Targeting HER-2/neu in Early Breast Cancer Development Using Dendritic Cells with Staged Interleukin-12 Burst Secretion

Brian J. Czerniecki,1 Gary K. Koski,1 Ursula Koldovsky,1 Shuwen Xu,1 Peter A. Cohen,7 Rosemarie Mick,2 Harvey Nisenbaum,3 Terry Pasha,4 Min Xu,5 Kevin R. Fox,5 Susan Weinstein,6 Susan G. Orel,1 Robert Vonderheide,5 George Coukos,6 Angela DeMichele,25 Louis Araujo,3 Francis R. Spitz,1 Mark Rosen,3 Bruce L. Levine,4 Carl June,4 and Paul J. Zhang7

Departments of 1Surgery, 2Biostatistics and Epidemiology, 3Radiology, 4Pathology and Laboratory Medicine, 5Medicine, and 6Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania and 7The Center for Surgery Research, Cleveland Clinic Foundation, Cleveland, Ohio

Abstract

Overexpression of HER-2/neu (c-erbB2) is associated with increased risk of recurrent disease in ductal carcinoma in situ (DCIS) and a poorer prognosis in node-positive breast cancer. We therefore examined the early immunotherapeutic targeting of HER-2/neu in DCIS. Before surgical resection, HER-2/neu+ DCIS patients (n = 13) received 4 weekly vaccinations of dendritic cells pulsed with HER-2/neu HLA class I and II peptides. The vaccine dendritic cells were activated in vitro with IFN-γ and bacterial lipopolysaccharide to become highly polarized DC1-type dendritic cells that secrete high levels of interleukin-12p70 (IL-12p70). Intranasal delivery of dendritic cells supplied both antigenic stimulation and a synchronized preconditioned burst of IL-12p70 production directly to the anatomic site of T-cell sensitization. Before vaccination, many subjects possessed HER-2/neu–HLA-A2 tetramer-staining CD8pos T cells that expressed low levels of CD28 and high levels of the inhibitory B7 ligand CTLA-4, but this ratio inverted after vaccination. The vaccinated subjects also showed high rates of peptide-specific sensitization for both IFN-γ–secretion CD4pos (85%) and CD8pos (80%) T cells, with recognition of antigenically relevant breast cancer lines, accumulation of T and B lymphocytes in the breast, and induction of complement-dependent, tumor-lytic antibodies. Seven of 11 evaluable patients also showed markedly decreased HER-2/neu expression in surgical tumor specimens, often with measurable decreases in residual DCIS, suggesting an active process of “immunoediting” for HER-2/neu–expressing tumor cells following vaccination. DC1 vaccination strategies may therefore have potential for both the prevention and the treatment of early breast cancer. [Cancer Res 2007;67(4):1842–52]

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Requests for reprints: Brian J. Czernecki, Department of Surgery, University of Pennsylvania, 4 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104, Phone: 215-662-4392; Fax: 215-662-7476; E-mail: brian.czernecki@uphs.upenn.edu. doi:10.1158/0008-5472.CAN-06-4038

Introduction

Therapeutic anticancer vaccines hold great promise for the control of malignancies, but there is no clear consensus about how they may best be optimized. For example, controversies exist relating to whether vaccines should be deployed primarily against early- versus late-stage (i.e., metastatic) disease (1). Additionally, there are unresolved issues surrounding the selection of appropriate tumor target antigens. With respect to dendritic cell–based vaccines, there is little agreement about which dendritic cell properties best promote therapeutic efficacy, the culture and activation regimens best suited to maximize these properties, or the optimal route of vaccine delivery (2–4).

