative intensity of CD80-specific immunofluorescence in explanted tumor cells from immunodeficient or immunocompetent mice is plotted referred to CD80 level of expression on cultured CT26 (CT26-WT). Data pooled from three independent experiments with a total of 17 mice per group permitted a Fisher’s exact test that showed a two-sided P < 0.0001 when comparing rejection rates of the silenced versus control (nonsilenced) CT26 variants.

and coinjected with 100 μg/mL of an anti-CD80 blocking antibody, those tumors were completely rejected in three out of six cases, whereas all tumors injected with control antibody progressed in another group of immunocompetent BALB/c mice (Supplementary Fig. S1B). These data further reinforce the notion that CD80 is the molecule involved in the escape mechanism and helps to rule out the possibility that the effects of the silencing could be explained by clonally variable immunogenicity among CT26 cells. In this regard, an independently generated polyclonal silenced variant of CT26 cells transfected with the 424 siRNA construction was also rejected in four out of six cases in immunocompetent mice, whereas it progressed in every case in T cell–deficient nude mice (Supplementary Fig. S1C).

Preservation of CD80 expression on in vivo passage. If low CD80 expression is considered as an advantageous feature in immunocompetent hosts, its expression will likely be evolutionarily preserved in tumor cells explanted from CT26 tumors growing in immunocompetent mice. This was confirmed in experiments shown in Supplementary Fig. S2, in which the relative intensity of CD80-specific immunofluorescence in explanted tumor cells from immunodeficient or immunocompetent mice is plotted referred to CD80 level of expression on cultured CT26 (taken as 100%). It can be seen that CD80 expression is preserved both in immunocompetent and immunodeficient Rag2−/− hosts even if they had been depleted of natural killer cells. Again, this observation suggests that low surface CD80 might have been selected for tumor escape from immunity.

These findings are unlikely explained by clonal heterogeneous expression of CD80 because in 18 randomly chosen limiting dilution–derived CT26 clones, the means of CD80 fluorescence intensity were almost identical, as illustrated by a coefficient of variation (CV = SD/mean) inferior to 3% of the mean (data not shown).

CD80-negative tumor cell lines are induced to express low levels of CD80 on in vivo grafting, whereas successfully grafted CD80high transfected tumor cells reduce, but do not lose, CD80 expression. MC38 and B16OVA melanoma are completely negative for CD80 immunostaining in tissue culture...
but become positive in cell suspensions obtained from grafted tumors in syngeneic mice (Fig. 6A and B). Electronic gating and exclusion of CD45+ hematopoietic cells in the FACS analyses ensured that the CD45-negative malignant cells were the only ones analyzed in Fig. 6. Interestingly when these cells were plated in culture for 7 days, a complete loss of surface CD80 took place.

As shown in Fig. 4C, the C51B7/10 CD80bright transfectant grafted as a terminal tumor in only 50% of the cases. Explanted cell suspensions of such tumors showed lower, but importantly not negative, CD80 expression levels than the original transfected cell line in culture (Fig. 6C). As a whole, these data provide evolutionary evidence for a selective advantage of low but not negative expression of CD80 on cancer cells.

Discussion

The main findings in this study are the unexpected basal and spontaneous expression of CD80 in transplantable tumor cell lines that are commonly used for experimental cancer immunotherapy experiments, in addition to observations on the role of low CD80 expression as an immune evasion mechanism.

To the best of our knowledge, this is the first report showing spontaneous CD80 expression in mouse tumor cells of epithelial origin, but it should be considered that CD80 up-regulation has been detected in mouse tumors treated with chemotherapy or radiotherapy (54, 55). These reports suggest the inducibility of CD80 under stress conditions. The costimulatory molecule 4-1BBL has also been found to be spontaneously expressed in some tumor cell lines (56), a finding that is also in contrast with the fact that 4-1BBL transfection to high levels of expression augments the immunogenicity of various tumors (57, 58).

