Tissue Inhibitor of Metalloproteinases-1 Promotes Liver Metastasis by Induction of Hepatocyte Growth Factor Signaling

1Institut für Experimentelle Onkologie und Therapieforschung, Chirurgische Klinik, and 2Institut für Allgemeine Pathologie und Pathologische Anatomie, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany; 3Institute of Pathology and 4Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany; 5School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom; 6Roche Diagnostics GmbH, Penzberg, Germany; 7Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida; 8The Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, London, United Kingdom; and 9Department of Pathology and Comprehensive Cancer Center, University of California, San Francisco, California

Abstract

Balanced expression of proteases and their inhibitors is one prerequisite of tissue homeostasis. Metastatic spread of tumor cells through the organism depends on proteolytic activity and is the death determinant for cancer patients. Paradoxically, increased expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), a natural inhibitor of several endomembrane proteases, including matrix metalloproteinases and a disintegrin and metalloproteinase-10 (ADAM-10), in cancer patients is negatively correlated with their survival, although TIMP-1 itself inhibits invasion of some tumor cells. Here, we show that elevated stromal expression of TIMP-1 promotes liver metastasis in two independent tumor models by inducing the hepatocyte growth factor (HGF) signaling pathway and expression of several metastasis-associated genes, including HGF and HGF-activating proteases, in the liver. We also found that increased expression of ADAM-10 is in principle able to prevent shedding of cMet, which may be one explanation for the increase of cell-associated HGF receptor cMet in livers with elevated TIMP-1. Similar TIMP-1–associated changes in gene expression were detected in livers of patients with metastatic colorectal cancer. The newly identified role of TIMP-1 to create a prometastatic niche may also explain the TIMP-1 paradoxon. [Cancer Res 2007;67(18):8615–23]

Introduction

Metastasis and progressive scattering of tumor cells throughout tissues is the main cause of organ failure and subsequent death of cancer patients. Proteolytic remodeling of components of the extracellular matrix (ECM) in tissue interstitium is a prerequisite of the metastatic process (1). Matrix metalloproteinases (MMP) have long been thought to be major regulators of the pericellular protease-dependent steps of tumor progression (2). Altered expression profiles of some MMPs have been correlated with poor clinical prognosis for several human tumor types (3). Based on these facts, the historical view of MMPs and cancer was that they exerted proinvasive and prometastatic activity by mere ECM remodeling (1). Thus, it was hypothesized that therapeutic broad-spectrum inhibition of MMPs would result in antimetastatic activity (1). Indeed, under certain experimental circumstances, overexpression of the endogenous broad-spectrum metalloprotease inhibitor tissue inhibitor of metalloproteinases-1 (TIMP-1) inhibitor tissue inhibitor of metalloproteinases-1 (TIMP-1; ref. 4) can reduce tumor cell invasion (6, 7).

In contrast to these observations are other results, which are actually in agreement with clinical studies showing a correlation between elevated TIMP-1 expression and poor prognosis in many human cancer types (5, 8), where elevated levels of TIMP-1 either had no effect on metastasis (9) or led to increased incidence (10, 11) or growth (12) of primary tumors. These effects of TIMP-1 on cancer development have been attributed to its known proproliferative, antiapoptotic (5), or proangiogenic (13) activities, which are necessary but not sufficient for metastasis.

Tumor cell invasion and metastasis are the primary determinants of the survival of cancer patients (13). Signaling pathways leading to the expression of proteolytic enzymes have been suggested to be key mediators of invasive growth (14). Hepatocyte growth factor (HGF/scatter factor) signaling regulates a multitude of downstream prometastatic effector molecules, such as urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and MMPs (15–17). HGF stimulates metastasis of diverse tumor cells (15) and elevated levels of circulating HGF (18) or aberrant activity of cMet (14) has been detected in patients with many cancer types, including non-Hodgkin’s lymphoma (19) and colorectal cancer (14). Although elevated TIMP-1 expression in these patients correlates with decreased survival, a link between TIMP-1 and metastasis-promoting pathways has previously not been described. Here, we address this issue and report that elevated stromal levels of TIMP-1 induce HGF signaling, leading to enhanced expression of other metastasis-promoting genes. Consequently, susceptibility of the liver for metastasis of tumor cell lines of different origin was shown to be increased, assigning a new role to TIMP-1 as a factor creating a prometastatic niche.

