Gastrin Enhances the Angiogenic Potential of Endothelial Cells via Modulation of Heparin-Binding Epidermal-Like Growth Factor

Philip A. Clarke, Jacqueline H. Dickson, Joseph C. Harris, Anna Grabowska, and Susan A. Watson

Academic Unit of Cancer Studies, University of Nottingham, Queen's Medical Centre, University Hospital, Nottingham, United Kingdom

Abstract

This study examined whether gastrin modulates endothelial cell activity via heparin-binding epidermal growth factor–like growth factor (HB-EGF) expression. Human umbilical vascular endothelial cells (HUVEC) were assessed for tubule formation in the presence of amidated gastrin-17 (G17) and glycine-extended gastrin-17 (GlyG17) peptides. HB-EGF gene and protein expressions were measured by quantitative reverse transcription-PCR, immunocytochemistry, and Western blotting, and HB-EGF shedding by ELISA. Matrix metalloproteinases MMP-2, MMP-3, and MMP-9 were assessed by Western blotting, and HB-EGF shedding by ELISA. Chick chorioallantoic membrane studies measured the in vivo angiogenic potential of gastrin and microvessel density (MVD) was assessed in large intestinal premalignant lesions of hypergastrinaemic APC^{Min} mice. MVD was also examined in human colorectal tumor and resection margin normals and correlated with serum-amidated gastrin levels (via RIA) and HB-EGF protein expression (via immunohistochemistry). HUVEC cells showed increased tubule and node formation in response to G17 (186%, P < 0.0005) and GlyG17 (194%, P < 0.0005). This was blocked by the cholecystokinin-2 receptor (CCK-2R) antagonists JB95008 and JMV1155 and by antisera to gastrin and HB-EGF. Gastrin peptides increased HB-EGF gene expression/protein secretion in HUVEC and microvessel-derived endothelial cells and the levels of MMP-2, MMP-3, and MMP-9. G17 promoted angiogenesis in a chorioallantoic membrane assay, and MVD was significantly elevated in premalignant large intestinal tissue from hypergastrinaemic APC^{Min} mice. In terms of the clinical situation, MVD in the normal mucosa surrounding colorectal adenocarcinomas correlated with patient serum gastrin levels and HB-EGF expression. Gastrin peptides, acting through the CCK-2R, enhance endothelial cell activity in models of angiogenesis. This may be mediated through enhanced expression and shedding of HB-EGF, possibly resulting from increased activity of matrix metalloproteinases. This proangiogenic effect translates to the in vivo and human situations and may add to the tumorigenic properties attributable to gastrin peptides in malignancy. (Cancer Res 2006; 66(7): 3504-12)

Introduction

Gastrin peptides have multiple carcinogenic activities in gastrointestinal adenocarcinomas through both autocrine/paracrine and endocrine mechanisms (1). Mature amidated gastrin peptides act through the G-protein–coupled cholecystokinin-2/gastrin receptor (CCK-2R), which mediates the normal endocrine activities of gastrin, such as acid secretion. The classic CCK-2R, together with a number of splice variants, have been shown to play a role in malignancy (2–4).

Gastrin gene transcription is normally tightly regulated but may be elevated in the cancer situation, as it is a transcriptional target of β-catenin (5, 6). Post-translational processing of preprogastrin is also disordered in malignant epithelial cells, resulting in constitutive release of poorly processed gastrin forms, such as progastrin, and glycine-extended gastrin species (7). Nonamidated gastrin peptides, such as glycine-extended gastrin-17 (GlyG17), possess biological activity that includes pro-proliferative effects on epithelial cells and enhancement of carcinogen-induced tumorigenicity in the colon (8, 9).

Gastrin peptides increase the transcription of a number of key target genes associated with tumorigenesis, including cyclooxygenase-2 (COX-2), plasminogen activator inhibitor-2 (PIA-2), the regenerating protein (Reg; refs. 10–12), and matrix metalloproteinase (MMP) enzymes (13–15). Importantly, much emphasis has been placed on the ability of gastrin to both up-regulate ligands of the epidermal growth factor (EGF) receptor, in particular amphiregulin and heparin-binding EGF-like growth factor (HB-EGF; refs. 16–18). The effect of gastrin on both the shedding of EGF receptor growth factors and related downstream signaling pathways has received particular attention. In terms of a proangiogenic role for gastrin, a recent study showed such an in vivo model involving E-selectin activation (19).