Despite this general lack of consensus, it could be reasonably argued that early disease settings represent promising opportunities for successful immunotherapy, due in part to the absence of both bulky disease and the negative consequences of prior radiation treatments or chemotherapy (5). In addition, vaccine efficacy may be enhanced by antigen selection that includes proteins linked to tumor aggressiveness and survival, as well as the capacity to stimulate both CD8pos and CD4pos T cells. Furthermore, dendritic cells that secrete high levels of interleukin (II)-12p70 may offer unique advantages, due to their ability to maximize IFN-γ production and functional avidity in T cells (6), provided issues of “dendritic cell exhaustion” are addressed (7). Finally, because the immune system evolved primarily to respond against microbial invasion, dendritic cell–based anticancer vaccine strategies may be potentiated by the inclusion of Toll-like receptor (TLR) agonists as dendritic cell activators (8). This may be especially beneficial when overexpressed, but nonmutated proteins, such as HER-2/neu, are used as vaccine antigens because mimicking infectious nonself may facilitate the breaking of tolerance.

We report here preliminary results for the first 13 subjects in a clinical trial to vaccinate against ductal carcinoma in situ (DCIS), a preinvasive malignancy of the breast. This strategy focused on HER-2/neu–expressing tumors, due to this frequent association of protein with poorer prognosis (9), and the availability of both MHC class II– and class I–restricted immunogenic peptides. We also used a DC1 polarization culture technique, including TLR agonist exposure [bacterial lipopolysaccharide (LPS)], to exploit the potential benefits of signaling infectious nonself and to assure robust IL-12 secretion at the time of vaccination. This unique activation strategy actually preconditioned dendritic cells for an apparent second burst of IL-12 if these cells subsequently encountered CD40 ligand. Injecting the vaccines directly into lymph
nodes also delivered a defined quantity of freshly antigen-loaded dendritic cells directly to the site of T-cell sensitization and within the time frame of IL-12 secretion bursts. The prescheduled resection of tumor following vaccinations also afforded the opportunity for quantitative histologic analyses of the effects of immunotherapy.

To date, this vaccination strategy has yielded very high rates of T-cell sensitization against both peptide and tumor targets and generated complement-fixing, tumor-lytic antibodies. We have also observed reductions in extent of DCIS and levels of expression of HER-2 after vaccination in several of the subjects. These early results suggest that this strategy may have direct implications for both prevention and therapy of breast cancer.

Materials and Methods

Clinical trial design. Patients with histologically confirmed DCIS with HER-2/neu overexpression (>2+ intensity) in at least 10% of cells [assayed by HercepTest and verified by single pathologist (P.J.Z.)] were recruited to this Institutional Review Board–approved clinical trial. Subjects were screened by magnetic resonance imaging (MRI) before enrollment to eliminate individuals with obvious areas of invasive disease in either breast. Only patients requiring further surgical therapy for DCIS were eligible for neoadjuvant administration of study vaccine. All patients underwent cardiac evaluation with multigated acquisition (MUGA) scan or echocardiography to document baseline cardiac function. These scans were done before the first dose of vaccine and within 2 weeks of the final dose. All patients underwent HLA class I tissue typing pre-enrollment and had routine history, physical exams, EKG, blood work, and urinalysis before vaccination. After obtaining informed consent, all patients had a prevaccine leukapheresis done to obtain sufficient numbers of monocytes for vaccine preparation; in a few cases, a second pheresis was required for additional monocytes. A postvaccination pheresis was also done, for vaccine preparation; in a few cases, a second pheresis was required with tapwater. The plates were dried at room temperature and read in an FACS Calibur and analyzed using CellQuest Pro software (BD Biosciences, San Jose, CA).

Flow cytometry. Analysis of surface markers CD14-FITC, CD80-PE, CD86-PE, and CD38-PE was done on a FACS Calibur and analyzed using CellQuest Pro software (BD Biosciences, San Jose, CA).

Tetramer staining. Prevaccination or postvaccination CD8high T cells were either thawed and analyzed or sensitized by dendritic cells pulsed with the peptide HER-2/neu p369 to 377 for 10 days as described below. They were then harvested and stained with allophycocyanin (APC)–labeled HER-2/neu p369 to 377 tetramer and anti-CD8-FITC, anti-CD28-PE, or anti-CTLA-4-PE for 30 min. Cells were washed and subjected to flow cytometry analysis. APC–labeled MART-1 p27-35 tetramer was used for background control.

