Signal Transducer and Activator of Transcription 1 Regulates Both Cytotoxic and Prosurvival Functions in Tumor Cells

Nikolai N. Khodarev,1 Andy J. Minn,1,2 Elena V. Efimova,1,2 Thomas E. Darga,1 Edwardine Labay,1 Michael Beckett,1 Helena J. Mauceri,1 Bernard Roizman,1 and Ralph R. Weichselbaum1

1Departments of Radiation and Cellular Oncology, 2Center for Molecular Oncology, and 3Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, Illinois

Abstract

Elsewhere, we reported that multiple serial in vivo passage of a squamous cell carcinoma cells (SCC61) concurrent with ionizing radiation (IR) treatment resulted in the selection of radioresistant tumor (nu61) that overexpresses the signal transducer and activator of transcription 1 (Stat1)/IFN-dependent pathway. Here, we report that (a) the Stat1 pathway is induced by IR, (b) constitutive overexpression of Stat1 is linked with failure to transmit a cytotoxic signal by radiation or IFNs, (c) selection of parental cell line SCC61 against IFN-α and IFN-γ leads to the same IR- and IFN-resistant phenotype as was obtained by IR selection, and (d) suppression of Stat1 by short hairpin RNA renders the IR-resistant nu61 cells radio-sensitive to IR. We propose a model that transient induction of Stat1 by IR, IFN, or other stress signals activates cytotoxic genes and cytotoxic response. Constitutive overexpression of Stat1 on the other hand leads to the suppression of the cytotoxic response and induces prosurvival genes that, at high levels of Stat1, render the cells resistant to IR or other inducers of cell death. [Cancer Res 2007;67(19):9214–20]

Introduction

Signal transducer and activator of transcription 1 (Stat1) is primarily known as an important upstream regulator of IFN signaling. On activation of IFN receptors, Stat1 is phosphorylated at Tyr701 by IFN receptor-associated Janus-activated kinase (JAK) 1, JAK2, and Tyk2 kinases and is translocated from the cytoplasm into the nucleus (1, 2). In the nucleus, Stat1 binds to the cognate transcriptional elements and activates IFN-inducible genes (3, 4). Type I receptors responding to IFN-α and IFN-β activate the IFN signaling gene factor 3 complex composed of Stat1, Stat2, and p48 [also known as IFN-regulatory factor (IRF) 9; see ref. 5]. Type II receptors are specific to IFN-γ and activate only Stat1, which forms homodimers, enters the nucleus, and binds to IFN-γ-activated sequences, thereby inducing transcription of genes controlled by IFN-γ (6, 7). Stat1-induced genes do several functions, including antiviral defense (8, 9). For example, 2′-5′-oligoadenylate synthase activates RNase L, which induces degradation of double-stranded RNA formed during viral replication and inhibits viral propagation (10, 11). A second Stat1-dependent function is induction of cell death and growth arrest both in the context of either a viral or a stress response (12, 13). Known examples of genes controlled by activated Stat1 in this pathway are IRF1, caspase-2, caspase-3, caspase-7, Bcl2, and p21/Waf1 (14–16). The third function of Stat1 is modulation of an immune response, mediated by activation of MHC class I and II molecules and immune-related cytokines (17, 18). Although Stat1 was discovered and described in the context of IFN signaling, accumulating evidence indicates that it may participate in other signaling cascades. In addition to the type I and II IFN receptors, Stat1 may be activated by growth factor receptors, such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR), nonreceptor tyrosine kinases, such as c-Abl (19), and seven-transmembrane receptors (20). Recent data show that Stat1 can be activated by hypoxia/ reoxygenation in the myocardium, breast cancer, and endothelial cells (21–23) as well as by EGF and erythropoietin (24, 25). However, the outcome of Stat1 activation may be different depending on the upstream signals (see refs. 8, 26). These data suggest that Stat1 is involved in general stress response pathways and that functions of Stat1-dependent pathways are not restricted by the IFN response but rather have a much broader functional significance.

