Lens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer

Mads Daugaard,1 Thomas Kirkegaard-Sørensen,1 Marie Stampe Ostenfeld,1 Mads Aaboe,2 Maria Høyer-Hansen,1 Torben Falck Ørntoft,1 Mikkel Rohde,1 and Marja Jäättelä1

1Apoptosis Department, Danish Centre for Translational Breast Cancer Research and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark and 2Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Aarhus, Denmark

Abstract

Heat shock protein 70-2 (Hsp70-2) is a chaperone protein essential for the growth of spermatocytes and cancer cells. Here, we show that Hsp70-2 depletion triggers lysosomal membrane permeabilization and cathepsin-dependent cell death and identify lens epithelium-derived growth factor (LEDGF) as an Hsp70-2–regulated guardian of lysosomal stability in human cancer. Knockdown of LEDGF in cancer cells induces destabilization of lysosomal membranes followed by caspase-independent and Bcl-2–resistant cell death. Accordingly, ectopic LEDGF stabilizes lysosomes and protects cancer cells against cytotoxicity induced by anticancer agents that trigger the lysosomal cell death pathway. Remarkably, ectopic LEDGF also increases the tumorigenic potential of human cancer cells in immunodeficient mice, and LEDGF expression is increased in human breast and bladder carcinomas correlating with that of Hsp70-2 in invasive bladder cancer. Taken together, these data reveal LEDGF as an oncogenic protein that controls a caspase-independent lysosomal cell death pathway. [Cancer Res 2007;67(6):2559–67]

Introduction

The human heat shock protein 70 (Hsp70) family consists of at least eight highly homologous members that differ from each other by intracellular localization and expression pattern (reviewed in refs. 1–3). Six of them (Hsp70-1A, Hsp70-1B, Hsp70-1L, Hsp70-2, Hsp70-6, and Hsc70) reside mainly in the cytosol, one localizes to the mitochondria (mtHsp70), and one to the endoplasmatic reticulum (Bip). Hsp70 family members function as ATP-dependent molecular chaperones that assist folding of newly synthesized polypeptides, assembly of multiprotein complexes, transport of proteins across cellular membranes, and targeting of proteins for lysosomal degradation. A long line of experimental evidence positions the major stress-inducible Hsp70 (Hsp70-1A/B; here referred to as Hsp70-1) as a cancer-associated survival protein with oncogenic potential (4–9). In addition, the highly homologous Hsp70-2 has recently been identified as a potential cancer-promoting protein expressed at high levels in a subset of human breast cancers (10). Apart from cancer, Hsp70-2 is expressed at high levels in the testis and at considerably lower or nondetectable levels in other tissues (11). It has been assigned a particular function in male germ cells, where it is essential for the formation of the active CDC2/cyclin B complex during the metaphase of the first meiotic division (12). Accordingly, male mice deficient of Hsp70-2 are sterile due to massive spermatocyte apoptosis (13). Depletion of Hsp70-2 in cancer cells induces G1 arrest and senescence that are mediated by an up-regulation of the expression of macrophage inhibitory cytokine-1 (MIC-1; ref. 10). Interestingly, cancer cells depleted for Hsp70-1 and Hsp70-2 display strikingly different morphologies, cell cycle distributions, and gene expression profiles, indicating that in spite of their remarkable homology, Hsp70 family members either display specificity for their client proteins or serve chaperone-independent specific functions in cancer cells (10).

Most normal cells respond to death stimuli by undergoing caspase-dependent apoptosis. In contrast, cancer cells frequently escape spontaneous and therapy-induced caspase activation due to acquired mutations in their apoptotic machinery (14, 15). For example, up-regulation of antiapoptotic Bcl-2 family members and mutations in p53 tumor suppressor protein are common in human tumors. Apoptosis-resistant cancer cells are, however, not completely resistant to cell death, but can die via alternative cell death pathways often involving noncaspase proteases such as cathepsins and calpains (16–18). Emerging evidence also suggests that the alternative cell death pathways can be selected during tumor development. For example, the levels of cytosolic inhibitors or lysosomal proteases are commonly increased in cancer cells and tissues (19–21), and Hsp70-1 is found in the endolysosomal membranes of many tumor cells and stressed cells where it inhibits the release of lysosomal cathepsins into the cytosol (22, 23). Thus, better knowledge of tumor-associated proteins that control alternative cell death pathways is of great importance for the understanding of drug resistance and development of more effective cancer therapies.