Enzyme-linked immunospot assay. Anti-INF-γ antibody was purchased from Milabtech, Inc. (Marinemont, OH) and the enzyme-linked immunospot assay (ELISPOT) assay was done according the manufacturer’s instructions. Multiscreen filter plates (MAIPSWU10) were purchased from Millipore (Billerica, MA). Substrate solution (TMB-H) was purchased from Mose (Pasadena, MD). Coating antibody (1-D1K) was diluted to 12 μg/mL in sterile PBS. The ELISPOT plates were prefilled with 70% ethanol for 1 min at room temperature and washed five times with sterile water. After addition of the coating antibody (100 μL/well), the plates were incubated overnight at 4°C to 8°C. The plates were washed five times with sterile PBS before the addition of 200 μL/well of culture medium. After blocking for more than 30 min, the medium was removed. CD4 cells were added with either immature or mature dendritic cells, pulsed with the ICD and ECD peptides (total of 150 μL/well) at a ratio of 1:10 to 2×10^5. Tetus was used as control stimulus. The cells were incubated at 37°C for 20 h. The plates were then washed five times with 200 μL PBS. One hundred microliters of detection antibody (7-B6-1-biotin) diluted to 1 μg/mL in PBS with 0.5% FCS were added to each well. The plates were incubated at room temperature for 2 h. After washing five times, 1:1,000 dilution streptavidin–horseradish peroxidase in PBS with 0.5% FCS was added before incubation for an additional hour. The plates were washed and 100 μL of substrate solution were added to each well. After color development, wells were rigidly washed with tap water. The plates were dried at room temperature and read in an ELISPOT reader (Immunospot CTL, Cleveland, OH). At routine intervals, the relative coefficient of variance was determined. The maximum value was 23% (1,029 ± 363.4 = 0.488; 993 ± 71 = 3.188; 635 ± 1.52 = 0.099% 596 ± 35.2 = 2.4%; 99 ± 23.8 = 12% and 120 ± 55.25 = 23%).

CD4high T-cell in vitro sensitization. CD4high T cells from thawed prevaccination or postvaccination lymphocytes were prepared with
negative selection columns as described previously (6). CD8\(^{pos}\) T cells were sensitized by autologous dendritic cells pulsed with either HER-2/neu ECD or peptide at a ratio of 10:1. IL-2 (30 IU/mL) was added to the cultures the next day. T cells were harvested on day 10 and tested for their antigen specificity. CD8\(^{pos}\) T cells (10\(^{5}\)) were cocultured with dendritic cells (10\(^{5}\)) pulsed with HER-2/neu peptides or dendritic cells pulsed with B-Raf kinase in 96-well plates. After 24 h of coculture, supernatants were harvested and IFN-\(\gamma\) release was measured by ELISA.

CD8\(^{pos}\) T-cell sensitization. Autologous dendritic cells were pulsed with HER-2/neu p369 to 377 or p689 to 697 at 10 \(\mu\)g/mL 2 h before harvest. Dendritic cells were then cocultured with column-purified pre Vaccination or postvaccination CD8\(^{pos}\) T cells at a ratio of 10:1 in 48-well plates. IL-2 (30 IU/mL) was added to the cultures on day 2. After 10 days of sensitization, the CD8\(^{pos}\) T cells were harvested and restimulated with T cells pulsed with either relevant or irrelevant peptides or tested against breast cancer cell lines MDA-MB-231 and MCF-7 (HER-2/neu\(^{pos}\) and HLA-A2\(^{pos}\)), MDA-MB-453 and SK-BR-3 (HER-2/neu\(^{pos}\) and HLA-A2\(^{pos}\)), and ovarian cancer cell lines SKOV3 (HER-2/neu\(^{pos}\) and HLA-A2\(^{pos}\)').