Materials and Methods

Cell culture and adenoviruses. HEK 293 (20), HT1080lacZ-K15 (21), I-CL5s (22), and 293T cells (23) were cultured as described previously.
NIH3T3 cells were cultured similarly to HT1080lacZ-K15 (21). A DNA fragment consisting of Ig1 to 126 of the human TIMP-1 cDNA (N-TIMP-1; ref. 24) were cloned into pSecTag2/Hygro A (Invitrogen). A DNA fragment consisting of Ig1 to 126 of the human TIMP-1 cDNA (N-TIMP-1; ref. 24) were cloned into NIH3T3 cells were cultured similarly to HT1080lacZ-K15 (25), respectively, was obtained and cloned into the pGEMhTIMP-1; ref. 25), respectively, was obtained and cloned into the lacZ n-leader Research. Cancer Research

Cancer Research

For HT1080liver were stained with 5-bromo-4-chloro-3-indolyl-
liquid nitrogen for biochemical analysis, and left lung lobes and remaining liver were stained with 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal; Roche Diagnostics) as described (22). Blue multicellular foci on the surface of the livers (L-CL5s) or lungs (HT1080lacZ-K15) were counted. Total metastasis burden was assessed by quantitative real-time PCR (RT-PCR) for lacZ. All animal experiments were done in compliance with the guidelines of the Tierschutzgesetz des Landes Oberbayern.

Immunostaining. Fixed sections of livers of the different groups were paraffin embedded for immunostaining. Decwaxing, rehydration, blocking, and antigen retrieval of liver sections (4 μm) were done as described (26). Sections were incubated with primary antibodies [proliferating cell nuclear antigen (PCNA) antibody, 1:2,000, Novocastra Laboratories Ltd; cMet antibody, 1:200, Santa Cruz Biotechnology] for 20 h at 4°C. Sections were counterstained with Mayer’s hemalaun (Merck). For detection of cMet activation, unfixed fresh liver samples were used for detection. Sections were counterstained with Mayer’s hemalaun (Merck).

Figure 1. TIMP-1–mediated reduction of formation of macrometastases but induction of liver-specific secondary spread of tumor cells. A and B, CD1nu/nu mice received the respective adenoviruses 3 d before inoculation of L-CL5s (A) or HT1080lacZ-K15 cells (B), respectively. Six or 21 d, respectively, after tumor cell inoculation, mice were sacrificed and livers and lungs were removed. A, top left, number of X-Gal–stained L-CL5s macrometastases (>0.2 mm) over the whole liver surface was reduced by overexpression of human TIMP-1 or N-TIMP-1 compared with the virus control group. Columns, mean; bars, SE. Addl70-3: 67.60 ± 7.73, n = 5; AdTIMP-1: 38.50 ± 8.14, n = 6, P = 0.03; AdN-TIMP-1: 32.83 ± 8.32, n = 6, P = 0.009. Close-up pictures of the surfaces of representative X-Gal–stained L-CL5s metastasis-bearing livers (bottom) show increased micrometastasis in livers with elevated levels of TIMP-1 or N-TIMP-1. Top right, the total L-CL5s tumor burden in livers overexpressing the TIMP-1 variants was significantly increased compared with the virus control as detected by quantitative RT-PCR of lacZ in metastasis-bearing livers. Columns, mean of relative lacZ mRNA amount versus 18S RNA; bars, SE. Addl70-3: 0.22 ± 0.04, n = 3; AdTIMP-1: 1.99 ± 0.80, n = 4, P = 0.044; AdN-TIMP-1: 1.96 ± 0.76, n = 4, P = 0.041. B, significant reduction of HT1080 lung metastasis by overexpression of human TIMP-1. Top left, columns, mean of the number of X-Gal–stained metastases over the whole surface of the left lung lobe; bars, SE. Addl70-3: 38.1 ± 16.1, n = 16; AdTIMP-1: 2.8 ± 1.4, n = 10; P = 0.018. Significant increase of HT1080 metastasis in lungs with elevated levels of TIMP-1. Top right, columns, mean of relative lacZ mRNA amount versus 18S RNA; bars, SE. Addl70-3: 0.016 ± 0.002; AdTIMP-1: 0.040 ± 0.007, n = 3, P = 0.04. Bottom, close-up pictures of the surfaces of representative X-Gal–stained HT1080 metastasis-bearing livers. C, effects of TIMP-1 elevation after tumor cell inoculation on liver metastasis. CD1nu/nu mice received the respective adenovirus 2 d after inoculation of L-CL5s. Six days after tumor cell inoculation, mice were sacrificed and livers were removed and X-Gal stained. The number of macrometastases (>0.2 mm) was counted on the whole surface of the liver. Top left, columns, mean; bars, SE. Addl70-3: 45 ± 4, n = 4; AdTIMP-1: 4.4 ± 3, n = 4. Total metastasis burden was assessed by quantitative RT-PCR of the marker gene lacZ. Top right, columns, mean of relative lacZ mRNA amount versus 18S RNA; bars, SE. Addl70-3: 0.29 ± 0.16, n = 4; AdTIMP-1: 2.25 ± 0.62, n = 4. Bottom, X-Gal–stained livers. Representative pictures of each group. Bar, 200 μm. Asterisks, macrometastases; arrows, micrometastases.
TIMP-1 Promotes Liver Metastasis via HGF Signaling