Our study has explored the role of gastrin peptides on the angiogenic potential of human endothelial cell lines through mediation of HB-EGF expression and shedding. Two gastrin peptides were compared; gastrin-17 (G17), the form involved in endocrine pathways and GlyG17, a form secreted by tumor cells themselves and ascribed a role as an autocrine factor (20). It was confirmed that both G17 and GlyG17 increased tubule formation of human endothelial cells grown on an extracellular matrix and enhanced HB-EGF expression and shedding. MMP-2, MMP-3, and MMP-9 expression also increased, with these factors potentially playing a role in regulating shedding of the HB-EGF. In vivo models confirmed the proangiogenic effects of G17, and these translated to the clinical situation based on the observation that there is increased vessel density and elevated HB-EGF protein expression in the normal mucosa surrounding colorectal adenocarcinomas in patients with elevated serum-amidated gastrin levels.

Note: P.A. Clarke and J.H. Dickson are joint first authors.

Requests for reprints: Susan A. Watson, Academic Unit of Cancer Studies, D Floor, West Block, Queen’s Medical Centre, University Hospital, Nottingham, NG7 2UH, United Kingdom. Phone: 44-115-9709248; Fax: 44-115-9709902; E-mail: sue.watson@nottingham.ac.uk.

©2006 American Association for Cancer Research. doi:10.1158/0008-5472.CAN-05-0280

Cancer Res 2006; 66: (7). April 1, 2006 3504 www.aacrjournals.org

Downloaded from cancerres.aacrjournals.org on April 20, 2017. © 2006 American Association for Cancer Research.
Materials and Methods

Human endothelial monolayers. Human umbilical vein endothelial cells (HUVEC), uterine microvascular endothelial cells (UMVEC), and dermal microvascular endothelial cells (HMVEC-D; Cambrex, Walkersville, MD) were cultured in EGM-2 with 2% fetal bovine serum (HUEVEC) and EGM-MV microvascular specific medium with the recommended Single Quot supplementation including 5% fetal bovine serum, bovine brain extract, hydrocortisone, and human EGF (both Cambrex). Subconfluent cells were harvested with 0.25% trypsin and 0.03% EDTA solution (both Sigma, Poole, Dorset, United Kingdom).

Human angiogenesis model. This comprised a human angiogenesis system (TCS CellWorks, Buckingham, United Kingdom) consisting of irradiated human fibroblast cell monolayers seeded with HUEVEC. Medium was replenished on days 1, 4, and 7 supplemented with G17, GlyG17 (both Aphton Corp., Woodland, CA), or a scrambled gastrin peptide control AL55 (WGDGF-NH2, Biopolymer Synthesis and Analysis Unit, University of Nottingham, Nottingham, United Kingdom) at concentrations between 10 μM and 100 μM/L. Dose response studies confirmed 10 μM/L as the optimal G17 and GlyG17 concentration, and this was concentration that was used in all subsequent studies. Suramin (20 μM/L) and vascular endothelial growth factor (VEGF) (20 μg/mL) were used as negative and positive controls, respectively (TCS CellWorks). The compound treatments remained constant throughout the duration of the experiment from initiation on day 1 through to termination on day 9 with refeeding on days 1, 4, and 7. On day 9, the cells were fixed in 70% ethanol, and tubule formation was visualized with an endothelial tubule staining kit (TCS CellWorks). Briefly, tubules were labeled with murine monoclonal anti-human CD31 (platelet/endothelial cell adhesion molecule 1) cell surface antigen antibody for 60 minutes and immunolocalized using a goat anti-mouse alkaline phosphatase secondary for a further 60 minutes. 5-Bromo-4-chloro-3-indolyl phosphate chromagen with nitro blue tetrazolium was used for visualization.