Previously, we reported that multiple serial in vivo passage concurrent with ionizing radiation (IR) treatment of human squamous cell carcinoma cells in nude mice resulted in the generation of a radioresistant tumor, which overexpresses IFN-stimulated genes, including Stat1, and genes activated by Stat1 (27). Here, we report that IR activates an IFN-inducible, Stat1-dependent pathway. We also show that in vitro selection against IFN-α and IFN-γ leads to an IFN- and IR-resistant phenotype. Finally, we show that suppression of Stat1 in tumor cells constitutively overexpressing this pathway leads to radiosensitization. These results suggest that Stat1 may be potential target for radiosensitization of aggressive tumors that constitutively overexpress the Stat1-dependent pathway.

Materials and Methods

Cell cultures and reagents. All cell lines were maintained in DMEM/F12 (Life Technologies) supplemented with 20% fetal bovine serum, 1% hydrocortisone, and 1% penicillin/streptomycin at 37°C, 100% humidity, and 7% CO2. IFN-resistant cell lines were produced by serial passage of SCC61 in increasing doses of IFN-α and IFN-γ (final concentration, 1,500 ng/mL; R&D Systems) and IFN-γ (final concentration, 30 ng/mL; R&D Systems). IFN-α resistance was quantified by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (Promega) according to the manufacturer’s instructions, and IFN-γ resistance was quantified by both MTS and clonogenic assays as described previously (28).

Immunobots. Total cellular protein was extracted in radioimmunoprecipitation assay buffer with protease inhibitors added (1× PBS, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mmol/L Na3VO4, 2 µg/mL aprotinin, 1 mmol/L phenylmethylsulfonyl fluoride). All samples were normalized by protein concentration using Bradford reagent and standard solution of bovine serum albumin (1 mg/mL). Concentration of all samples was adjusted to 1 mg/mL and equal amount of protein was loaded in each well. For total Stat1 protein, we loaded 10 µg of protein per well, and for

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Requests for reprints: Ralph R. Weichselbaum, Department of Radiation and Cellular Oncology, University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL 60637. E-mail: rrw@rover.uchicago.edu.

©2007 American Association for Cancer Research. doi:10.1158/0008-5472.CAN-07-1019
phosphorylated Stat1, we loaded 15 μg of protein per well. Proteins were separated on 7.5% SDS-PAGE and transferred to polyvinylidene difluoride membranes. Total Stat1 was detected using the anti-Stat1 p84/p91 (E-23) antibody. For loading control, we used antibodies for actin (I-19) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; FL-335). All antibodies were purchased from Santa Cruz Biotechnology. Images were quantified with ImageJ software by integration pixel values across the area of specific bands.

Results

IR induces expression of Stat1 and Stat1-dependent IFN-stimulated genes. Earlier, we reported that multiple serial in vivo passage concurrent with IR treatment of a human tumor results in the selection of radioresistant tumor designated nu61 (27). DNA arrays and quantitative reverse transcription-PCR (QRT-PCR) data showed that in nu61 Stat1 was up-regulated on the transcriptional level 4.1-fold compared with SCC61 (27). Western blot analysis showed a 5.2-fold overexpression of Stat1 protein in nu61 tumors compared with SCC61 tumors (data not shown), indicating that up-regulation of Stat1 occurs on both transcriptional and translational levels. In established cell lines, we detected a 2.4-fold increase in Stat1 basal expression in nu61 cells compared with SCC61 cells (see Fig. 1A and B, time 0). These results showed that the constitutive overexpression of Stat1 in nu61 tumors is retained in nu61 cells.

We next asked if exposure to IR up-regulates Stat1 expression. The results presented in Fig. 1A and B show that in both cell lines IR leads to up-regulation of the Stat1 protein. In SCC61, this up-regulation reached 2.5-fold at 36 h after IR compared with untreated controls. In nu61, this up-regulation reached 4.5-fold at 36 h and increased to 5.2-fold by 48 h. In a second series of experiments, we tested the hypothesis that IR also activates downstream genes targeted by Stat1. Genes used by us in these experiments (IFIT1, IFIT3, IFITM1, MX1, and OASL) have been previously described as coexpressed with Stat1 and/or directly activated by Stat1 (31–33). We analyzed the expression of these genes in tumor xenografts representing seven cell lines corresponding to the four types of cancer, including head and neck, colon cancer, prostate cancer, and breast cancer (see Fig. 1C). The results show that IR induced up-regulation of Stat1 and Stat1-dependent genes in all tumor xenografts, except HCT116 colorectal cancer and PC-3 prostate cancer cell lines (Fig. 1C). We conclude that IR induces Stat1 and downstream Stat1-activated/IFN-stimulated genes in multiple human tumors and is not restricted to the SCC61 cell line we used in our initial selection.

