Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma

Iñigo Tirapu, Eduardo Huarte, Cristina Guiducci, Ainhoa Arina, Mikel Zaratiegui, Oihana Murillo, Alvaro Gonzalez, Carmen Berasain, Pedro Berraondo, Puri Fortes, Jesús Prieto, Mario P. Colombo, Lieping Chen, and Ignacio Melero

Abstract
Artificially enforced expression of CD80 (B7-1) and CD86 (B7-2) on tumor cells renders them more immunogenic by triggering the CD28 receptor on T cells. We show that unmutated CD80 is spontaneously expressed at low levels by mouse colon carcinoma cell lines and other transplantable tumor cell lines of various tissue origins. Silencing of CD80 by interfering RNA led to loss of tumorigenicity of CT26 colon carcinoma in immunocompetent mice, but not in immunodeficient Rag-/- mice. CT26 tumor cells bind CTLA-4, but much more faintly with a similar CD28 ligand chimeric protein, thus providing an explanation for the dominant inhibitory effects on tumor immunity displayed by CD80 at that expression level. Interestingly, CD80-negative tumor cell lines such as MC38 colon carcinoma and B16 melanoma express CD80 at dim levels during in vivo growth in syngeneic mice. Therefore, low CD80 surface expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the inhibitory role described for the dim CD80 expression on immature dendritic cells, providing an explanation for the low levels of CD80 expression described in various human malignancies. (Cancer Res 2006; 66(4): 2442-50)

Introduction
CD80 (B7-1) is a surface glycoprotein shown to increase the immunogenicity of tumor cell lines when its gene is transfectected into them (1, 2). As a consequence, in tumor grafting experiments, CD80 transfectants are rejected in syngeneic hosts causing protective and therapeutic immunity against untransfected tumor cells, provided that they bear antigen determinants available for CTL recognition (3). Tumor cell transfection with the CD80 close relative CD86 (B7-2) also conferred increased immunogenicity to transplanted tumors with only subtle differences with CD80 (4, 5).

CD80 and CD86 molecules share their ligands on T cells (6–8). The T-lymphocyte surface molecules CD28 and CTLA-4 (CD152) bind to them, although with a conspicuously higher affinity in the case of CTLA-4 (100- to 1,000-fold higher; refs. 9, 10). CD28 is constitutively expressed on the membrane of resting T lymphocytes (6), whereas CTLA-4 expression is induced on stimulation (6) and retained in internal cell compartments (11). Upon T cell receptor engagement, CTLA-4 molecules are selectively directed to emerge at the immunologic synapse (11, 12). It has been also observed that when T cells meet a dendritic cell presenting cognate antigen, surface CD28 goes to the lipid raft–rich central synapse (13). After the engagement of ligands, CD28 induces signaling cascades that enhance proliferation, intensify cytokine secretion, up-regulate antiapoptotic genes (14), and fuel metabolism for lymphoblast transformation (15). In fact, CD28's key role as a costimulatory molecule has been shown in CD28-/- mice, in which both cellular and T cell–dependent humoral immunity are deficient in a certain degree (16).

On the contrary, CTLA-4 delivers a signal that decreases T cell activation by the recruitment of tyrosine (17, 18) and serine/threonine phosphatases (19). In fact, the function of CTLA-4 is inhibitory for T cell activation as illustrated in vivo by the uncontrolled lymphoproliferative/autoimmune syndrome observed in CTLA-4-/- mice (20, 21). Recent genetic evidence using CD80-/- dendritic cells strongly converge to suggest that the low level of surface CD80 expressed by immature (steady state) dendritic cells is involved in down-regulating the immune response (22, 23), by means of its interaction with CTLA-4 (24, 25). In contrast, some published observations have suggested that CD80 engagement on tumor cells by CTLA-4 would lead to a better T cell–mediated destruction of malignant cells in certain mouse models (26, 27), whereas other authors sustain that CTLA-4-/- interactions may shield target tumor cells against CTLA-mediated destruction (28). The reason(s) for this set of discrepant results are unclear.

Nonetheless, the inhibitory function of CTLA-4 against tumor immunity is best illustrated by the potent immunotherapeutic effect of monoclonal antibodies (mAb) that interfere with the function of CTLA-4 (29) in such a way that they induce tumor rejection in a number rodent tumors (30) with the potential to induce autoimmunity (31). Interestingly, anti-CTLA-4 antibodies have been tested in early trials with patients suffering from melanoma and ovarian cancer, showing evidence of certain clinical efficacy and unwanted autoimmunity as a side effect (32, 33).