Results

Reduction of experimental macrometastases but induction of scattered micrometastases in the liver by TIMP-1. To achieve elevated TIMP-1 expression in the host, we transduced full-length cDNAs of TIMP-1 by i.v. inoculation of adenoviral vectors into mice. Efficient adenoviral transduction of liver cells was determined by quantitative RT-PCR (Supplementary Fig. S1). Maintenance of transgene overexpression achieved by the adenoviral vectors until the end of all following metastasis assays was verified (Supplementary Fig. S1). To test the effects of elevated stromal TIMP-1 on tumor cell invasion, we used the well-established syngeneic in vivo metastasis assay with lacZ-tagged lymphoma cells (L-CL5s), which form hepatic metastatic foci following i.v. inoculation of adenoviral vectors into mice. Efficient adenoviral transduction of liver cells was determined by quantitative RT-PCR (Supplementary Fig. S1). To test the effects of elevated stromal TIMP-1 on tumor cell invasion, we used the well-established syngeneic in vivo metastasis assay with lacZ-tagged lymphoma cells (L-CL5s), which form hepatic metastatic foci following i.v. injection. Colonies that we defined as macrometastases in livers reached the cutoff size of 0.2 mm in this assay at day 6 after tumor cell inoculation. At this time point, the combination of successful extravasation right after tumor cell inoculation and proliferation of the extravasated tumor cells for at least six days resulted in multicellular foci of this size. Detected micrometastases (<0.2 mm) resulted from additionally invaded tumor cells if their number exceeds the 5,000 inoculated tumor cells.

Three days after adenoviral gene transfer, TIMP-1–transduced and control mice were challenged with L-CL5s tumor cells. The pattern of metastasis in TIMP-1–transduced mice was significantly altered compared with the control virus–transduced mice: Elevated levels of TIMP-1 correlated with significant reduction of the number of macrometastases (by 43%, P = 0.003; Fig. 1A, top left). However, on the level of micrometastases, no decrease but a drastic increase of scattered infiltrating tumor cells was detected in livers with elevated TIMP-1 (Fig. 1A). In one photographic frame (1.3 mm x 1.5 mm), already 623 micrometastatic foci at the liver surface were visible (Fig. 1A, bottom), showing that the number of scattered micrometastases in the entire liver by far exceeded the number of inoculated cells (5,000). Quantification of the tumor cell
tag lacZ revealed an overall increase of total metastasis burden in livers transduced with TIMP-1 cDNA compared with the control \((P = 0.044; \text{Fig. 1A, top right})\), reflecting induction of micrometastasis.

To determine whether inhibition of macrometastasis but promotion of micrometastasis was a function of the metalloproteinase-inhibitory activity of TIMP-1, we investigated the effect of the N-terminal domain of human TIMP-1 (N-TIMP-1) harboring the metalloproteinase-inhibitory bioactivity on liver metastasis. Indeed, elevated levels of N-TIMP-1 significantly suppressed macrometastasis by 51% \((P = 0.009; \text{Fig. 1A})\) and promoted micrometastasis \((P = 0.041; \text{Fig. 1A})\), indicating that N-TIMP-1 is sufficient to evoke the described effects.