Constitutive overexpression of the Stat1 pathway induces resistance to IR and IFNs. Next, we tested the hypothesis that radioresistance is mediated by a constitutive overexpression of the Stat1-dependent pathway and is associated with resistance to IFNs. In these experiments, mice bearing SCC61 tumors were treated with neutralizing antibodies to IFN-α, IFN-β, and IFN-γ with and without IR (four 5 Gy fractions to a total dose of 20 Gy). Anti-IFN antibodies enhanced regrowth of irradiated SCC61 tumors by day 28 (doubling time reduced from 14.5 ± 0.36 to 10.4 ± 0.80 days; P < 0.05; Fig. 2A). In contrast, anti-IFN antibodies had no effect on irradiated at 5 Gy. Forty-eight hours after IR, cells were treated by YO-PRO-1 according to the manufacturer’s instructions and incubated at room temperature for 48 h and images were captured using fluorescent microscopy. For that, we used Olympus 1X81 wide-field fluorescence microscope with Retiga Exi digital charge-coupled device camera. Green fluorescence was detected with 480 nm exciter/535 nm emission filter, and red fluorescence was detected with band pass 530 nm exciter/590 nm long-pass emission filter. Images were captured with ×100 and ×200 magnification, and green and red images were overlaid using MetaMorph 6.1 software (Universal Imaging Corp.). Five fields containing at least 100 cells for each control and the treated group were captured at ×100 magnification and used for scoring of the cell death. Scoring was based on estimation of the percent of dead (green) to alive (red) cells in each field, calculated as N(green)/N(red) × 100. Control values were subtracted from values after treatment and presented as increase of the dead cells relative to control (%). Significance of differences was estimated using paired two-tailed t test.
using data of three independent experiments, presented in Fig. 3. Stat1 and combined resistance to IR and IFNs persists. Results indicate that the association between overexpression of IFN-α at all concentrations tested. At a concentration of IFN-α, nu61 cells are more resistant compared with SCC61 cells to IR. The regrowth of nu61 tumors (Fig. 2B). These results show that, in parental SCC61 tumors, radiosensitivity can be modulated by IFNs. This tumor is sensitive to IFNs without IR treatment. In contrast, nu61 tumors are resistant to IFNs and its radioresistance cannot be modulated by IFNs.

To test if this phenotype persists in vitro, we compared sensitivity of nu61 and SCC61 cell lines to IFN-α and IFN-γ. Figure 3A shows that nu61 cells are more resistant compared with SCC61 cells to IFN-γ at all concentrations tested. At a concentration of IFN-γ of 100 ng/mL (1,000 units/mL), differences in resistance were 1.8-fold (P = 0.000123). IFN-α was less cytotoxic to both types of tumor cells. However, at concentrations of IFN-α equal to 25 and 50 ng/mL (7,000 and 14,000 units/mL, respectively), we observed small but significant differences between nu61 and SCC61 (P = 0.056 and 0.00022, respectively). These concentrations are marked by asterisks in Fig. 3A. Taken together, these results show that radioresistant nu61 is also more resistant to IFN-α and IFN-γ compared with SCC61 both in vivo (see Fig. 2) and in vitro (see Fig. 3A). These results indicate that the association between overexpression of Stat1 and combined resistance to IR and IFNs persists in vitro. To confirm a direct role of Stat1 in both IFN and IR resistance, we investigated clones of SCC61 transfected either by a full-size cDNA for Stat1α or empty vector control, MT4. These clones were described by us previously and showed 2-fold overexpression of Stat1 in transfected clones relative to MT4 and SCC61 (27). In these experiments, we used a clonogenic assay and fitted curves to the linear quadratic model (34). The results were highly significant, with R² values for MT4 and Stat1 clones of 0.9929 and 0.9957, respectively. This allowed us to estimate D₀ values for both clones, using data of three independent experiments, presented in Fig. 3B.