Other members of the CD28/CTLA-4 family, such as PD-1 and BTLA have also been described to mediate inhibitory effects for the activation of the lymphocytes on which they are expressed, suggesting a common theme in the regulation of immune responses (34, 35). Furthermore, other members of the B7 family such as B7-H1 and B7-H4 have been shown to inhibit T-cell
CD80 expression at relatively low levels in various colon carcinoma cells that are widely used as cancer therapy models upon grafting onto immunocompetent syngeneic mice, as well as in other mouse malignant cell lines. We carried out experiments in immunocompetent versus immunodeficient mice to assess the relative immunogenicity displayed by carcinoma cells that express CD80 spontaneously, or the same cell lines transfected either to specifically silence or to overexpress CD80. Our results suggest that a low level of CD80 expression confers an advantage for tumor growth, thus helping to avoid tumor rejection, whereas high-level CD80 induces immune-mediated tumor regression.

Materials and Methods

Mice and cells. BALB/c, athymic nude, and C57BL/6 mice were obtained from Harlan (Barcelona, Spain) and were used between 7 and 14 weeks of age. A breeding pair of Rag2−/− in BALB/c background mice was purchased from Harlan and bred in our animal facility under pathogen-free conditions. All animal handling and laboratory procedures were approved by the institutional animal facility ethical committee and are in accordance with Spanish regulations.

Five murine colon adenocarcinoma cell lines were used. Three of BALB/c origin (CT26, C26, and C51) and two of C57BL/6 origin (MC38 and C38). C51 and MC38 cells were transfected with a previously described recombinant origin (CT26, C26, and C51) and two of C57BL/6 origin (MC38 and C38). C51 and MC38 cells were transfected with a previously described recombinant retrovirus expressing murine b7-1 gene (3, 45). Transfections were done by incubating supernatant of the packaging α-2 lines in the presence of polybrene as previously described (46). B7-1-transfected cells were positively selected by immunofluorescence-activated cell sorting (using an EPICS-C, polybrene as previously described (46). B7-1-transfected cells were positively selected by immunofluorescence-activated cell sorting (using an EPICS-C, Coulter, Fullerton, CA) and drug selection as previously described (3). Transfectants were routinely cultured in the presence of selecting drug. Cell lines were cultured at 37°C in 5% CO2 in DMEM with 2 mmol/L l-glutamine, 100 units/mL streptomycin, 100 μg/mL penicillin and supplemented with 10% heat-inactivated fetal bovine serum. All cell culture reagents were from Life Technologies (Basel, Switzerland). For transfectant selection, hygromycin and puromycin were from Sigma-Aldrich (Madrid, Spain) and geneticin from Life Technologies. RENCA (renal cell carcinoma) and B16OVA melanoma were a kind gift from Dr. Allan Melcher (Leeds, UK). The cell lines were cultured as previously described (47). A cell line from a spontaneous tumor originating from a minced fragment of solid tumor and plated it in 24-well plates.

Immunofluorescence and flow cytometry. Cells were washed and labeled with FITC anti-mouse CD80 (BD PharMingen, San Diego, CA) for 30 minutes at 4°C. Unbound mAb was removed by washing twice with ice-cold PBS and immunostaining was determined by flow-cytometry (FACScalibur, Becton Dickinson, San Jose, CA). An isotype-matched FITC-tagged mAb was used as a negative control. CD28 and CTLA-4lg were purchased from R&D (Abingdon, United Kingdom) and used in indirect immunofluorescence staining with the appropriate FITC-tagged secondary antibody purchased from Caltag (Burlingame, CA). Anti-CD45 mAb (BD Pharmingen) was used to gate out myeloid-derived cells in cell suspensions of explanted tumors.

Northern blot and probe preparation. Total cellular RNA was extracted by the guanidineisothiocyanate technique, run in 20 μg aliquots on 1.0% agarose-formaldehyde gel, transferred onto nylon membrane (Hybond-X, Amersham, Arlington Heights, IL) and hybridized with the Hpal-VhoI fragment of pLmB7-1ISH plasmid, containing the murine B7-1 cDNA and labeled with [32P]-dCTP by means of Multiprime kit from Amersham.