It is not possible to tell whether the original tumors were CD80+ or if it was an acquired event that took place during in vitro or in vivo passage. Sequencing of the cDNA disclosed no mutation, suggesting that the membrane glycoproteins were fully functional, as confirmed by CT26 staining with CTLA-4Ig. Interestingly, we found by Northern blot, RT-PCR, and sequencing, the coexistence of two alternative splicing variants of cd80 mRNA, as occurring in splenic cells stimulated with lipopolysaccharide or IFN-γ and in cultured dendritic cells used as positive controls. Accordingly, it should not be expected that CD80 would function differently on the colon cancer cells compared with professional antigen-presenting cells. Indeed, the function of CD80 on antigen-presenting cells seems to be dual and related to the level of expression because CD80dim immature dendritic cells suppress T cell immunity in a CD80-dependent fashion, whereas CD80bright mature dendritic cells promote immunity under proper conditions (22, 23, 25). Our results with dendritic cells are in agreement with the view that the low levels of CD80 expression on immature dendritic cells would bind inhibitory CTLA-4 with competitive advantage to stimulatory CD28, as suggested by other authors with functional data using bone marrow chimeras with defects in CD80 expression on dendritic cells (24, 25).
B7-1 (CD80) and B7-2 (CD86) expression on tumor cells has been found to strongly raise the immunogenicity of transplantable cell lines (3, 4). The transfection of B7-1 generates cells that can even work as prophylactic or therapeutic vaccines against untransfected tumors by means of eliciting a strong CTL response (1). Most of these experiments were carried out with stable transfectants that had been sorted and selected for expression of very high levels of CD80 on every cell. Moreover, no detailed study has been published on the dose dependency of CD80 levels of expression and tumor immunogenicity, a factor that might prove crucial when considering that CD80 has two counter-receptors with dramatically opposite effects on the immune response. CD28 enhances T cell receptor–induced proliferation and activation of effector functions (14, 15), whereas CTLA-4 ligation arrests T cell cycle progression (59). Expression of CTLA-4 is only induced on activated cells with low levels of membrane expression but exquisitely directed to the area of T-cell engagement (11). Importantly, the inhibitory CTLA-4 receptor displays >100-fold higher avidity for CD80 than CD28 (9). It is tantalizing to speculate that low levels of CD80 might confer, by selective binding affinity for CTLA-4, some advantage to tumor progression in immunocompetent mice. In fact, lymphocytes that infiltrate tumors have an activated membrane phenotype and therefore are susceptible to CTLA-4-mediated inhibition (data not shown). The possibility that CD80 could be shielding CT26 tumor cells as targets for the CTL effector phase has been explored in light of the effects reported by Saudemont et al. (28) and the effects also shown by Hirano et al. for B7-H1 (39). Although we did our cytotoxicity experiments from 4 to 20 hours with anti-CT26–specific CTL, no increase of specific lysis upon CD80 blockade, neither by mAbs nor CTLA-4Ig, was observed (Supplementary Fig. S3). However, the in vivo situation could be different and therefore we cannot completely disregard such a mechanism in our tumor model.

Alternatively, tumor CD80 might enhance the function of regulatory T cells (60). We have done an extensive series of experiments aimed at costimulating CD4+CD25+ Treg suppressor function with CD80+ CT26 cells rendered negative results in our investigation. However, this mechanism is not definitively ruled out because Treg cells are known to express relatively high levels of membrane CTLA-4 that paradoxically costimulates this population (61, 62), and CT26 grafting is prevented by depleting CD25+ lymphocytes (63).

Another mechanistic possibility is that CD80 ligation by CTLA-4 on CT26 could provide advantageous signals to the tumor cell. Although unlikely in epithelial cells, this possibility has been observed in mouse dendritic cells in which CD80 engagement by CTLA-4 promotes IFN-γ secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO products without finding any involvement of CD80 cross-linking in CT26 cells. Up-regulation of IDO expression and function followed by IFN-γ stimulation, but not further costimulated by CD80 cross-linking in these cells (data not shown). Therefore, the exact mechanism(s) behind the anti-immune advantage of low CD80 expression on the malignant cell surface remains elusive as is the case for the low CD80 expression on immature dendritic cells (25).