Evidence of negative regulation of anti-HER-2 T cells in patients with DCIS. Peripheral blood CD8\(^{pos}\) lymphocytes from patients with DCIS were assessed in the HLA-A2\(^{pos}\) cohort before vaccination for preexisting anti-HER-2/neu responses. Compared with healthy donors, there were elevated numbers (mean 77 \(\pm\) 10\(^{3}\)) for DCIS patients versus mean 36 \(\pm\) 10\(^{3}\) for healthy donors; \(P = 0.033\) of HER-2/neu 369 to 377 tetramer\(^{pos}\) CD8\(^{pos}\) T cells (Fig. 2A). We additionally examined T-cell expression of B7 ligands in this cohort. Before vaccination, tetramer-staining T cells expressed high levels of CTLA-4 (inhibitory signaling) relative to CD28 (activation signaling). After vaccination, however, this ratio became inverted (Fig. 2B). Additionally, in contrast to healthy donors, prevaccine CD8\(^{pos}\) T cells sensitized using DC1 pulsed with 369 to 377 class I peptide did not secrete IFN-\(\gamma\) in response to HER-2/neu 369 to 377 pulsed targets except in one subject. However, postvaccine T cells routinely acquired this property (Fig. 2C; Supplementary Figs. S1 and S2). Collectively, these results suggest a negative regulatory mechanism(s) for T cells naturally sensitized to HER-2/neu that was operative even at very early (prevaccine) stages of cancer, but which could be reversed by DC1 vaccination.

DC1 vaccines induce HER-2/neu-reactive CD4\(^{pos}\) T cells. We evaluated CD4\(^{pos}\) anti-HER-2/neu responses by two methods. The
first method used was ELISPOT to quantify T cells in peripheral blood without in vitro expansion. The second was an in vitro sensitization assay (IVS), in which lymphocytes were first stimulated and expanded for one round (10 days) in vitro and then restimulated and assessed by ELISA for secreted IFN-γ. Both assays used HER-2/neu peptide-loaded dendritic cells as stimulators. A summary of all patient immune responses is summarized in Supplementary Table S1. Of 11 testable subjects, 10 (91%) had >5-fold postvaccination increases in the number of IFN-γ spots against at least one MHC class II–restricted HER-2/neu peptide epitope, and the observed increases were usually of an even greater magnitude (Fig. 3A). A representative comparison of absolute numbers of IFN-γ secretion spots is shown for subject 08102-05 (Fig. 3B). To determine whether such increases in spot number were a specific consequence of vaccination, we also tested the prevaccine and postvaccine response when tetanus-pulsed dendritic cells were used as stimulators. The ratios of postvaccine to prevaccine tetanus-specific IFN-γ spots were consistently in the 1 to 2 range, indicating absent or scant modulation by the vaccine procedure (Fig. 3A). When assayed by IVS instead of by ELISPOT, 10 of 13 (77%) subjects responded to HER-2/neu peptides after vaccination with greater than a 2-fold increase in IFN-γ secretion compared with control peptides (Fig. 3C and D). Most of the subjects developed responses to more than one of the six MHC class II peptides used (Fig. 3). As anticipated, ELISPOT and IVS results did not always precisely concur, due to repertoire disparities.