Inhibition of angiogenic differentiation using gastrin-neutralizing antibodies and specific antagonists. A rabbit anti-G17/DTT antiserum, raised against the NH2-terminal nine amino acids of G17 coupled to diphtheria toxoid (G17-DT; Insegia, Apteon), which neutralizes both the COOH-amidated and glycine-extended forms of G17 with affinities of 0.15 μg/mL, and its glycine gels (Invitrogen, Paisley, United Kingdom). Resolved proteins were under denaturing and reducing conditions on 8% to 16% gradient Tris/HCl for 15 seconds, and 60°C for 30 minutes at 37°C. The chorioallantoic membrane studies. The chick chorioallantoic membrane model used in this study was modified from that used by Melkonian et al. (24), briefly, fertilized white broiler chicken eggs were incubated at 37°C until stage 19 of development (day 3.5). Eggs were opened from the air sac end, and 3 mL of egg white was removed to allow the embryo to drop away from the shell, providing space for compound treatment. The positive control angiopoietin-1 (1 μg/mL), G17 (10 nmol/L), or the vehicle control solution were dotted onto sterile nitrocellulose filter discs (10 μL per disc) presoaked in a 3 mg/mL solution of cortisone acetate (in absolute ethanol, to reduce inflammation) and then air-dried before use. The discs were placed, one per egg on the left vitalline artery (LVA), and the eggs were sealed with tape and returned to 37°C for a further 24 hours.

After incubation the tape was removed and observations were made using the untreated right vitalline artery (RVA) in each egg for comparison.
Human primary tumor sample collection and storage. Samples were collected from 31 freshly resected human colorectal tumors from Nottingham University Hospital, Department of Surgery. Ethical permission was granted from the Queen's Medical Centre Ethical Review Committee, Nottingham, United Kingdom. Samples of tumor and nonmalignant mucosa (from the resection margin and >10 cm from the cancer) were formalin fixed, processed, and embedded in paraffin wax. Fasting serums were obtained from patients before surgical excision and were assayed for levels of

Figure 1. Effect of G17 and GlyG17 on HUVEC node formation in in vitro culture. A, microscopic images. HUVEC tubule and node formation over a 9-day culture period are shown for medium alone and in the presence of suramin (20 nmol/L), VEGF (20 ng/mL), G17 (10 nmol/L), or GlyG17 (10 nmol/L). Red bar, 200 μm. B, effect of G17 and GlyG17 on mean node number. Columns, mean node formation for two separate experiments with n = 2 to 3 replicates per condition within each experiment; bars, SE. Suramin significantly inhibited node formation from 16.0 (medium control) to 6.0 (*, P < 0.0005). VEGF significantly increased node number to 29.5 (**, P < 0.0005). G17 and GlyG17 produced growth effects equal to VEGF with a mean node number of 30 and 31, respectively (***, P < 0.0005). The scrambled peptide AL55 had no significant effect on node formation and was significantly different from effects of G17 and GlyG17 (both P = 0.0005).
CD34 immunohistochemistry was carried out on paraffin-embedded APC^alk mouse large intestinal tissue as described above with the following amendments; antigen unmasking was via citric acid microwave antigen retrieval (10 mmol/L citric acid, pH 6). Endogenous peroxidase was removed by 3% hydrogen peroxide block. Primary antibodies, rat anti-mouse CD34, and concentration-matched rat IgG2a control (BD Biosciences Pharmingen, Oxford, United Kingdom) were labeled with polyclonal anti-rat biotinylated secondary (BD Biosciences Pharmingen).

Microvessel density was measured according to Vermeulen et al. (26). Briefly, hotspot areas of CD31-labeled or CD34-labeled events were counted over n = 8 fields of view at ×10 (CD31) and ×40 (CD34) objective magnification under bright-field microscopy.

Progastrin immunohistochemistry was carried out using rabbit polyclonal antiserum raised against the COOH terminus as previously described (24).

COOH-terminal HB-EGF immunohistochemistry was carried out using hors eradish peroxidase (HRP)–conjugated secondary labeling of goat polyclonal anti-HB-EGF(C18)-sc1413 (Santa Cruz Biotechnology). Endogenous peroxidase was removed with 3% hydrogen peroxide block, and nonspecific protein/protein interactions were reduced by preincubation with 20% rabbit serum. Microwave antigen retrieval was carried out using prewarmed 10 mmol/L citric acid (pH 6) heated at half power for 10 minutes with 20-minute cooling time. Rabbit anti goat-HRP secondary (DakoCytomation) was used according to manufacturer’s instruction. Visualization was via liquid DAB system (DakoCytomation).