Cloning and sequencing of murine CD80. Tumor RNA was extracted by ULTRASPEC-II RNA isolation system (Biotech, Houston, TX) and cDNA obtained by reverse transcription using random primers. A DNA fragment encoding the open reading frame of murine B7-1 was amplified by PCR using the primers: 5’CCCATCTGTTCTCCAAAGC3’, 5’ACTAAGAGGACACGTCTTTCA3’. Another pair of primers was used for B7-1 detection as described (48). In this series of PCRs, the antisense primer was located in exon 3, which is spliced off to generate a B7-1a molecule. Therefore, these primers only amplified mCD80 cDNA but not B7-1a cDNA. PCR products were analyzed by 1% agarose gel electrophoresis and DNA bands were isolated using Concert Rapid Gel Extraction System (Life Technologies, Eggestein-Leopoldshafen, Germany) and TA-cloned into pcDNAs1.1/V5-His-TOPO (Invitrogen, Carlsbad, CA) and TA-cloned into plasmids were isolated using QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) and fully sequenced (ABI PRISM 310 Genetic Analyzer, Applied Biosystems, Foster City, CA).

Gene silencing of CD80. pMSCVpuro (Clontech, Mountain View, CA) was modified to accommodate the small interfering RNA (siRNA) expression cassette by sequential digestion and religation of BglII and HindIII sites (all restriction enzymes were from New England Biolabs, Ipswich, MA). The expression cassette of pSUPER (49) was extracted by EcoRI-VhoI digestion and directionally cloned into the modified retroviral plasmid to yield pMSCV/SUPER. The target sites for CD80 siRNA were selected using the criteria proposed by Tuschil et al. (50). Three target sites were selected, and the following oligonucleotides (ordered from Sigma-Genosys, Cambridge, UK) were phosphorylated and cloned into the HindIII-BglII sites of pMSCV/SUPER. Sequences of the primers synthesized were (from 5’ to 3’): 273, GAT CCC CAC ATG ACA AAG TGG TCT TGT TCA TGA GAC GAC ACC ACT TTG TCT CTA TGT TTT GGA A A 273; 273, GAC TTT CCC AAA AAA CAT GAC AAA GTG CTG TCT CTT CAA CAG CAC CAC TTT GTG ATG TCT CTA TTT GGA A 273; and AGA GAA AAG AAG GAC TTT AAG CTT CTT CTT GCT TGT TCT GTC TTT TTT TTG AGA A A 242. Ten clones were selected and plasmids were isolated using QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) and fully sequenced (ABI PRISM 310 Genetic Analyzer, Applied Biosystems, Foster City, CA).

Expression of murine CD80 in tumor cells was confirmed by flow cytometry using the specific anti-CD80 antibody. The expression of low levels of CD80 and CD86 has been shown to be associated with decreased tumor rejection, whereas high levels of expression of CD80 and CD86 detected by RT-PCR and Northern blotting as described (48). In this series of PCRs, the antisense primer was located in exon 3, which is spliced off to generate a B7-1a molecule. Therefore, these primers only amplified mCD80 cDNA but not B7-1a cDNA. PCR products were analyzed by 1% agarose gel electrophoresis and DNA bands were isolated using Concert Rapid Gel Extraction System (Life Technologies, Eggestein-Leopoldshafen, Germany) and TA-cloned into pcDNAs1.1/V5-His-TOPO (Invitrogen, Groningen, the Netherlands). Ten clones were selected and plasmids were isolated using QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany) and fully sequenced (ABI PRISM 310 Genetic Analyzer, Applied Biosystems, Foster City, CA).
Plasmids were transfected into CT26 cells by using a 22-kDa linear polyethylenimine from Polyplus Transfection (Illkirch, France) as described (51). Twenty-four hours posttransfection, the medium was removed, cells were washed and fed with fresh medium containing 8 μg/mL of Puromycin (Sigma-Aldrich). Stable transfectants were picked 10 days later and subcultured for analysis.