These values were equal to 1.12 ± 0.228 for MT4 and 1.80 ± 0.245 for Stat1 clone (P = 0.0011). Therefore, mock-transfected and Stat1-transfected SCC61 cells are significantly different and similar to relatively radiosensitive or relatively radioresistant tumor cell lines described previously (35). These results indicate that stable transfection of parental SCC61 cells by a full-size Stat1 confers resistance to both IR and IFNs (see Fig. 3B and C) and recapitulates the phenotype observed by us in in vivo studies (see Fig. 2 and ref. 27).

Cells selected to IFN resistance are also radioresistant. To test whether IFN-resistant cells are also resistant to IR, the parental IR- and IFN-sensitive SCC61 cells were serially passaged in medium containing increasing doses of IFNs from 5 to 30 ng/mL for IFN-γ and 1,500 ng/mL for IFN-α (see Materials and Methods). Three IFN-α-resistant clones (aR1, aR5, and aR8) and three IFN-γ-resistant clones (gR8, gR9, and gR13) were chosen as the most resistant (see Materials and Methods). At an IFN-α concentration of 1,500 ng/mL, all three clones selected against IFN-α were significantly more resistant than the parental line SCC61 as measured by MTS assay (P < 0.002). For IFN-γ-resistant clones gR8, gR9, and gR13 were chosen as the most resistant (see Materials and Methods). Western blot analysis (Fig. 3B) shows that the IFN-γ-selected clones were 40- to 74-fold more resistant than SCC61. Clonogenic survival analyses done on the six IFN-resistant clones following exposure to 3 or 7 Gy revealed a significant increase in radiation resistance compared with SCC61. The IFN-α-resistant clones exposed to 3 Gy, the surviving fraction was 50% to 60% greater than SCC61 (P < 0.008; see Fig. 5A). At 7 Gy, the differences in surviving fractions were between 1.7- and 3.2-fold (P < 0.002). For IFN-γ-resistant clones gR8, gR9, and gR13 at 3 Gy, the increase in the surviving fraction compared with SCC61 varied from 40% to 68% (P < 0.006). At 7 Gy,
the differences between SCC61 and IFN-γ-resistant clones ranged between 2- and 3-fold (P < 0.002; see Fig. 5B). Western blot analyses revealed an overexpression of Stat1 in IFN-α-resistant and IFN-γ-resistant clones that ranged from 2.0- to 3.5-fold relative to SCC61 using normalization to GAPDH (see Fig. 5C and D). Therefore, all clones selected for IFN resistance overexpressed Stat1 and were also IR resistant compared with the parental cell line SCC61.

Suppression of Stat1 expression reverses tumor radioresistance. Our data indicated that constitutively overexpressed Stat1 leads to resistance to cytotoxic responses of IR and IFNs. To investigate whether suppression of Stat1 leads to radiosensitization, we designed small interfering RNA (siRNA) to silence Stat1 (si-178). This siRNA suppressed Stat1 mRNA 5.5-fold based on QRT-PCR. Transient transfection with si-178 did not affect the growth and survival of SCC61 cells but significantly (72%; P = 0.0007) suppressed nu61 survival (as measured by MTS assay; see Materials and Methods) compared with cells transfected with control “scrambled” siRNA against GAPDH (data not shown). These findings suggest that nu61 survival depends at least in part on constitutive overexpression of Stat1. To investigate the effects of Stat1 suppression in more detail, we used shRNA to establish SCC61 and nu61 clones stably transfected by Stat1 shRNA. Stably transfected cell lines (see Materials and Methods) analyzed for Stat1 expression by Western blot analysis (see Fig. 6A) showed that the levels of Stat1 decreased 59% in nu61 and 34% in SCC61 relative to a control vector. In the subsequent experiments, we focused on nu61 cells to investigate the relationships between Stat1 overexpression and radioresistance. To detect the potential effects...
of Stat1 suppression on radioresistance, mock-transfected (N1L4) and shRNA-transfected (N1shS) nu61 cell lines were irradiated with 5 Gy and, 48 h after IR, analyzed for the appearance of apoptotic/necrotic cells (see Materials and Methods). Data presented in Fig. 6B and C show that transfection of the shRNA Stat1 constructs into the nu61 cells (N1shS) and irradiation with 5 Gy lead to 6.6-fold increase of the cell death compared with control N1L4 cells with significance of 0.006. We concluded that suppression of Stat1 in nu61 results in radiosensitization of these cells \textit{in vitro}.