Gene silencing with siRNA is a powerful tool used to examine the role of a cellular protein. By these means, controlled selective decrease of expression of a specific gene is achieved with minimal residual expression (49). To generate stable transfectants, we used two different constructs targeting distinct sequences of CD80 to assure specificity. Selection of cloned CT26 variants that clearly express much lower levels of CD80 showed that CD80 was not absolutely required for grafting in animals devoid of a functional immune system, but was necessary to avoid immune rejection. On the other hand, CD80 levels on CT26 were only minimally reduced after in vivo passage in BALB/c mice, even if compared with both B cell– and T cell–deficient mice and to B cell–, T cell–, and natural killer cell–deficient mice (Rag-2−/− mice depleted of asialoGM-1+ cells; Supplementary Fig. S2). It can be concluded that, in vivo, the immune system exerts little or no pressure against low surface CD80 whereas reducing, but not abolishing, CD80 expression in successfully grafted CD80high transfectants. Moreover, we clearly show that CD80 is induced in vivo on the surface of malignant cell lines that are negative during in vitro culture. We are currently exploring the stimuli that could be involved in such in vivo regulation.

Importantly, CD80 and CD86 expression has been found in a series of cases of human melanoma in which low levels of RNA expression have been frequently documented (40, 41). These findings, precisely in a human malignancy characterized by a certain degree of intrinsic immunogenicity, suggest that B7 family molecules could be involved in subverting routes of immune destruction of tumors. In fact, B7 molecules are more frequently detected in those cases of melanoma with a higher number of metastatic nodules (41). In addition, the expression of B7 molecules in leukemia and myeloma cells is correlated with faster disease progression (42, 43). The presence of CD80 in other human cell lines or in tissue sections from human colorectal carcinomas is currently under investigation.

Another molecule of the family, B7-H1, has been described to be expressed on human and mouse tumor cells of various tissue origins as observed both in cultured cell lines and in tissue sections (38). By expression of B7-H1, human cancers may evade adaptive immune responses by promoting the apoptosis of activated T cells by IL-10 production to deactivate T cells (65), B7-H1 does not bind CD28 or CTLA-4, but it binds PD-1, a T-cell surface molecule also involved in the down-regulation of immune responses (36, 38). It has been recently described that B7-H1 expression renders tumors resistant to immunotherapy and that this effect could be reversed by blocking B7-H1 or PD-1 with specific antibodies (39). The overall emerging picture is that B7 family members can be broadly exploited by tumor cells as a way to escape immune destruction. In the particular case of CD80, tumors cunningly exploit the dual function of this molecule by expressing low surface levels, which preferentially engage its high-avidity inhibitory T-cell ligand CTLA-4.

Acknowledgments

Received 5/16/2005; revised 11/15/2005; accepted 12/7/2005.

Grant support: CICYT (SAF02/0373; SAF05/01311, and PM9999-0011), Gobierno de Navarra (Departamento de Salud) and Redes Temáticas de Investigación Cooperativa FIS (C03/10 and C03/02), FIS (01/1310), UTE project Centro de Investigación Médica Aplicada and from the Italian Association of Cancer Research. FPU fellowship from Ministerio de Educación, Cultura y Deporte (I. Tirapu) and Fondo de Investigaciones (BEFI; A. Arina).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Drs. Mazzolini, Lasarte, Gonzalez-Aseguinolaza, Sarobe, Bendandi, Perez-Diez, Rodriguez-Calvillo, Latasa, and Qian are acknowledged for critical reading and helpful discussion. We thank Dr. Reuven Agami for pSUPER plasmid. Pat McGowan, Xerexa Razkin, and Izaskun Gabari for technical assistance; Cibeles Pinto for secretarial assistance; and Javier Guilleón and Juan Percaz for excellent animal care.

Low CD80 Expression as a Tumor Escape Mechanism

www.aacrjournals.org 2449 Cancer Res 2006; 66: (4). February 15, 2006

Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993;259:368–70.

Lanier LL, O’Fallon S, Somoza C, et al. CD80 (B7) and CD86 (B7-2) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J Immunol 1995;154:975–105.

1365–9.

1365–9.