We used lacZ-tagged human fibrosarcoma cells (HT1080lacZ-K15) that typically form large pulmonary metastatic foci and only few single tumor cells as micrometastases, but no macrometastases, in livers (26) to exclude that the TIMP-1 effect was cell type dependent. After challenge of CD1\(^{nu/nu}\) mice with HT1080lacZ-K15, significant reduction of lung metastasis by 93% was observed in TIMP-1–transduced animals compared with mice with virus control \((P = 0.018; \text{Fig. 1B, top left})\). Again, in livers with elevated TIMP-1 levels, a significant increase of the metastatic burden was found \((P = 0.04; \text{Fig. 1B, top right})\). No induction of HT1080lacZ-K15 micrometastasis was detected in lungs (data not shown). In the above experiments, no differences in metastasis between control virus–transduced mice and mice treated with vehicle alone were found, excluding effects of viral transduction itself (data not shown).

Effects of TIMP-1 elevation on liver metastasis after tumor cell inoculation. To determine whether TIMP-1 affects liver metastasis on two different levels, \(\text{i.e.},\) on the level of initial manifestation and subsequent growth (leading to formation of macrometastases) or subsequent infiltration (micrometastases), we inoculated L-CI.5s cells into CD1\(^{nu/nu}\) mice 2 days before adenoviral transfer of TIMP-1 cDNA. The number of macrometastatic colonies was not affected compared with the control (Fig. 1C, top left). However, we still observed induction of micrometastasis compared with the control (Fig. 1C, bottom), resulting in a significantly increased total metastasis burden in livers with elevated TIMP-1 (Fig. 1C, top right). This indicates that micrometastases take advantage of the TIMP-1–modulated host microenvironment. In contrast, macrometastasis formation was only reduced when TIMP-1 was already elevated in the host at the time point of extravasation right after tumor cell inoculation (Fig. 1A).

Proliferation activity of TIMP-1–induced scattered liver micrometastases. To assess if the increased presence of invaded L-CI.5s cells in the liver was a function of TIMP-1–induced proliferation, we determined their proliferative status by examining PCNA expression. Indeed, infiltrating T-cell lymphoma cells in livers with elevated TIMP-1 or N-TIMP-1 were proliferatively active (Fig. 2A), indicating a proproliferative effect of the TIMP-1–modulated environment on these cells, accounting for the increase of total metastasis burden in the liver. A proproliferative environment was further indicated by the presence of proliferating hepatocytes in these groups (Fig. 2A, arrows). In the control livers, proliferation was restricted to the macrometastases (Fig. 2A, left).

TIMP-1 induces HGF signaling in the liver. To elucidate a molecular mechanism responsible for the TIMP-1–induced proproliferative and proinvasive environment in the liver, we tested for expression of HGF, also known as scatter factor. Elevated levels of HGF correlated with the TIMP-1–induced scattered metastatic
phenotype (Fig. 2B, left). In fact, increase of HGF expression was already a component of the TIMP-1–altered liver environment as it could already be detected 3 days after adenoviral gene transfer (i.e., at the time point of tumor cell challenge; Fig. 2B, right). In addition, cMet, the tyrosine kinase receptor of HGF, was elevated throughout the tissue of metastasis-bearing livers transduced by either TIMP-1 species (Fig. 2C) and in macrometastases (Fig. 2C, insets).

Elevated expression of either TIMP-1 variant led to markedly increased HGF signaling, as detected by immunohistochemical staining of phosphorylated cMet throughout the liver parenchyma (Fig. 2D). In control animals, activated cMet was very low even in macrometastases (Fig. 2D, top). Importantly, this TIMP-1–mediated induction of HGF signaling was already present 3 days after TIMP-1 gene transfer (Fig. 2D, bottom), at the time point of tumor cell challenge, suggesting that a HGF pathway-connected prosstatesnic niche has been formed.

Causal relationship between HGF signaling and TIMP-1–induced scattering of experimental liver metastasis. In TIMP-1–transduced animals, the scattered metastasis phenotype was already apparent 3 days after inoculation of L-CL5s cells (Fig. 3A, top). To investigate whether HGF signaling was essential for formation of scattered metastasis, we first transduced mice with AdTIMP-1 or Addl70-3 virus, treated the mice with a cMet inhibitor, and challenged with L-CL5s cells. Kinase inhibition prevented formation of micrometastasis (Fig. 3A, bottom), indicating that HGF signaling was essential for TIMP-1–induced micrometastatic spread. The TIMP-1–induced significant increase of total metastasis burden compared with the control (P < 0.001; Fig. 3B) was significantly reduced by cMet inhibition (P < 0.001; Fig. 3B). The number of multicellular metastatic foci was significantly reduced by elevated levels of TIMP-1 compared with the control (P = 0.048; Fig. 3C), indicating that formation of macrometastasis is not affected by HGF signaling.