To test whether radiosensitization of nu61 can be observed \textit{in vivo}, we established xenografts of N1L4 and N1shS cells in athymic nude mice as described in Materials and Methods. Xenografts were grown to 200 mm3, irradiated, and measured as described previously (see Materials and Methods and ref. 27). The results show that without irradiation N1shS tumors proliferate at a lower rate compared with N1L4 tumors (see Fig. 6D). However, the most striking differences were obtained by comparison of irradiated N1L4 and N1shS tumors. By day 10, the average relative volume of irradiated N1L4 was 1.41 \pm 0.17, whereas N1shS tumors were significantly smaller (0.93 \pm 0.36; $P = 0.004$). Thus, anti-Stat1-transfected cells (N1shS) were 1.5-fold more sensitive to irradiation compared with mock-transfected counterparts. By day 14, differences increased by 1.8-fold ($P = 0.004$). We concluded that suppression of Stat1 in tumors overexpressing this protein leads to radiosensitization. The results from \textit{in vitro} and \textit{in vivo} experiments indicate that Stat1 represents a potential target for tumor radiosensitization.

Discussion

In an earlier article, we reported that serial \textit{in vivo} passage of squamous cell carcinoma concurrent with IR resulted in the selection of a population of tumor cells that overexpressed Stat1-and IFN-inducible genes and that the tumor cells exhibited significant levels of resistance to IR compared with the parental cells (27). These findings raised two key questions. First, does IR induce overexpression of Stat1 in tumor cells, and is this phenomenon unique to squamous cell carcinoma or is this a common property of irradiated tumor cells? In this report, we show that induction of Stat1 by IR is a common albeit not a general response of irradiated tumor cells. The second question arising from these data is the role of Stat1 in the development of radiation resistance. Is overexpression of Stat1 a necessary step in the development of resistance to IR or is it a response that is concurrent but not actually related to the development of resistance to IR?

With respect to the first question, two lines of experiments indicate that induction of Stat1 is a common albeit not a general response to IR. In this report, we show that IR induced Stat1 activation in both SCC61 and the radiation-resistant, Stat1-overexpressing nu61 cells (Fig. 1A and B). Our findings are consistent with those of Amundson et al. (36) who showed that
whole-body irradiation leads to the up-regulation of Stat1 and several Stat1-dependent genes in peripheral blood lymphocytes. Jen and Cheung (37) reported that irradiation of lymphoblastoid cell lines leads to the up-regulation of Stat1-dependent genes, which partially overlap with genes, described by us previously (27). Moreover, as illustrated in Fig. 1C, Stat1- and IFN-inducible genes were induced in tumors derived from colon cancer, head and neck cancer, prostate cancer, and breast cancer cells. Up-regulation of Stat1 is readily apparent from QRT-PCR studies of human tumors. We may conclude that Stat1 and the IFN-dependent pathway are up-regulated in a large fraction of diverse human tumors in response to IR.

The second question relates specifically to the role of Stat1 in the development of resistance to IR. Because both SCC61 and nu61 cell cultures secrete IFNs (data not shown), to evaluate the role of IFN in the expression of cytotoxic genes, we tested the growth of SCC61 or nu61 in mouse xenografts treated with anti-IFN antibody. The results unambiguously showed that anti-IFN antibody enabled SCC61 to grow faster but that the antibody had no effect on nu61 cells (Fig. 2). We can deduce from this experiment that the secreted IFN has a positive therapeutic effect associated with the induction of cytotoxic genes in SCC61 but that this response is not operative in nu61 cells. In these cells, the cytotoxic effects of IFN-inducible genes are blocked and this suppression is also retained in vitro (Fig. 3A). In the tumors adapted to continuous exposure to IFNs, Stat1 is overexpressed, and the expected cytotoxic response following exposure to IR or IFNs is also blocked (Figs. 4 and 5). These observations are consistent with published data about overexpression of IFN/Stat1-dependent pathway in primary breast and lung tumors (31, 38). These results suggest that constitutive expression of the cytotoxic Stat1 pathway leads to the selection of tumor clones resistant to the Stat1-dependent cytotoxicity and formation of aggressive tumor clones resistant to IFNs and IR. Although our data show cross-talk between IR- and IFN-inducible pathways and involvement of IFN signaling in the formation of radioresistance, other reports suggest that the Stat1-dependent pathway can be up-regulated by various signaling systems. For example, Pedersen et al. (24) described an ability of ligand-activated EGFR to induce Stat1-dependent genes, which significantly overlapped with the gene pattern we previously reported (27). Jeclinger et al. (39) showed that formation of autocrine PDGF/PDGFR signaling promotes mammary cancer metastasis and involves activation of Stat1. Recent data also show that Stat1 can be activated by erythropoietin (25) and hypoxia (21–23). These data suggest that activation of the Stat1 pathway has more broad significance compared with its traditional link to IFN signaling. Perhaps IFNs and IR may act in concert with other factors of the tumor microenvironment, such as EGF and PDGF. Further experiments are necessary to dissect the role of different signaling systems potentially leading to the constitutive activation of the Stat1-dependent pathway.