Results

The influence of gastrin peptides on HUVEC differentiation.

The effect of gastrin peptides on tubule/node formation in HUVECs cultured on a fibroblast feeder layer was studied. In this model, HUVECs appeared initially as distinct "islands" within the fibroblast monolayer. As the experiment progressed, they underwent proliferation and migration to form thread-like tubule structures, which joined to form a network of anastomosing tubules. Thus, the growth characteristics of this model provide data on both proliferation (early stages) and differentiation (later stages). Tubule branch points or nodes were counted as an indication of maturity of the tubule network.

G17 and GlyG17 were initially assessed in terms of HUVEC node formation at concentrations ranging from 10 μmol/L to 10 pmol/L. G17 and GlyG17 significantly stimulated growth, 353% control (P = 0.002) and 303% (P = 0.011), respectively, compared with 563% control for VEGF (2 ng/mL). However, 10 μmol/L and 10 pmol/L G17 and GlyG17 had no significant effect on node formation (data not shown). HUVEC node formation and mean node number in a range of growth conditions, including G17 and GlyG17, at optimal concentrations of 10 nmol/L, are shown in Fig. 1A and B, respectively. In the presence of the inhibitor suramin, mean node number was significantly reduced compared with the medium control for VEGF (2 ng/mL). However, 10 μmol/L and 10 pmol/L G17 and GlyG17 had no significant effect on node formation compared with AL55 (both P = 0.0005). G17 and GlyG17 increased node number compared with AL55 (both P = 0.0005). The scrambled gastrin peptide AL55 had no significant effect on node formation (data not shown). HUVEC node formation and mean node number in a range of growth conditions, including G17 and GlyG17, at optimal concentrations of 10 nmol/L, are shown in Fig. 1A and B, respectively. In the presence of the inhibitor suramin, mean node number was significantly reduced compared with the medium control for VEGF (2 ng/mL). However, 10 μmol/L and 10 pmol/L G17 and GlyG17 had no significant effect on node formation compared with AL55 (both P = 0.0005). G17 and GlyG17 increased node number compared with AL55 (both P = 0.0005). The scrambled gastrin peptide AL55 had no significant effect on node number. Furthermore, G17 and GlyG17 induced significant increased node formation compared with AL55 (both P = 0.0005).

Neutralization of the effect of gastrin peptides with an anti-gastrin antiserum and CCK-2 receptor antagonists. To further investigate whether the differentiation-inducing effect of gastrin was reversible and mediated through the CCK-2R, the experiment was repeated with the addition of either gastrin antiserum or...
CCK-2R antagonists. Gastrin antiserum (10 µg/mL) neutralized the differentiating effects of exogenous G17 from 183% to 56% ($P < 0.0001$) and exogenous GlyG17 from 128% of the control medium to 55% ($P < 0.0001$; Fig. 2A).

Two CCK-2R antagonists were used to blockade the effects of the gastrin peptides: JB95008 (a competitor of amidated G17) and JMV1155 (a competitor of GlyG17). The effect of G17 was reversed from 171% to 82% ($P < 0.0001$) with JB95008, and the effect of GlyG17 was reversed from 160% to 55% ($P < 0.0001$; Fig. 2A).

Figure 3. Effect of gastrin peptides on HB-EGF expression by HUVEC cells. A, effect on HB-EGF gene expression. Relative gene expression was significantly increased following G17 (*, $P = 0.003$) and GlyG17 (**, $P = 0.005$) treatment when compared with the scrambled peptide control, AL55. B, fluorescent immunocytochemical detection of HB-EGF expression. G17 and GlyG17 treatment increased expression of cytoplasmic HB-EGF, which had an enhanced granular appearance. C, effect of gastrin on shedding of HB-EGF protein. G17 and GlyG17 significantly increased HB-EGF shedding as confirmed by detection of HB-EGF within the culture supernatant (*, $P = 0.005$ and **, $P = 0.006$, respectively, compared with the medium control, and +, $P = 0.005$, compared with scrambled peptide, AL55), whereas the scrambled peptide control, AL55, had no effect. D, expression of MMPs. Western blot analysis of MMP-2, MMP-3, and MMP-9 expression by HUVEC cells revealed an increase in expression following gastrin treatment. E, effect of HB-EGF immunoneutralization on gastrin-induced node formation of HUVEC cells. HB-EGF neutralization by the use of antiserum significantly reduced G17 (*, $P = 0.032$) and GlyG17 (**, $P = 0.01$) mediated effects on HUVEC node formation (combination of two separate studies, $n = 2/3$ replicates per condition).
GlyG17 was reversed from 201% to 117% ($P = 0.04$) of the medium control with JMV1155 (Fig. 2B).