Overexpression of TIMP-1 reduces metalloproteinase activity and increases activity of other proteases in the liver. As proteolytic activity is one prerequisite of metastasis, we next assessed whether TIMP-1–related changes in metastasis rely on modulated proteolytic activity. In situ zymography revealed gelatinolytic activity in macrometastatic foci in Addl70-3–transduced livers but not in foci of AdTIMP-1–transduced animals (Fig. 4A, left). As this was inhibitable by the canonical metalloproteinase inhibitor 1,10-phenanthroline (Fig. 4B, left), we showed that the achieved TIMP-1 levels indeed inhibited MMP activity in vivo. No MMP–9–derived proteolytic activity was detected in livers with elevated TIMP-1 (Fig. 4C), indicating the expected functional activity of TIMP-1 to inhibit proMMP-9 activation.

The gelatinolytic activity detectable in TIMP-1–elevated liver parenchyma distant from metastases (Fig. 4A, right) was by and large metalloproteinase independent, as it was only slightly inhibitable by 1,10-phenanthroline (Fig. 4B). Addition of broad-spectrum cysteine protease inhibitor E64 (34) or broad-spectrum serine protease inhibitor aprotinin (35) to the in situ zymography DQ-overlay revealed the remaining gelatinolytic activity as partly derived from serine and cysteine proteases (Fig. 4D). Elevated levels of N-TIMP-1 had the same effects (data not shown). These data indicate that increased expression of TIMP-1 in the liver led to an increase of metalloproteinase-independent proteolytic activity.

TIMP-1–induced expression of metastasis-related genes in the liver. Induction of HGF signaling and nonmetalloproteinase proteolytic activity in liver parenchyma by TIMP-1 suggested an altered HGF signaling-related gene expression favoring metastasis. Therefore, we used quantitative RT-PCR to characterize the expression of HGF-inducible genes, HGF-activating proteases, as well as gelatinolytic proteases. Elevation of TIMP-1 led to increased mRNA expression of uPA, uPAR, PAI-1, tissue plasminogen activator (tPA), matriptase, MMP-9, MMP-2, ADAM-10, cathepsin G, and neutrophil elastase in the tumor-free liver (Fig. 5). Elevated levels of N-TIMP-1 had the same effects (data not shown).

To test whether these TIMP-1–regulated changes in gene expression are of more general relevance, we measured TIMP-1 mRNA expression in human liver tissue samples distant from colorectal metastases. In normal tissue, elevated expression of TIMP-1 (relative mRNA expression: 98.92 ± 19.84, n = 8) was associated with increased mRNA expression of uPA, uPAR, matriptase, MMP-9, MMP-2, ADAM-10, cathepsin G, and neutrophil elastase compared with livers with significantly lower TIMP-1 expression.

Figure 3. Reduction of TIMP-1–induced micrometastatic spread by cMet inhibition. A to C, CD1 nu/nu mice were transduced with AdTIMP-1 or Addl70-3. Three days later, mice were treated with a cMet-specific kinase inhibitor [2-(2,6-dichloro-4-(2-hydroxyethoxy)phenyl)-4-(3-benzyloxyphenyl)-5-[2-[3-hydroxypropyl-amino]-pyrimidin-4-yl]-N-H-imidazole] or vehicle alone and challenged by inoculation of L-CL5s cells. Three days after tumor cell inoculation, mice were sacrificed and livers were removed and X-Gal stained. A, pictures of the surface of representative livers of each treatment group. Bars, 0.1 mm. B, total metastasis burden in the liver as detected by quantitative RT-PCR of lacZ. Columns, mean; bars, SE. Add70-3/vehicle: 0.059 ± 0.021; AdTIMP-1/vehicle: 0.728 ± 0.233; Add70-3/cMet inhibitor: 0.040 ± 0.016; AdTIMP-1/cMet inhibitor: 0.051 ± 0.030; all n = 3. C, number of multicellular metastatic foci was counted on the whole surface of X-Gal–stained livers. Columns, mean; bars, SE. Add70-3/vehicle: 55 ± 10; AdTIMP-1/vehicle: 36 ± 2; Add70-3/cMet inhibitor: 42 ± 9; AdTIMP-1/cMet inhibitor: 25 ± 6; all n = 5.
expression (relative mRNA expression: 21.22 ± 1.89, n = 6, P < 0.001; Fig. 5). This difference also correlated with shorter time interval between detection of primary tumor and liver metastases [26.83 ± 5.81 months (n = 6) versus 13.75 ± 2.62 months (n = 8); P = 0.049].