Figure 1. Preparation of HER-2/neu–pulsed-DC1 vaccines. A, peripheral blood monocytes were obtained by combined leukapheresis and elutriation. The monocytes were cultured in SFM with GM-CSF and IL-4 overnight. The next day, immature dendritic cells (iDC) were pulsed in separate wells with one of six HER-2/neu MHC class II–derived peptides. IFN-γ was added later in the day, and the following morning, LPS was added to complete maturation of DC1. For HLA-A2+ patients, half of the DC1 were pulsed with MHC class I binding peptide 369 to 377 and the other half with 689 to 697 for 2 h. The DC1 were harvested, release criteria were met, and 10 to 20 million HER-2/neu–pulsed DC1 were administered by intranodal injection into normal groin nodes. One injection was given in each side of the groin (half the vaccine in 0.5 cc each groin node). B, schematic of proposed effect of HER-2/neu–pulsed DC1 on the cellular immune response. Primed DC1 produce IL-12 and present MHC class II peptides to CD4+ T cells. T-cell activation results in CD40L expression that in turn signals through CD40 on dendritic cells. This enhances dendritic cell maturation and facilitates additional IL-12 production, which leads to high avidity CD8+ antitumor T cells and CD4+ Th1 cells. The IFN-γ production by CD4+ T cells can potentially induce immunoglobulin class switching in B cells. C, primed DC1 show characteristics of mature dendritic cells. Following maturation with IFN-γ and LPS, dendritic cells express high levels of CD80, CD86, and CD83 and low-level expression of CD14. The data are from one vaccine from one patient and are representative of most vaccines, although there was some observed variation in levels of CD83 expression. D, primed DC1 produce high levels of IL-12 p70. DC1 were prepared as described in Materials and Methods. Supernatants from DC1 from the first six subjects were sampled for IL-12 p70 production after 16 h following addition of LPS. IL-12 production ranged from 500 to 6,000 pg/mL (blue columns). The DC1 were activated with LPS for 6 h as is done for vaccine administration then cultured in SFM for 16 h, washed, and treated with CD40L trimer. IL-12 p70 production was then assessed after additional 14 h. DC1 from all subjects showed the ability to produce an additional burst of IL-12 p70 range 10 to 25 ng/mL (red columns). DC1 cultured in the absence of CD40L produced less than 500 pg/mL (data not shown). Results are representative from the DC1 from the first six subjects. The comparison between the amount of IL-12 p70 produced by mature DC1 and those additionally activated by CD40L was compared with Wilcoxon signed-rank test for paired data.
between uncultured and culture-proliferated cells (17), but these dual analyses corroborated vaccine responsiveness to at least one MHC class II–restricted HER-2/neu peptide epitope for 11 of 13 (85%) patients (Fig. 3). Furthermore, a consistent absence of detectable IL-4, IL-5, and IL-10 production indicated that such CD4pos T-cell responsiveness reflected a strongly polarized TH1 phenotype (data not shown).

HER-2/neu–pulsed DC1 vaccines induce CD8pos T cells that directly recognize HER-2/neu–overexpressing breast cancer lines. We observed an increase in the numbers of 369 to 377 peptide tetramerpos CD8pos T cells in most patients following vaccination (Fig. 4A), with further amplification of tetramer-binding frequency, following in vitro stimulation with peptide-pulsed dendritic cells. Despite this, one of the ten HLA-A2pos subjects’ displayed prevaccination evidence of CD8pos T cells capable of IFN-γ secretion in response to HER-2/neu 369 to 377 peptide-pulsed targets (data not shown). However, eight of nine (88%) patients acquired such reactivity to peptide 369 to 377 following vaccination (Fig. 4B). The same DC1 were cocultured with postvaccine CD8pos T cells and the T cells were harvested and tested as above. The results represent a single experiment from one healthy donor and one DCIS patient. A complete set of all healthy donors sensitized with HER-2/neu–pulsed dendritic cells is shown in Supplementary Fig. S1. A profile of HLA-A2pos DCIS prevaccine and postvaccine peptide sensitization data is shown in Supplementary Fig. S2.
lines, indicating HER-2/neu specificity and HLA-A2 restriction. The acquisition of direct tumor reactivity was not evident before completion of all four vaccinations, although reactivity to peptide-pulsed T2 cells was often already prominent following first vaccination (Fig. 4D). It is worth noting that direct recognition of antigen-expressing tumor cells by peptide-sensitized CD8⁺ T cells has historically been difficult to show and that our previous in vitro work predicted high rates of direct tumor recognition when IL-12–secreting dendritic cells were used for vaccination.

HER-2/neu–pulsed DC1 vaccines lead to accumulation of lymphocytes in the breast and changes in residual DCIS. All enrolled subjects required conventional definitive surgery after vaccination to remove residual DCIS, based on the initial surgical (subjects 1, 3, 4, 10, 11, and 14) or core (subjects 2, 5, 6, 8, 9, 12, and 13) biopsies. Eleven of 13 subjects showed residual DCIS at the time of postvaccine surgery. The remaining two had either no residual disease (subject 08102-04) or inadequate tissue (subject 08102-01) to do HER-2/neu expression analysis (see below).