Effect of G17 and GlyG17 on HB-EGF gene expression and HB-EGF secretion by HUVEC cells. One of the potential mechanisms through which gastrin peptides may act upon vascular density/node formation of HUVEC cells is via up-regulation of HB-EGF. The effect of G17 and GlyG17 on HB-EGF gene and protein expression was compared with that of the scrambled peptide AL55 (Fig. 3A). G17 induced a 5.6-fold increase in HB-EGF gene expression compared with the scrambled peptide control ($P = 0.003$) and GlyG17 a 2.8-fold increase ($P = 0.005$). The effect with G17 was significantly greater than that achieved with GlyG17 ($P = 0.014$).

HB-EGF expression was also increased at the protein level following treatment with G17 and GlyG17 (Fig. 3B). Under basal conditions, there was discrete cytoplasmic expression, whereas following G17 treatment staining appeared punctate/granular. A similar pattern of staining was seen in cells treated with GlyG17 (data not shown).

Treatment with G17 and GlyG17 had a significant effect on HB-EGF shedding into the cell supernatant during cell growth (Fig. 3C). G17 induced a 2.7-fold increase in shedding ($P = 0.005$) compared with a 1.75-fold increase ($P = 0.006$) for GlyG17, whereas there was no significant effect with the scrambled peptide (Fig. 3C) compared with cells treated with medium alone. G17 had a significantly enhanced effect compared with the scrambled peptide AL55 ($P = 0.005$), whereas GlyG17 did not significantly enhance shedding.

Role of MMP-2, MMP-3, and MMP-9 in gastrin-induced HB-EGF shedding. MMP-2, MMP-3, and MMP-9, which are known to be implicated in HB-EGF shedding (27, 28), were evaluated in HUVEC cell lysates following gastrin treatment. Both G17 and GlyG17 increased the expression level of all three MMPs when compared with cells treated with the scrambled peptide control (Fig. 3D). Up-regulation of MMP-2 and MMP-3 was most marked following treatment with G17.

Role of HB-EGF on gastrin-mediated HUVEC differentiation. To delineate the role of HB-EGF in increased node formation following both G17 and GlyG17 treatment, a neutralizing antibody was included in the culture system. HB-EGF antiserum significantly inhibited both the G17-mediated response (66.5% of G17 + control IgG, $P = 0.032$, ANOVA) and the GlyG17-mediated response (53% of GlyG17 + control IgG, $P = 0.001$), whereas it had no significant effect on the basal node formation of HUVEC cells (111% of medium control; Fig. 3E).

Effect of G17/GlyG17 on HB-EGF gene expression and secretion in UtMVEC and HMVEC-D human microvascular endothelial cells. The effect of G17 and GlyG17 on HB-EGF expression in the human microvascular endothelial cell lines UtMVEC (uterine) and HMVEC-D (dermal) was investigated. G17 and GlyG17 significantly stimulated UtMVEC HB-EGF gene expression (G17: 3.4-fold increase, $P = 0.03$; GlyG17: 1.9-fold increase, $P = 0.011$) when compared with medium control and also when compared with AL55. G17 but not GlyG17 significantly increased gene expression in HMVEC-D cells (G17: 2.1-fold increase, $P = 0.05$; GlyG17: 1.5-fold increase, $P = 0.072$; Fig. 4A) when compared with medium control or AL55.