Results

Constitutive expression of CD80 on murine tumor cell lines.
We assessed CD80 expression in CT26, C26, C51, and MC38 murine colon carcinoma cell lines by immunofluorescence and flow-cytometry analysis. To this end, we used a FITC-conjugated monoclonal antibody specific for murine CD80 (Fig. 1). CT26 and C26 expressed mouse CD80 (mCD80) at similar dim levels, whereas mCD80 was almost undetectable on C51 cells and was consistently undetectable on MC38 cells, thus indicating that CD80 expression is not a constant feature in murine colon cancer. As shown in Fig. 1, anti-CD80 mAb also stained the surface of Lewis lung carcinoma, RENCA (renal cell carcinoma), BNL (hepatocellular carcinoma), HOPC (multiple myeloma), and a spontaneous T cell lymphoma cell line derived from C57BL/6 mice that has been recently derived in our laboratory from a peripheral lymph node.5 These data indicate that the low level of expression of CD80 is not an exclusive property of colon cancer but is a feature shared by many types of transplantable mouse malignancies, including MB49 bladder carcinoma and PANC02 pancreatic carcinoma (data not shown). However, there exist clear exceptions because cultured B16 melanoma and MC38 colon carcinoma cells do not express surface CD80 (Fig. 1).

Northern blot analysis of RNA isolated from these colon cancer cell lines readily showed the presence of two bands (3.9 and 2.2 kb) when using a mCD80-specific probe. These two bands correspond with the previously reported splicing alternatives of the cd80 gene and were also detected on RNA from lipopolysaccharide-stimulated splenocytes or IFN-γ-stimulated macrophages (Fig. 2A).

cDNA was synthesized from colon carcinoma cell lines using random primers revealed that CD80 has two variants arising by alternative splicing that are expressed on the plasma membrane, one with IgV (membrane distal) + IgC (membrane proximal) domains, whereas the other contains only the IgV domain (B7-1a; ref. 52). Both isoforms have similar ligand-binding properties that map to the IgV domain. Therefore, two different PCRs were done. One was used for mCD80 mRNA detection with a sense primer located in the IgV-like domain whereas the antisense primer is located in the IgC-like domain. The IgC-like fragment of the CD80 protein is encoded by exon 3 which is spliced off to generate B7-1a molecule (IgV-only isoform). Accordingly, these primers only amplified mCD80 cDNA but not B7-1a cDNA. As a control, these primers amplified a similar band from RNA isolated from murine bone marrow–derived dendritic cells (Fig. 2B). A second series of PCRs were done in which another pair of primers were used to amplify cDNA encoding the whole mCD80 open reading frame. In this PCR, the two alternative splicing variants were found to coexist in CT26 (Fig. 2B).

Full-length CD80 cDNA was TA-cloned in pCDNA3.1 in order to verify its sequence. The sequence of at least two independent clones from CT26 total cDNA was identical to the one published. The shorter alternative splicing isoform (B7-1a; ref. 53) was also cloned and sequenced without finding any change when compared with the published sequence (data not shown). These experiments conclude that the unmutated, wild-type, and alternative splicing forms of the cd80 gene are expressed on three murine colon carcinoma cell lines widely used in tumor immunology experiments on transplantation to syngeneic mice.

Selective binding of CTLA-4 by spontaneously expressed CD80 on CT26 colon cancer cells.
CT26 cells were brightly
stained at the cell surface by chimeric proteins containing the extracellular portion of CTLA-4 and an immunoglobulin tail, indicating that the tumor molecule was functional at least for binding this inhibitory ligand (Fig. 3A). However, a similar chimeric protein containing the extracellular domains of CD28 barely bind CT26 cells even at 100 μg/mL, whereas readily

stained MC38 cells that had been retrovirally transduced to stably express high levels of CD80 (B), the immature D1 dendritic cell line (C), and lipopolysaccharide-matured CD11c+ dendritic cells (D). Cells were stained with FITC-labeled anti-CD80 mAb or with CTLA-4Ig or CD28Ig followed by antihuman Ig-FITC by indirect immunofluorescence. Analysis of CD11c+ immature spleen cells rendered comparable results to those in D1 cells (data not shown).

Transfection of cd80 gene into colon cancer cells results in increased immunogenicity and tumor rejection. MC38 is another mouse colon carcinoma cell line that is negative for CD80 surface expression by fluorescence-activated cell sorting.
its expression. For this purpose, we cloned the pSUPER expression
tumors, stable transfectants were generated to express siRNAs
in the ability of CT26 colon carcinoma to graft as progressive
tumorigenicity.