Immunohistochemical analysis of prevaccination biopsies showed variable lymphocytic infiltrates in the breast tissue with some patients showing minimal or moderate infiltrates, such as shown in Fig. 5A (including CD4⁺ T cells and B cells). However, in
most patients, there was a marked postvaccination increase in lymphocytic infiltration with cells congregating at periductal sites surrounding regions of residual DCIS (Fig. 5A). The infiltrate consisted largely of CD4⁰ T cells and CD20⁰ B cells with few CD8⁰ T cells (Fig. 5A; Supplementary Fig. S3) and minimal or no natural killer cells, macrophages, or dendritic cells detected. Some lymphocytes (CD45RO⁰ and CD4⁰) seemed to enter the ducts and comingle with the tumor cells (Fig. 5A, bottom). There was little evidence of Foxp3⁰ regulatory cells in the breast either pre- or postvaccine, suggesting these negative regulatory cells play little role in DCIS (Fig. 5A, bottom).

We then compared HER-2/neu expression before and after vaccination to determine whether apparent immune pressure altered target antigen expression on remaining tumor cells.
We observed pronounced declines in HER-2/neu staining in 7 of 11 subjects compared with no decline in an unvaccinated control group of HER-2/neu–overexpressing DCIS patients that also underwent an initial biopsy before definitive surgical resection (Fig. 5B). In three subjects who exhibited loss of HER-2/neu, confirmatory fluorescence in situ hybridization (FISH) analysis was done to test residual HER-2/neu gene amplification. For two of these three, FISH analysis confirmed the loss of HER-2/neu initially shown by immunohistochemistry, but the third (08102-06) remained strongly FISH positive (data not shown).

Microcalcifications, formed within areas of high-grade comedonecrosis DCIS and visualized by mammography, can predict the minimum extent of DCIS (actual tumors often extend beyond microcalcifications) with a positive predictive value of 0.9 (18–20). We used microcalcifications to estimate the extent of disease and confirmed these findings with MRL. For 6 of the 11 (55%) patients with microcalcifications, the actual tumor removed at the time of definitive surgery was significantly smaller (>50% smaller) than the area predicted by microcalcifications on postbiopsy mammograms (Fig. 5C), suggesting tumor regression. Notably, five of these seven subjects were among the seven shown to have decreased HER-2/neu staining on residual tumor cells (exception, 08102-06 no decrease in extent; 08102-14 no calcification). Examples of this loss visualized by immunohistochemical staining are shown for subjects 08102-02 and 08102-09 (Fig. 6A). For subject 08102-09, there was decreased staining intensity plus a postvaccination

Figure 5. HER-2/neu–pulsed DC1 vaccine induces infiltration of lymphocytes into the breast and changes in the residual DCIS. A, immunohistochemical staining of lymphocytes infiltrating into the breast following DC1 vaccination for DCIS. Results are from 08102-10. Prevaccine and postvaccination specimens stained for the presence of CD4pos, CD8pos, and CD20pos cells. In addition, CD45RO and CD4 stains are shown from postvaccination tissues for patient 08102-09. Note the evidence of CD4pos T cells surrounding the duct and also infiltrating a duct with residual high-grade DCIS. A table summarizing the lymphocytic infiltrates from the first ten patients is shown in Supplementary Fig. S3. B, expression of HER-2/neu on DCIS cells before and after vaccination. HER-2/neu staining was done on prevaccine biopsy specimens as well as on the surgical specimen following vaccination. As a control, we stained initial biopsy and definitive surgical specimens from patients with DCIS that were not vaccinated but obtained contemporaneously with this trial. The results are the comparisons of the HER-2/neu expression at the time of definitive surgery compared with the HER-2/neu staining at the time of diagnosis. C, comparison of the area of microcalcifications on mammography after biopsy with the largest area of DCIS obtained at the time of surgery. Colored dots, correlate with the patient ID from HER-2/neu expression in (B). Note patients 08102-02, 08102-03, 08102-05, 08102-06, and 08102-12 showed both decreased HER-2/neu expression and a 50% or greater diminishment in the predicted size of the DCIS. The area of microcalcifications was read by single mammographer. Areas of DCIS seen as mammographic microcalcifications were also verified by breast MRI.
redistribution of remaining HER-2/neu staining in cellular vacuoles compared with the uniform 3+ membrane staining in the prevaccine biopsy (Fig. 6A).