G17 showed a trend to significantly increase UtMVEC secretion of HB-EGF (2.3-fold increase compared with medium control, $P = 0.053$), whereas GlyG17 had a significant effect (1.7-fold increase, $P = 0.041$; Fig. 4B) when compared with medium control and also when compared with AL55. G17 significantly increased HMVEC-D shedding of HB-EGF (4.5-fold, $P = 0.005$), whereas GlyG17 had no significant effect when compared with medium control and also when compared with AL55.

Effect of G17 on angiogenesis in an embryonic chick model. Angiogenic effects in the vicinity of the LVA were compared with the untreated RVA in the same embryo.

The vehicle control produced no noticeable effect on the LVA at the site of treatment (Fig. 5A). The standard positive control angiopoietin-1 produced proangiogenic effects in two of three chick embryos, including increased branching of the LVA and anterior vittaline vein (embryo 1) and increased disjointed branching of the LVA (embryo 2) with the third embryos showing no effect over control. G17 also produced proangiogenic effects in
two of three embryos, including generally increased branching throughout the chorioallantoic membrane, with pronounced branching stemming from the LVA at the site of compound treatment (embryo 1 and 3).

Effect of omeprazole-induced hypergastrinaemia on microvessel density of large intestine in the APC^Min mouse model.

Histologic sections of APC^Min mouse large intestine treated with either vehicle control or the proton pump inhibitor omeprazole (n = 3-4 mice per condition) were assessed for microvessel density (MVD; n = 8 observations per section). Omeprazole treatment in the APC^Min mouse model is associated with hypergastrinaemia, and previous studies have shown that at the concentration used (75 mg/kg), serum gastrin levels can rise to 102 pmol/L (29). This elevation in gastrin was shown to correlate with a significant 2-fold increase in MVD as shown in Fig. 5B (P = 0.001, one-way ANOVA). Representative views of the angiogenic response in control and hypergastrinaemic mice are shown in Fig. 5C.

Relationship of serum-amidated gastrin levels to MVD in human colon tumors. To clarify the clinical significance of the previous findings, a series of 31 human colorectal primary tumor specimens and adjacent normal colonic mucosa were stained with antibodies directed against CD31 and HB-EGF to measure MVD. Staining intensity of both variables was related to fasting serum-amidated gastrin levels.

The MVD of resection margin normal colonic mucosa significantly correlated with fasting serum gastrin levels (P = 0.003, Pearson correlation = 0.524) and HB-EGF protein staining intensity (P = 0.026, correlation = 0.420), whereas tumor MVD showed a trend to correlating with fasting serum gastrin levels (P = 0.07) and significantly correlated with HB-EGF staining levels (P = 0.015, correlation = 0.438).

Discussion

The first study linking gastrin with increased gene expression of HB-EGF was in the rat gastric epithelial cell line RGM1, engineered to overexpress the CCK-2 receptor (17). Processing of cell-associated pro-HB-EGF to the secreted form was also enhanced by gastrin treatment. Gastrin-induced HB-EGF expression was confirmed as being via a PKC/extracellular signal-related kinase–dependent pathway (17). Furthermore, in hypergastrinaemic
transgenic mice shown to develop gastric cancer over a 20-month timeframe, HB-EGF was up-regulated within gastric mucosa at premalignant stages during cancer development (30).

In the current study, these findings have been extended to reveal that both amidated and glycine-extended G17 have a functional output in terms of angiogenesis, inducing node formation and branching in the genetically unmodified human umbilical vein endothelial cell line, HUVEC, to the same degree as VEGF. This is in agreement with the findings of Lefranc et al. in an in vivo glioma model (19). In this present study, the effects have been shown to be mediated via CCK-2 receptor isoforms, with CCK-2R antagonism reversing the angiogenic response induced by both peptides.

An in vivo pilot study using the chorioallantoic membrane system identified a potential proangiogenic role for G17. Increased angiogenesis was also showed in the APCMin mouse model following proton pump inhibitor--induced hypergastrinemia and in colonic tissue in hypergastrinemic patients with colonic adenocarcinoma. These results suggest that gastrin-induced angiogenesis may play a role in cancer progression, particularly as CCK-2R have been shown to be expressed by a range of premalignant gastrointestinal lesions, including colonic polyps (31), intestinal metaplasia (32), and Barrett’s esophagus (33).