Inhibition of cMet shedding by TIMP-1. Interestingly, although cMet protein was increased in livers with elevated TIMP-1 (Fig. 2C), mRNA expression of cMet was not up-regulated in these livers, neither at the time point of tumor cell inoculation (Fig. 5) nor in metastasis-bearing livers (Supplementary Fig. S2). Reduced shedding of cMet by TIMP-1–induced inhibition of metalloproteinase activity may account for the accumulation of cMet protein, but it was thus far unknown that TIMP-1 can inhibit its shedding. As this hypothesis cannot be addressed in vivo, we chose a murine nontumorigenic cell line expressing inhibitable metalloproteinases as well as cMet, thus providing all prerequisites for a proof-of-concept study. Overexpression of either TIMP-1 or N-TIMP-1 in NIH3T3 cells (Fig. 6A) resulted in significantly augmented membrane-bound cMet protein in these cells compared with the virus control (both P < 0.026; Fig. 6B), although RNA expression of cMet was not increased (both P > 0.33; Fig. 6C).

Figure 4. Reduction of gelatinase activity but increase of non-MMP proteolytic activity by overexpression of TIMP-1 detected by in situ zymography. A, B, and D, cryosections of L-CI.5s metastasis-bearing livers, transduced by either AdTIMP-1 or Adl70-3, were overlaid with agarose containing DQ-gelatin (A). Parallel sections were overlaid with the same solution supplemented with 1,10-phenanthroline (B), E64, and aprotinin (D), respectively. Counterstaining was done with DAPI. White line, boundaries of metastases; asterisks, lumen of blood vessels; arrows, areas of micrometastases. C, inhibitory activity of TIMP-1 in the liver 3 d after adenoviral gene transfer was tested using a MMP-9 activity assay. Columns, mean; bars, SE. Addl70-3: 100 ± 23.23%, n = 4; AdTIMP-1: 0 ± 0%, n = 4.

TIMP-1 indeed inhibited cMet shedding, as reduced levels of soluble cMet were detected in supernatant of cells overexpressing TIMP-1/N-TIMP-1 compared with the control (both P < 0.033; Fig. 6D). The elevated level of cell-associated cMet in cells overexpressing TIMP-1/N-TIMP-1 correlated with increased phosphorylation of cMet (Supplementary Fig. S3).

Activity of ADAM-10 regulates cMet shedding. Knockdown of ADAM-10 mRNA expression in NIH3T3 cells by 88% (Fig. 6A) led to a significant increase of membrane-bound cMet protein compared with the control (P = 0.018; Fig. 6B), whereas cMet mRNA expression was not enhanced (P = 0.2; Fig. 6C). ADAM-10 knockdown was verified on protein level (Supplementary Fig. S4). A significant reduction of shed cMet in the supernatant of cells with reduced ADAM-10 expression was detected (P = 0.021; Fig. 6D), indicating that depletion of ADAM-10 was sufficient to accumulate cMet on the cell surface. In addition, suppression of ADAM-10 mRNA expression significantly increased cMet signaling (Supplementary Fig. S3).

Together, these data suggest a molecular pathway regulated by TIMP-1 that could lead to a microenvironment with higher susceptibility to metastases.
Discussion

This study shows that host-derived TIMP-1 can promote liver metastasis by induction of HGF signaling. Until recently, the dominant concept of natural inhibitors of tumor-associated proteases focused on their capacity to repress activity of ECM remodeling enzymes, such as metalloproteinases. This view has undergone revision based on increased awareness of "degradome" functions of metalloproteinases and the tumor microenvironment and recognition of their participation during many stages of tumor progression (3).