To study the role of CD80 endogenous expression
biological function.
did not tell whether the low spontaneous level of CD80 had any
transfected cells inversely correlated with tumor progression, but
experiments indicated that the intensity of CD80 expression on
the brightest expression of CD80 avoided tumor grafting. These
C
on plasma membrane (Fig. 4
transfected C51 in accordance with the levels of CD80 expression
of CD80 protein on their surface. After pharmacologic selection of
least at high levels, increases tumor immunogenicity (1) and also
causes tumor rejection in experimental colon carcinomas (2).

We also transfected the mcd80 gene into the C51 cell line that
expresses very low but detectable levels of endogenous CD80
(Fig. 1). Two cloned transfectants were generated, which are clearly
different in gradual levels of CD80 expression (Fig. 4B). S.c.
injection of such transfected cells into BALB/c mice showed that
the transfected tumors had longer latency than the mock-
transfected C51 in accordance with the levels of CD80 expression
on plasma membrane (Fig. 4C). Indeed, in 50% of the cases,
the brightest expression of CD80 avoided tumor grafting. These
experiments indicated that the intensity of CD80 expression on
transfected cells inversely correlated with tumor progression, but
did not tell whether the low spontaneous level of CD80 had any
biological function.

Silencing of CD80 expression in CT26 results in lack of
tumorigenicity. To study the role of CD80 endogenous expression
in the ability of CT26 colon carcinoma to graft as progressive
tumors, stable transfectants were generated to express siRNAs
targeted to different regions of the CD80's mRNA in order to silence
its expression. For this purpose, we cloned the pSUPER expression
cassette (49) into retroviral plasmid pMSCV3puro, and in this new
vector, we cloned a hairpin encoding oligonucleotides that would
yield siRNA directed to CD80 mRNA (Fig. 5A). As a control, we
used a scrambled sequence of roughly the same GC content as the
other siRNAs. Puromycin-selected stable transfectants from two
different RNAi constructions were cultured and cloned under
limiting dilutions. Expression of CD80 in two different clones and
in bulk culture cells transfected with an irrelevant scrambled
sequence as a control is shown in Fig. 5B.

The experiments on in vivo growth of each silenced or control
transfectant in normal BALB/c and Rag-2-/- mice are shown in Fig. 5B.
Transfectants in which CD80 expression at the protein level were
highly decreased, lost their capacity to graft as terminal tumors in
immunocompetent mice, but preserved tumorigenicity in
immunodeficient hosts of identical genetic background. Differences
were not attributable to changes in MHC class I levels of
expression because CD80-silenced cells express almost identical
levels of H2-Kd when compared with CT26 wild-type (data not
shown). In addition, when those BALB/c mice who had rejected
CD80-silenced CT26 tumors were rechallenged 3 months later with
unmodified CT26 cells, those tumors were rejected in all mice,
indicating that the mice had been immunized by exposure to
CD80-silenced tumor cells (data not shown). As a whole, these data
indicate that CT26 tumor cells silenced for CD80 expression elicit
stronger antitumor immune responses.

Moreover, one of the repeated culture passages of the clone
424 2.6 spontaneously gave rise to a variant that homogeneously
regained CD80 expression in spite of keeping resistance to
puromycin (Supplementary Fig. S1A). This cell line progressed in
immunocompetent mice indicating that the revertant regaining
CD80 expression has an advantage against the antitumor immune
response. In addition, if these revertant cells were preincubated