G17 and GlyG17 both increased HB-EGF gene expression and pro-peptide processing to the secreted form in both HUVEC and microvessel-derived endothelial cell lines, with HB-EGF being implicated, at least in part, in the proangiogenic effects of gastrin as shown by the antisiserum HB-EGF neutralization assays. Despite the presence of goat IgG reducing the overall sensitivity of HUVEC to G17 and GlyG17 (Fig. 3E), when comparing the two peptides, G17 seemed the more potent at stimulating HB-EGF gene and protein expression in all three endothelial cell lines tested. This may reflect different receptor subtypes that may potentially mediate the effects of GlyG17. HB-EGF is known to promote neovascularization in vivo (34), and this effect may therefore be enhanced in conditions of hypergastrinemia, which occur in a number of clinical scenarios, such as Helicobacter pylori infection and following treatment with proton pump inhibitors (35).

There are multiple reports of MMP involvement in HB-EGF ectodomain shedding, and a number of members of this family have been identified as sheddases, including the stromelysins MMP-1 and MMP-3, gelatinases MMP-2 and MMP-9, and the matrilysin MMP-7 (27, 28, 36, 37). Gastrin-induced up-regulation of MMP-3, MMP-2, and MMP-9 in HUVEC cells was confirmed in the present study. Activation of all these MMPs by gastrin has previously been reported in other cell types (14, 15, 38).

The clinical relevance of these findings was shown by detection of increased MVD and HB-EGF expression in the normal mucosa at the margin of colorectal tumors in patients with elevated fasting serum-amidated gastrin levels, indicating this tissue represents a greater threat of becoming preneoplastic. A significant increase was not seen within the tumor itself (although MVD was shown to correlate with HB-EGF expression), potentially indicating that serum-associated gastrin may not affect tumor vasculature to the same degree as normal vasculature. This hypothesis could be explained by a number of factors, including degree of CCK-2R expression, vessel composition, differential cellular interactions, and expression of endogenous gastrin peptides. It also suggests that raised serum gastrin levels may increase angiogenic activity close to the tumor sites, possibly aiding in capillary sprouting into areas of hypoxia/necrosis (39–42).

This current study is the first to report an effect of gastrin on endothelial cells mediated by HB-EGF. Other gut-associated hormones have previously been shown to influence angiogenesis; for example, bombesin (a modulator of gastrin secretion) can stimulate proangiogenic factors, including VEGF and IL-8 via nuclear factor-κB in prostate cancer cells (43) and, in a separate study, has been shown to increase HB-EGF shedding and promote migration (44). A direct link, however, between angiogenic potential and enhanced expression by HB-EGF following bombesin treatment has not been reported. This present study hence helps to fill in a missing part of the angiogenesis story.

Taken together, the results presented here confirm the functional role in angiogenesis ascribed to gastrin (19) and show that this occurs via stimulation of HB-EGF expression/shedding, resulting in enhanced MMP expression. They add further evidence to the multifunctionality of gastrin ligands, suggesting a proangiogenic role in the vicinity of malignant cells and supporting their role in carcinogenesis. Based on these findings, therapeutic adjunct to chemotherapy/radiotherapy through CCK-2 receptor antagonists and gastrin vaccines, such as Insegia (G17DT), seems warranted.

Acknowledgments
Received 1/31/2005; revised 11/22/2005; accepted 12/14/2005.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. Siobhan Loughna for advice on the chorioallantoic membrane assay, the James Black Foundation for provision of the CCK-2 receptor antagonists, and Amanda Tobias for technical assistance.

References
9. Aly A, Shukes A, Baldwin GS. Short term infusion of glycine-extended gastrin(17) stimulates both prolifera-
13. Kermorgant S, Lehy T. Glycine-extended gastrin stimulates both prolifera-

Gastrin Enhances the Angiogenic Potential of Endothelial Cells via Modulation of Heparin-Binding Epidermal-Like Growth Factor

Philip A. Clarke, Jacqueline H. Dickson, Joseph C. Harris, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/66/7/3504

Cited articles This article cites 43 articles, 12 of which you can access for free at: http://cancerres.aacrjournals.org/content/66/7/3504.full.html#ref-list-1

Citing articles This article has been cited by 6 HighWire-hosted articles. Access the articles at: /content/66/7/3504.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.