This study was initiated by data showing that Hsp70-2–depleted cancer cells undergo MIC-1–independent cell death. To identify the Hsp70-2–regulated protein(s) responsible for the cell death phenotype, we chose potential candidates among the genes found to be regulated by Hsp70-2 depletion in HeLa cervix carcinoma cells by Affymetrix genechip microarray analysis and investigated their effect on cell survival. This analysis revealed that the down-regulation of lens epithelium-derived growth factor (LEDGF; also known as p75, PC4, and SRSF1 interacting protein 2 and dense fine speckles 70) is responsible for the death of Hsp70-2–depleted cancer cells, and that LEDGF possesses great oncogenic potential. Thus, we studied the survival function of LEDGF in further detail and analyzed its expression in large panels of tissue biopsies originating from human bladder, colon and breast cancers, and their
corresponding normal tissues. Our data identify LEDGF as a cancer-
associated survival protein that inhibits a caspase-independent
lysosomal cell death pathway.

Materials and Methods

Cell culture. MCF-7 breast carcinoma, HeLa cervix carcinoma, U2OS osteosarcoma, WI-38 lung fibroblast, MCF-10A mammary epithelial, HBL-
100 mammary epithelial, and PNT1A prostate epithelial cells, as well as single cell clones of MCF-7 cells transfected with an empty pcDNA-4 vector
(Invitrogen, Carlsbad, CA) or pcDNA-4 encoding for human Bel-2 (24), or with a plasmid encoding for a fusion protein consisting of enhanced green
fluorescent protein and rat microtubule-associated protein-1 light chain-3
(EGFP-LC3; ref. 25), were grown in RPMI 1640 with Glutamax-1 (Invitrogen)
supplemented with 6% FCS (Biological Industries) and antibiotics. The
growth medium for MCF-10A cells was further supplemented with 10% fetal
calf serum (Bethesda Research Laboratories, Rockville, MD) and pen/strep.

Transfections. Small interfering RNAs (siRNA) targeting HSPA1A and
HSPA1B (A1), and a control siRNA (C) were described previously (10).

Analysis of mRNA. Complementary DNA samples for RT-PCR
were from Sigma, and zVAD-fmk was from Bachem (Bubendorf, Switzerland).

Analysis of cell density, cell death, autophagy, and morphology. Cell
density was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT; Sigma-Aldrich) reduction assay and cell death by
lactate dehydrogenase (LDH) release assay (Roche) essentially as described
previously (32).

Enzymatic activity measurements. The effecter caspase and cysteine
cathepsin activities in cell lysates and cytosolic extracts from digtamin-
treated cells were estimated using Ac-DEVD-aflavin (Promega, Madison, WI)
derived from Ac-DEVD-AFC (BIOMOL Research Laboratories, Plymouth Meeting, PA)
and zFR-AFC (Enzyme System Products, Livermore, CA) probes, respectively,
as described previously (32). Protease activities were normalized to lactate
dehydrogenase activity determined by a cytotoxicity detection kit (Roche).

Assay for the lysosomal pH. Cells incubated with the 2 µg/mL acridine
orange (Molecular Probes, Invitrogen) and counting cells with condensed
nuclei in an inverted Olympus (Center Valley, PA) IX-70 fluorescence
microscope (Filter U-MWU, 330–385 nm) connected to an Olympus C-3030
digital camera. For each experiment, a minimum of six randomly chosen areas with a minimum of 30 cells each were counted. Phase-
contrast pictures of the cells were obtained with the same microscope.

Assay for lysosomal stability. Cells homogenized by 150 strokes in a
DUALL glass homogenizer in a sucrose buffer [0.25 mol/L sucrose, 1 mmol/L
EDTA, 20 mmol/L HEPES-NaOH (pH, 7.4)] were centrifuged at 1,000 × g
for 10 min, the supernatant was collected and centrifuged at 3,000 × g for
10 min, and the resulting supernatant was centrifuged at 17,000 × g
for 10 min. The resulting supernatant was centrifuged at 17,000 × g
for 10 min. The resulting supernatant was centrifuged at 17,000 × g
for 10 min to obtain the light membrane fraction containing the majority of the lysosomes. The light membrane fractions were incubated in an isonic (265 mOsm) or hypotonic (50–100 mOsm) sucrose buffer for 45 min on ice. The cysteine cathepsin (zFrase) activity in the supernatants was measured as described above, and the results are expressed as the percent of total activity released by 400 µg/ml digitonin.