The original hypothesis that TIMP-1 overexpression would yield a reduction in the number of successfully extravasated tumor cells into a target organ was based on numerous reports on the importance of MMPs for metastasis in many tumor models (36). In agreement with these and our previous studies indicating the importance of gelatinase inhibition for formation of macrometastases of the lymphoma model (28, 29), elevated host levels of TIMP-1 prevented macrometastases only when it was already increased at the time point of tumor cell inoculation. This confirms the already known effect of metalloproteinase inhibition by TIMP-1 on the level of extravasation.

In contrast to this inhibitory action on initial invasion, we reveal here for the first time an unexpected metastasis-promoting feature of TIMP-1 (i.e., induction of scattered invasion of tumor cells in liver parenchyma). The bulk of these micrometastases cannot derive from augmented extravasation of the L-CL1.5s cells because the number of the proliferative active and scattered micro-metastases by far exceeded the number of inoculated tumor cells.

Figure 5. Common TIMP-1–associated alterations in gene expression in mouse and human. Mice were transduced with either control virus (Addl70-3) or AdTIMP-1. Three days later, mice were sacrificed and livers were removed. Normal liver samples of patients with metastatic colorectal cancer were obtained at least 2 cm distant from colorectal liver metastases during curative surgical interventions. Total RNA was isolated from murine and human liver samples and gene expression was assessed by quantitative RT-PCR. Human samples were initially tested for TIMP-1 expression and then divided into two subgroups according to their TIMP-1 expression levels (low TIMP-1: 21.22 versus 2,040.0; high TIMP-1: 721.1 versus 1621.6; Met: 100 versus 213.0; PAI-1: 100 versus 554.6; MMP-9: 100 versus 2,418.6; uPA: 100 versus 451.5; MMP-2: 100 versus 289.4; uPAR: 100 versus 542.8; matriptase: 100 versus 397.4; cathepsin G: 100 versus 357.4; PCNA: 100 versus 111.5; TIMP-1: 100 versus 691.6; Met: 100 versus 339.2; PAI-1: 100 versus 109.6; uPA: 100 versus 10.8; tPA: 100 versus 20.7; MMP-2: 100 versus 50.7; MMP-9: 100 versus 396.4; ADAM-10: 100 versus 33.9; PCNA: 100 versus 33.8; Met: 100 versus 33.9).

The new aspect is that we found a proinvasive feature of TIMP-1 when elevated in the liver based on TIMP-1–induced stimulation of HGF signaling and downstream expression of metastasis-promoting genes. The N-terminal domain of TIMP-1, which includes the metalloproteinase-inhibitory domain, was sufficient to exhibit this effect, indicating that broad-spectrum inhibition of metalloproteinases is responsible for this scattering. In agreement with this notion, treatment with a synthetic broad-spectrum metalloproteinase inhibitor also leads to liver-specific promotion of metastasis.
metastasis in several xenograft models as well as in the syngeneic T-cell lymphoma model (42, 43). In addition, in the present study, promotion of liver metastasis was found, whereas lung metastasis was significantly reduced. Either TIMP-1 was not able to induce HGF signaling in the lung or induction of HGF signaling in the lung tissue has different effects on the formation of a premetastatic niche than in the liver parenchyma. However, several studies revealed that inhibition or overexpression of proteases or protease families evolves different effects on metastasis to liver versus lung (26, 42–44). This leads to the hypothesis that metastasis to the liver requires a different repertoire of proteases than metastasis to the lung and that the different microenvironments present in these organs react differentially on changed proteolysis. The underlying mechanism of the organ specificity of the prometastatic effect of TIMP-1 will need to be determined in future studies.

Up onelevation of TIMP-1, we observed augmented HGF as well as cMet protein in livers. Simultaneous increase of HGF and functional cell-associated cMet can explain the overall increase of HGF/cMet signaling. Elevated presence of the active form of HGF, which is required for signaling (15), can derive from the observed up-regulation of the HGF-activating proteases uPA and matriptase (45, 46) in the liver. Active matriptase and uPA (also activated by matriptase; ref. 46) can lead to an additional increase of proteolytic activity by initiating a protease activation cascade, including the activation of plasminogen by uPA and of some pro-MMPs by active plasmin (47). Elevated levels of TIMP-1 in the liver also increased expression of cathepsin G, also a gelatinolytic enzyme (48), as well as expression of neutrophil elastase, which also enhances plasminogen activation (49). Such proteases are likely the source of the increased nonmetalloproteinase-derived proteolytic activity observed in metastasis-bearing liver sections with augmented TIMP-1 levels in situ. Interestingly, the TIMP-1–provoked gene expression signature of the experimental model resembled in some instances (matriptase, uPA, uPAR, PCNA, MMP-9, and cathepsin G) the signature observed in liver samples of colorectal cancers in patients with elevated levels of TIMP-1, which is a hint on general molecular mechanisms provoked by elevated stromal TIMP-1. In the future, stable knockdown of cMet in host and/or tumor cells will further characterize the role of TIMP-1–induced cMet signaling in liver metastasis.

