Key Findings Leading to the Discovery of IKDC

As recently reported, c-kit tyrosine kinase inhibitors such as Gleevec/STI571 can stimulate a host-dependent antitumor activity involving myeloid DC-primed NK cells (2). With the aim of further improving the NK cell–mediated antitumor effect induced by Gleevec/STI571, we combined Gleevec/STI571 with interleukin 2 (IL-2) and observed enhanced antitumor effects against B16F10 melanoma lung metastases, as compared with either agent alone.

Administration of depleting anti-NKR-P1c/NK1.1 monoclonal antibody completely abrogated the tumoricidal activity induced by the combination of Gleevec/STI571 and IL-2, suggesting a role for NK1.1 expressing cells.

Immunohistochemistry of regressing lung metastases in Gleevec/STI571+IL-2–treated mice revealed prominent infiltrates of CD11c+ cells in tumor beds and in surrounding parenchyma, suggesting that DC might be critical effectors of the antitumor effects achieved with the combination therapy (Fig. 1). We further did cytointrofusometric analyses of single cell suspensions obtained from lung metastases. Classic NK cells defined as CD3–B220+ NK1.1+ cells represented about 4 ± 2% of tumor-infiltrating cells and were not significantly expanded by the combination therapy, whereas the number of CD11c+ cells increased 2- to 3-fold in response to Gleevec/STI571+IL-2. Among those CD11c+ cells, classic plasmacytoid DC (pDC) coexpressing CD11c, B220 and Gr1 molecules represented not more than 3% of tumor-infiltrating CD11c+ cells. Importantly, the majority (72 ± 5%) of tumor-infiltrating CD11c+ cells expressed B220 but lacked Ly6C/Gr1, and all tumor-infiltrating CD11c+ cells that expressed NK1.1 molecules were Gr1 negative. Therefore, we focused our further investigation on the subset of CD11c+ cells coexpressing B220 and NK1.1 molecules.

The subset of CD11c+B220+NK1.1+Gr1+ cells (later called IKDC) increased 4-fold during treatment with Gleevec/STI571+IL-2 (Fig. 1) and coexpressed other NK cell markers such as CD49b/Dx5, CD122, NK2D2, CD11b, and Ly49, but failed to express CD3, CD4, CD8a, CD25, PDCA-1, and costimulatory molecules. Because up to 50% of the CD11c+B220+NK1.1+/CD49b+ cells coexpressed major histocompatibility complex (MHC) II in tumors, we hypothesized that these CD11c+ cells would belong to the DC lineage.

Phenotype and Morphology of IKDC

In naïve mice, this new distinct cell population, defined as CD11c+B220+NK1.1+/CD49b+ cells, represented about 1% to 2% of all splenic CD11c+ cells and was detected in all lymphoid organs, including blood, liver, gut, lung, and skin (3, 4). We could find those cells in several inbred mouse strains, including in Rag-/- IL-2Rγ-/- mice (where they lack NK1.1 molecules but express CD11c, B220, and CD49b), but not in IL-2/-IL-15 receptor β chain–deficient mice (3). The phenotypic and functional characterization of CD11c+B220+NK1.1+/CD49b+ prompted us and our colleagues to call the new cell "IKDC," for reasons explained below.

Analyses using light microscopy and transmission electron microscopy highlighted that freshly isolated IKDC have a unique morphology. IKDC do not resemble pDC (with their developed and pathognomonic endoplasmic reticulum), display a smooth plasma membrane with small pseudopodia, a high nucleocyttoplasmic ratio and a dense cytoplasm containing few mitochondria but numerous granules (Fig. 1; refs. 3, 4).
Role of IKDC in Tumor Immunotherapy

Death receptors were found to be involved in the tumoricidal activity promoted by the combination therapy using Gleevec/STI571+IL-2. B16F10 tumor cells manipulated to express proteins that block the proapoptotic signal transduction complex initiated via death receptors (such as the dominant-negative mutant for Fas-associated death domain or the cowpox virus caspase-8 inhibitor CrmA) were resistant to this combination therapy in vivo.
However, the combination therapy maintained a significant antitumor activity in TNFα−/− mice. Conversely, the efficacy of Gleevec/STI571+IL-2 was completely abolished in mice treated with a neutralizing antimouse tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) antibody (Ab), establishing the pivotal role of TRAIL in the tumoricidal activity. After the combination therapy with Gleevec/STI571+IL-2, we detected the membrane expression of TRAIL on splenic IKDC and NK cells. Tumor cells transfected with CrmA were not significantly killed by IKDC, underlining the importance of death-receptor signaling for its antitumor activity. Furthermore, our TRAIL-blocking experiments in vitro confirmed that tumor killing was mainly dependent on TRAIL.