DC1 vaccines induce complement-dependent antibody-mediated cell cytotoxicity. The presence of DCIS trafficking B cells and IFN-γ-secreting T cells prompted us to assess the activity of prevaccine and postvaccine sera in a complement-dependent, tumor-lytic assay (Fig. 6B). Postvaccine serum from six of the nine available subjects showed elevated complement-dependent *in vitro* lysis of HER-2/neu pos but not HER-2/neu neg tumor cell lines. It is notable that four of these six subjects (08102-02, 08102-03, 08102-05, and 08102-09) were among the subjects displaying decreased HER-2/neu staining and smaller areas of DCIS than predicted by areas of microcalcifications. Subject 08102-11 did not develop peritumoral lymphocytic infiltrates despite the presence of serum antibody. In contrast, the anti-HER-2/neu antibody-based therapeutic agent trastuzumab (Herceptin, Genentech, Inc., South San Francisco, CA; refs. 21–30) did not induce complement-mediated lysis of HER-2/neu–expressing breast cancer cells (Fig. 6B).

We next did immunohistochemistry staining to determine whether the endogenously produced antibody actually bound to tumor in vivo. Here, prevaccine and postvaccine DCIS samples from one subject (08102-09) with residual high-grade HER-2/neu–expressing DCIS were stained with an ELISA reader at 3 and 4.5 h afterwards at a wavelength of 450. Trastuzumab (Herceptin) was also used at 1:6 to 1:240 dilutions. The percentage cytotoxicity was calculated as described in Materials and Methods. C, evidence of vaccine-induced IgG bound to tumor in vivo. DCIS specimens obtained before and after vaccination from patient 08102-09 were treated with antihuman IgG. In prevaccine samples, there was minimal evidence of antihuman IgG staining (brown staining), except in necrotic cells in the duct; however, postvaccine, there was evidence of over 50% of ductal cells staining with antihuman Ig. Cells were counterstained with H&E staining (blue staining). Magnifications, ×10 (first two photos) and ×20 (the last postvaccine).

Discussion

Although definitive conclusions cannot yet be drawn, loss of HER-2/neu expression and apparent tumor regression for DCIS...
suggests a potential for HER-2/neu DC1 vaccines to improve prognosis and act as adjuncts to breast-conserving surgical strategies. Our method was structured to deliver antigen-pulsed, polarized DC1, such that IL-12p70 bursts coincided with in vivo T-cell encounters in the lymph nodes. The initial IL-12 burst was triggered by an exposure to a TLR agonist, which preconditioned dendritic cell preparations for a delayed IL-12 burst if CD40 ligation was done up to 36 h later (Fig. 1D). This delayed IL-12 burst in vivo suggests that initial exposure to TLR agonists in vivo, followed by later CD40 ligation (from activated CD40^{pos} CD40^{pos} helper T cells), may reflect a physiologic signaling sequence that either licenses repetitive IL-12 production from the same population of dendritic cells (thereby postponing dendritic cell exhaustion; ref. 7) or recruits a second population of dendritic cells that did not participate in the initial round of IL-12 secretion. Whatever the precise mechanism, the strategic preconditioning of such clinically desirable DC1 events may contribute substantially to subsequent dendritic cell performance.