The second key experiment was the suppression of Stat1 in nu61 cells with shRNA. Our data show that in this instance we observed that nu61 cells became IR sensitive concurrent with the decrease in the accumulation of Stat1 protein (see Fig. 6A–D).

Based on these data, we propose that Stat1 has a dual function. At levels of activity associated with radiosensitive tumor cells (as SCC61), activation of Stat1 leads to the activation of cytotoxic genes and, ultimately, cell death. At high constitutive levels of Stat1 expression observed in nu61 cells and clones transfected by Stat1 (Fig. 3B and C) or selected against IFN-α and IFN-γ (Figs. 4 and 5), Stat1 activates and maintains the expression of prosurvival genes with simultaneous suppression of cytotoxic effects (Figs. 2 and 3). This may explain the observed switch from proapoptotic to prosurvival functions of Stat1, which is shown by knockdown experiments in nu61 both in vitro and in vivo (Fig. 6A–D). Indeed, currently, Stat1 is reported to control essential prosurvival genes, such as MCL-1 (40), IFITM1, or Leu-13 (41), multidrug resistance vault proteins (42), and USP18 (UBP43), which mediates protection from IFN-induced cytotoxicity (43). Importantly, we previously reported that MCL-1, IFITM1, and USP18 are coexpressed with Stat1 in the IR- and IFN-resistant nu61 tumor (27). Consistent with our observations are recent reports, which indicate that constitutive overexpression of Stat1 and Stat1-dependent genes is associated with protection of tumor cells from genotoxic stress following treatment with fludarabine (44), doxorubicin (45), cis-platinum (46), and the combination of IR and doxorubicin (47, 48). The balance between prosurvival and cytotoxic functions of Stat1 may be analogous to the differing effects of tumor necrosis factor superfamily ligands and transforming growth factor-β.
on cell growth and death, whereby the outcome of these opposing effects depends on cellular context and environmental factors (49–51).

The most significant finding that bears directly on our model is that suppression of Stat1 accumulation renders the tumor more sensitive to IR. Our data predict that suppression of Stat1 levels in patients overexpressing this protein may lead to a significant benefit to cancer patients undergoing IR therapy.

Addendum

After this manuscript was submitted, Tsi et al. published observations that ionizing radiation induces IFN-related genes including Stat1, Ifit1, Ifitm1, Oas1, and A20 in glioma, breast, and prostate cancer cell lines (52), which is consistent with our current data and explanation of nu61 selection by fractionated IR.

Acknowledgments

Grant support: NIH grants PO1-CA171933 (R.R. Weichselbaum and B. Roizman), RO1-CA113662, and RO1 CA111423 (R.R. Weichselbaum).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. Elizabeth Quinn and Baz Smith (Clontech) for providing pSIREN-RetroQ-DsRed-Express retroviral vectors with inserted Stat1 shRNA sequence and control sequences.

References

Signal Transducer and Activator of Transcription 1 Regulates Both Cytotoxic and Prosurvival Functions in Tumor Cells

Nikolai N. Khodarev, Andy J. Minn, Elena V. Efimova, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/67/19/9214

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2007/09/26/67.19.9214.DC1

Cited articles
This article cites 51 articles, 24 of which you can access for free at:
http://cancerres.aacrjournals.org/content/67/19/9214.full.html#ref-list-1

Citing articles
This article has been cited by 16 HighWire-hosted articles. Access the articles at:
/content/67/19/9214.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.