A link between metalloproteinase inhibition and enhancement of HGF/cMet signaling was revealed by an in vitro biochemical assay: Elevated levels of TIMP-1/N-TIMP-1 preserved activatable cMet on cell surfaces by reduced cMet shedding. Interestingly, suppression of ADAM-10 also prevented shedding of cMet, indicating that ADAM-10 is involved in the regulation of cMet shedding. Sheddases are already known for their capacity to regulate cell surface–associated tyrosine kinase receptors (50). These data indicate that preservation of cMet is induced by TIMP-1.
or N-TIMP-1 and may be a consequence of direct inhibition of ADAM-10 and thereby loss of its sheddase activity (4) or indirectly through ADAM-10 and thereby loss of its sheddase activity (4) or indirectly by inhibition of ADAM-10 activation.

Many tumor cell lines respond to elevated levels of HGF (scatter factor) with increased invasive behavior (15, 16). Indeed, the altered host environment fed back to the inactivated tumor cell lines, which expressed functional cMet (Supplementary Fig. S5). Thus, increased scattering of tumor cells in the liver parenchyma seems to be based on a reaction of the tumor cells to the TIMP-1–provoked change of homeostasis in the host. Identification of this TIMP-1–provoked prometastatic niche reveals a novel role for TIMP-1 during cancer progression and illuminates the intricacy of protease and protease inhibitor networks that regulate the penultimate step of cancer evolution and are one explanation for the association between tumor aggressiveness and increased levels of TIMP-1 in cancer patients.

Acknowledgments

Received 1/18/2007; revised 6/22/2007; accepted 7/11/2007.

Grant support: Deutsche Forschungsgemeinschaft grant SFB 469 (A. Krüger), European Union Framework Programme 6, project LSHTC-CT-2003-503297, Cancer-degradation (A. Krüger, K. Brand, and D.R. Edwards), and NIH grant AI40994 (K. Brew and H. Nagase).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. Susanne Schaten and Katja Honert (both from Technische Universität München) for expert technical support.

References

4. Amour A, Knight CG, Webster A, et al. In the vivo activity of TIMP-1 is increased by TIMP-1–provoked change of homeostasis in the host. Identification of this TIMP-1–provoked prometastatic niche reveals a novel role for TIMP-1 during cancer progression and illuminates the intricacy of protease and protease inhibitor networks that regulate the penultimate step of cancer evolution and are one explanation for the association between tumor aggressiveness and increased levels of TIMP-1 in cancer patients.

or N-TIMP-1 and may be a consequence of direct inhibition of ADAM-10 and thereby loss of its sheddase activity (4) or indirectly by inhibition of ADAM-10 activation.

Many tumor cell lines respond to elevated levels of HGF (scatter factor) with increased invasive behavior (15, 16). Indeed, the altered host environment fed back to the inactivated tumor cell lines, which expressed functional cMet (Supplementary Fig. S5). Thus, increased scattering of tumor cells in the liver parenchyma seems to be based on a reaction of the tumor cells to the TIMP-1–provoked change of homeostasis in the host. Identification of this TIMP-1–provoked prometastatic niche reveals a novel role for TIMP-1 during cancer progression and illuminates the intricacy of protease and protease inhibitor networks that regulate the penultimate step of cancer evolution and are one explanation for the association between tumor aggressiveness and increased levels of TIMP-1 in cancer patients.
Tissue Inhibitor of Metalloproteinases-1 Promotes Liver Metastasis by Induction of Hepatocyte Growth Factor Signaling

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/67/18/8615

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2008/03/13/67.18.8615.DC1

Cited articles
This article cites 49 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/67/18/8615.full.html#ref-list-1

Citing articles
This article has been cited by 18 HighWire-hosted articles. Access the articles at:
/content/67/18/8615.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.