Because we found that both IKDC and NK cells could kill in a TRAIL-dependent manner, we investigated whether one of these cell types might be capable to prevent tumor outgrowth in effector-deprived hosts such as B16F10-bearing Rag2−/−IL-2γ−/− mice. When B220NK1.1+CD49b⁺ (IKDC) versus B220NK1.1+CD49b⁺ (NK) cells from Gleevec/STI571+IL-2-treated mice were inoculated into established B16F10 tumors, only IKDC could significantly impair tumor outgrowth. Similar findings were achieved when D571-1Ab⁺ cells were adoptively transferred into tumor beds (3).

As TRAIL expression is controlled by IFN type II (5), we further examined the regulation of IFNγ secretion by IKDC and NK cells. Strikingly, IKDC stimulated in vitro with tumor cells produced large amounts of IFNγ. Stimulation of IKDC with Gleevec/STI571+IL-2 also resulted in the secretion of IFNγ. Remarkably, IKDC could produce IFNγ in response to a broad array of allogeneic or syngeneic transformed cells except the transporter for antigen processing–deficient RMA-S cells, whereas NK cells failed to do so in the absence of exogenous stimulation, albeit exhibiting lytic activity against RMA-S. It is of note that IKDC did not secrete IFNγ in contact with healthy tissues such as primary hepatocyte or thymocyte cultures. In conclusion, IKDC might mediate their tumoricidal activity by IFNγ secretion and TRAIL-dependent direct tumor cell lysis.

Chief Implications

This review describes the discovery of a novel DC subset called IKDC, a multitasking chimera sharing the phenotypic and functional properties of both DC and NK cells (3, 4, 6). Indeed, lytic IKDC express MHC class II and CD86 molecules and secrete large amounts of IFNγ. IFNγ, produces IFN-stimulated genes (ISG), and activates NK cells. Thus, IKDC could be considered as a new population of cells capable of inducing and mediating antitumor responses in vivo.

The current paradigm for T cell priming following tissue destruction relies on a two-step process whereby the tumor cell death event is somewhat dissociated from the antigen presentation in lymph nodes. Hence, apoptotic tumor cells might release endogenous danger signals that could activate conventional DC (cDC). The CTL or NK attack of tumors could liberate tumor antigens available for cDC and promote the translocation or secretion of endogenous alarmins that could activate surrounding cDC (7). Alternatively, a one-step process could be envisioned in which a single cell would be able to kill tumor targets, takes apoptotic debris, and initiate its differentiation towards a bona fide antigen-presenting cell. Such a scenario is conceivable because Chan et al. showed that IKDC express L-selectin and CCR7 and can traffic from blood to T cell areas of lymphoid organs, where they exhibit a DC phenotype (losing NK22D and acquiring CD40; ref. 4). Previous reports alluded to some DC subtypes endowed with cytolytic functions in human systems and rodents. In the RIP-LCMV mouse model of virally induced diabetes, Homann et al. identified a subset of "NK/DC," defined as CD11c⁺CD49b⁺ cells, capable of preventing autoimmune disease in the setting of anti-CD40L blocking (8). Pillarisetty et al. reported of NK/DC, defined as CD11c⁺NK1.1⁺ cells, with simultaneous NK and DC functions (9). However, the precise nature of the cell capable of both, killing and antigen presentation, has not been established before we published our study.

Second, our data suggest that the combination therapy with Gleevec/STI571+IL-2 (which involves IKDC that trigger TRAIL-dependent apoptosis of tumor cells) could be implemented in the clinic, in particular, in TRAIL-sensitive cancers that are resistant to the direct antiproliferative effect of Gleevec/STI571. Consequently, identifying the human counterparts of mouse IKDC remains an important challenge.

Third, the implication of the host immune system in antitumor effects mediated by chemo- or radiotherapy is being actively investigated (10). Certain cell death modalities might electively trigger innate and/or adaptive immune responses, thus eliciting an antitumor response mediated by the host (1, 11). The challenge is now to transpose these data to the human system and to decipher the exact role of IKDC in the immune system's fight against cancer.

Acknowledgments

Received 10/11/2006; revised 11/15/2006; accepted 11/22/2006.

Grant support: Fellowship from the Deutsche Forschungsgemeinschaft (E. Ullrich); Poste d'accueil Institut National de la Sante et de la Recherche Medicale and Assistance Publique Hôpitaux de Paris (J. Taieb and M. Bonmorte); ARC (G. Mignot and N. Chaput); European Fellowship QLRT-2001-00093 (N. Chaput); European Union grants ALLOSTEM, DC THERA; and Ligue Nationale Contre le Cancer (equipes labellisées by G. Kroemer and L. Zitvogel).

References

Therapy-Induced Tumor Imunosurveillance Involves IFN-Producing Killer Dendritic Cells

Evelyn Ullrich, Mathieu Bonmort, Grégoire Mignot, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/67/3/851

Cited articles
This article cites 10 articles, 3 of which you can access for free at:
http://cancerres.aacrjournals.org/content/67/3/851.full.html#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
/content/67/3/851.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.