In the preliminary evaluation of this trial, our vaccination strategy resulted in induction of CD4^{pos} IFN-γ^{pos} Th1 cells, peritumoral lymphocytic infiltrates (B cells and CD4^{pos} and CD8^{pos} T cells), complement-dependent tumor-lytic antibodies, and measurable reductions in DCIS. Previous studies have linked lymphocytic tumor infiltrates with better prognosis (37, 38) and HER-2/neu transgenic mouse models have elucidated the roles of B cells (antibody) and CD4^{pos} T cells (with less role for CD8^{pos} CTL) in tumor rejection (32, 33). It is remarkable, however, that these changes, including clinically apparent reductions in DCIS for half the subjects, were induced in little over 4 weeks by a well-tolerated, weekly DC1 vaccination regimen. Interestingly, antibody bound directly to tumor (indicating an in vivo breakdown of tolerance) could be shown after vaccination, although whether the role of tumor-trafficking B cells is to locally increase antibody concentration or to serve as APC is yet to be determined.

For therapeutic cancer vaccines, breaking tolerance is essential, especially because active mechanisms seem to be in place to dampen immunity even at the early DCIS stage. For example, peptide- and tumor-reactive CD8^{pos} T cells from healthy donors could be sensitized against HER-2/neu peptides in a single round of in vitro stimulation (6), but T cells from prevaccine DCIS patients could not (Fig. 2C). Prevaccine HER-2/neu tetramer^{pos} T cells also expressed relatively high levels of CTLA-4 (associated with inhibitory signaling) and comparatively low levels of CD28 (activation signaling). After vaccination, this ratio inverted, and peptide- and tumor-reactive T cells were easily expanded from peripheral blood (as with healthy donors). Interestingly, we have shown previously that IL-12 production by dendritic cells radically enhances functional avidity and tumor-killing capacity of CD8^{pos} cells (6). Therefore, expression ratios for CD28 and CTLA-4 may reflect yet another mechanism by which CD8^{pos} T-cell peripheral tolerance is regulated.

The preliminary results of this trial suggest that a focus on combined early disease settings and neoadjuvant therapy may have therapeutic effect, as well as permit meaningful study of modulations in cellular trafficking, tolerance, and changes in tumor antigen expression as a consequence of vaccination. Indeed, the selection of tumor vaccine antigens based on their role in the development and maintenance of disease may be of critical importance (39–43). The immune system has been shown naturally to sculpt characteristics of emerging tumors during carcinogenesis, supplying a natural selective force that eliminates more immunogenic phenotypes. This process, termed “immunediting” (46, 47), may slow tumor growth initially but, in the long run, probably causes less immunogenic, more aggressive tumors. The approach of DC1 vaccination for HER-2/neu^{pos} early breast cancer could have the potential to reverse this course by purposefully and selectively targeting the more aggressive HER-2/neu^{pos} phenotype. This strategy may therefore be considered “targeted immunediting.” Further investigations using the general methods and strategies examined in this study are warranted, both in patients with more advanced breast cancer and in patients with other malignancies.

Acknowledgments

Received 10/31/2006; revised 11/17/2006; accepted 12/20/2006.

Grant support: NIH grant R01–CA099997–02 and the American Cancer Society grants RSG 99–029–04–LB (B.J. Czerniecki) and CA100163 (G.K. Koski).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank the outstanding efforts of the personnel of the Leukapheresis Unit, the Cell Processing Facility, and the Clinical Cell and Vaccine Production Facility, as well as the staffs of the NIH General Clinical Research Center, the Renal Rowan Breast Center, and the Department of Surgery at the University of Pennsylvania; Vickie Salle, Patricia Rahill, Nancy O’Connor, Janine Devine, and Antonietta D’Addio, without whom this clinical trial would not be possible, for invaluable assistance; Dr. Su Yu Shu of the Cleveland Clinic for helpful suggestions and discussions; and Susan B. Komen Foundation and the Harrington Foundation for the support.

References

Targeting HER-2/neu in Early Breast Cancer Development Using Dendritic Cells with Staged Interleukin-12 Burst Secretion

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-06-4038

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2007/02/14/0008-5472.CAN-06-4038.DC1

Cited articles
This article cites 43 articles, 22 of which you can access for free at:
http://cancerres.aacrjournals.org/content/67/4/1842.full.html#ref-list-1

Citing articles
This article has been cited by 20 HighWire-hosted articles. Access the articles at:
/content/67/4/1842.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.