Figure 4. Increased immunogenicity of cells expressing high levels of CD80. A, comparative study of s.c. tumor development of CD80-negative
MC38 cells and a retrovirally transfected MC38 clone selected for high stable expression of
mCD80. Cells (5 x 10^5) from each one of these two cell lines were injected s.c. in the right flank of two
groups of syngeneic C57BL/6 mice. Levels of
expression of CD80 in transfected or untransfected
cells are provided in accompanying histograms.
B, gradual levels of expression in stable
transfectants of the cd80 gene generated with
recombinant retrovirus in the C51 colon carcinoma
cell line as detected by immunofluorescence with
anti-CD80 mAb (C). Sequential analysis of the
fraction of BALB/c mice (n = 7 per group)
developing lethal tumors after being injected s.c.
with C51 wild-type colon cancer cells expressing
dim levels of surface CD80 or with cloned variants
that had been transfected with a retrovirus
encoding an expression cassette of CD80. These
variants were selected for bearing different levels
of stable and gradually brighter expression of
CD80 (shown in B).
and coinjected with 100 µg/mL of an anti-CD80 blocking antibody, those tumors were completely rejected in three out of six cases, whereas all tumors injected with control antibody progressed in another group of immunocompetent BALB/c mice (Supplementary Fig. S1B). These data further reinforce the notion that CD80 is the molecule involved in the escape mechanism and helps to rule out the possibility that the effects of the silencing could be explained by clonally variable immunogenicity among CT26 cells. In this regard, an independently generated polyclonal silenced variant of CT26 cells transfected with the 424 siRNA construction was also rejected in four out of six cases in immunocompetent mice, whereas it progressed in every case in T cell–deficient nude mice (Supplementary Fig. S1C).

Preservation of CD80 expression on in vivo passage. If low CD80 expression is considered as an advantageous feature in immunocompetent hosts, its expression will likely be evolutionarily preserved in tumor cells explanted from CT26 tumors growing in immunocompetent mice. This was confirmed in experiments shown in Supplementary Fig. S2, in which the relative intensity of CD80-specific immunofluorescence in explanted tumor cells from immunodeficient or immunocompetent mice is plotted referred to CD80 level of expression on cultured CT26 (CT26-WT). Data pooled from three independent experiments with a total of 17 mice per group permitted a Fisher’s exact test that showed a two-sided P < 0.0001 when comparing rejection rates of the silenced versus control (nonsilenced) CT26 variants.
but become positive in cell suspensions obtained from grafted tumors in syngeneic mice (Fig. 6A and B). Electronic gating and exclusion of CD45+ hematopoietic cells in the FACS analyses ensured that the CD45-negative malignant cells were the only ones analyzed in Fig. 6. Interestingly when these cells were plated in culture for 7 days, a complete loss of surface CD80 took place.

As shown in Fig. 4C, the C51B7/10 CD80bright transfectant grafted as a terminal tumor in only 50% of the cases. Explanted cell suspensions of such tumors showed lower, but importantly not negative, CD80 expression levels than the original transfected cell line in culture (Fig. 6C). As a whole, these data provide evolutionary evidence for a selective advantage of low but not negative expression of CD80 on cancer cells.

Discussion

The main findings in this study are the unexpected basal and spontaneous expression of CD80 in transplantable tumor cell lines that are commonly used for experimental cancer immunotherapy experiments, in addition to observations on the role of low CD80 expression as an immune evasion mechanism.

To the best of our knowledge, this is the first report showing spontaneous CD80 expression in mouse tumor cells of epithelial origin, but it should be considered that CD80 up-regulation has been detected in mouse tumors treated with chemotherapy or radiotherapy (54, 55). These reports suggest the inducibility of CD80 under stress conditions. The costimulatory molecule 4-1BB has also been found to be spontaneously expressed in some tumor cell lines (56), a finding that is also in contrast with the fact that 4-1BB transfection to high levels of expression augments the immunogenicity of various tumors (57, 58).

It is not possible to tell whether the original tumors were CD80+ or if it was an acquired event that took place during in vitro or in vivo passage. Sequencing of the cDNA disclosed no mutation, suggesting that the membrane glycoproteins were fully functional, as confirmed by CT26 staining with CTLA-4Ig. Interestingly, we found by Northern blot, RT-PCR, and sequencing, the coexistence of two alternative splicing variants of cd80 mRNA, as occurring in splenic cells stimulated with lipopolysaccharide or IFN-γ and in cultured dendritic cells used as positive controls. Accordingly, it should not be expected that CD80 would function differently on the colon cancer cells compared with professional antigen-presenting cells. Indeed, the function of CD80 on antigen-presenting cells seems to be dual and related to the level of expression because CD80dim immature dendritic cells suppress T cell immunity in a CD80-dependent fashion, whereas CD80bright mature dendritic cells promote immunity under proper conditions (22, 23, 25). Our results with dendritic cells are in agreement with the view that the low levels of CD80 expression on immature dendritic cells would bind inhibitory CTLA-4 with competitive advantage to stimulatory CD28, as suggested by other authors with functional data using bone marrow chimeras with defects in CD80 expression on dendritic cells (24, 25).

Figure 6. Dim CD80 expression is induced in MC38 and B16-OVA during in vivo passage, whereas low levels of CD80 expression are selected on in vivo passage of CD80-high transfectants. MC38 (A), B16-OVA (B), and C51B7/10 (C) were inoculated in the flank of syngeneic mice. Tumors were explanted when they reached an average diameter of 15 mm and cell suspensions obtained by grinding minced tumors. For FACS analysis, CD45-positive cells were electronically gated and excluded so histograms only reflect CD80 levels of CD45-negative cells satisfying the FSC/SSC features of malignant cells. Cell suspensions were cultured for 1 week and CD80 expression reassessed. Each histogram represents an independent explanted tumor cell suspension.
B7-1 (CD80) and B7-2 (CD86) expression on tumor cells has been found to strongly raise the immunogenicity of transplantable cell lines (3, 4). The transfection of B7-1 generates cells that can even work as prophylactic or therapeutic vaccines against untransfected tumors by means of eliciting a strong CTL response (1). Most of these experiments were carried out with stable transfectants that had been sorted and selected for expression of very high levels of CD80 on every cell. Moreover, no detailed study has been published on the dose dependency of CD80 levels of expression and tumor immunogenicity, a factor that might prove crucial when considering that CD80 has two counter-receptors with dramatically opposite effects on the immune response. CD28 enhances T cell receptor–induced proliferation and activation of effector functions (14, 15), whereas CTLA-4 ligation arrests T cell cycle progression (59). Expression of CTLA-4 is only induced on activated cells with low levels of membrane expression but exquisitely directed to the area of T-cell engagement (11). Importantly, the inhibitory CTLA-4 receptor displays >100-fold higher avidity for CD80 than for CD28 (9). It is tantalizing to speculate that low levels of CD80 might confer, by selective binding affinity for CTLA-4, some advantage to tumor progression in immunocompetent mice. In fact, lymphocytes that infiltrate tumors have an activated membrane phenotype and therefore are susceptible to CTLA-4-mediated inhibition (data not shown). The possibility that CD80 could be shielding CT26 tumor cells as targets for the CTL effector phase has been explored in light of the effects reported by Saudemont et al. (28) and the effects also shown by Hirano et al. for B7-H1 (39). Although we did our cytotoxicity experiments from 4 to 20 hours with anti-CT26–specific CTL, no increase of specific lysis upon CD80 blockade, neither by mAbs nor CTLA-4-lg, was observed (Supplementary Fig. S8). However, the in vivo situation could be different and therefore we cannot completely disregard such a mechanism in our tumor model.

Alternatively, tumor CD80 might enhance the function of regulatory T cells (60). We have done an extensive series of experiments aimed at costimulating CD4+CD25+ Treg suppressor function with CD80+ CT26 cells rendered negative results in our investigation. However, this mechanism is not definitively ruled out because Treg cells are known to express relatively high levels of membrane CTLA-4 that paradoxically costimulates this population (61, 62), and CT26 grafting is prevented by depleting CD25+ lymphocytes (63).

Another mechanistic possibility is that CD80 ligation by CTLA-4 on CT26 could provide advantageous signals to the tumor cell. Although unlikely in epithelial cells, this possibility has been observed in mouse dendritic cells in which CD80 engagement by CTLA-4 promotes IFN-γ secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64). We have explored this possibility in detail measuring IDO expression at the RNA and protein level as well as the production of IDO secretion that in turn induces the immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO; ref. 64).
References


2. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993;260:368–70.


6. Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with high affinity and cooperates with IL-2 in the generation of CTL. J Immunol 1995;154:5238–45.


9. van der Merwe PA, Bodian DL, Daenke S, Linsley PS, Davis SJ. CD80 (B7-1) binds both CD80 and CD86 with a low affinity and very fast kinetics. J Exp Med 1997;185:393–403.


Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma

Iñigo Tirapu, Eduardo Huarte, Cristiano Guiducci, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/66/4/2442

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2006/02/23/66.4.2442.DC1

Cited articles
This article cites 65 articles, 33 of which you can access for free at:
http://cancerres.aacrjournals.org/content/66/4/2442.full#ref-list-1

Citing articles
This article has been cited by 12 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/66/4/2442.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.