Tumor xenografts. Single cell-cloned HeLa cells expressing either empty vector pcDNA3.1 (Invitrogen) or LEDGF (1.5 × 10^6 in 200 µL PBS) were inoculated s.c. into the right flank of female FOX CHASE severe combined immunodeficiency (SCID) mice. The tumor diameter was measured using a caliper, and the tumor volume was estimated using the formula, V = 4/3 × π × r^3. All experiments were terminated at the time when the tumors in untreated animals reached maximum tolerated size (r = 6 mm). All animal work was carried out in accordance with the NIH guidelines.

Statistical analysis. Statistical significance was evaluated by two-sided paired Student’s t test, and correlation was by Pearson’s product moment test.

Results

Down-regulation of LEDGF mediates cell death in Hsp70-2-depleted cancer cells. We have recently shown that siRNA-mediated depletion of Hsp70-2 induces a substantial up-regulation of MIC-1 and MIC-1-dependent G1 arrest in cancer cells (10). Here, we show that Hsp70-2 depletion induces a delayed MIC-1-independent cell death with apoptotic-like chromatin condensation (Fig. 1). As we have shown earlier, the flat senescent phenotype of Hsp70-2-depleted cells was abolished by the codepletion of MIC-1, but the MIC depletion failed to rescue the cells from cell death occurring 72 to 96 h after the transfection. Prompted by the ability of several Hsp70-2 siRNAs to induce a similar apoptotic-like phenotype (data not shown), we searched for putative Hsp70-2-regulated gene(s) responsible for the cell death phenotype. Affymetrix genechip analysis (10) revealed that the mRNA of several Hsp70-2siRNAs to induce a similar apoptosis-like phenotype, occurring 72 to 96 h after the transfection. Prompted by the ability of several Hsp70-2 siRNAs to induce a similar apoptotic-like phenotype, we show that Hsp70-2 depletion induces a delayed MIC-1–independent apoptosis-like cell death. HeLa cells were transfected with the control (C), Hsp70-2 (A2.2), and Hsp70-2 with two silent mutations in the sequence recognized by A2.2 siRNA. Hsp70-2 with two silent mutations in the sequence recognized by A2.2 siRNA.

Figure 2. Cell death induced by Hsp70-2 depletion is mediated by LEDGF down-regulation. HeLa (A and B), MCF-7, and HBL-100 (C) cells were transfected with indicated siRNAs (C, control; A1A, Hsp70-2; A1A, A2.2, and A2.3, Hsp70-2; A1L, Hsp70-2L; A6, Hsp70-6; A8, Hsp70-7) or plasmids and analyzed for the expression of the indicated mRNAs by Affymetrix genechip analysis (10) or RT-PCR (A, left) and proteins by immunoblotting (B and C) and for apoptosis-like chromatin condensation. A minimum of 6 × 30 green cells per experiment were counted. Columns, means of three independent experiments; bars, SD. **, P value <0.01.

Figure 1. Depletion of Hsp70-2 induces MIC-1-independent apoptosis-like cell death. HeLa cells were transfected with the control (C), Hsp70-2 (A2.2), and MIC-1 (M1) siRNAs in indicated combinations and analyzed 96 h later for the expression of Hsp70-2, MIC-1, and GAPDH (loading control) by immunoblotting (A) and for apoptotic-like chromatin condensation by Hoechst 33342 staining and microscopy (B and C). A minimum of 6 × 30 cells were counted for each experiment. Columns, means of three independent experiments; bars, SD. B, bar, 20 µm.

compared with the control siRNA-treated cells (Fig. 2A). These data were confirmed by RT-PCR and immunoblot analyses of the siRNA-treated HeLa cells (Fig. 2A and B). The effective down-regulation of LEDGF protein in HeLa cells treated with three nonoverlapping Hsp70-2 siRNAs strongly suggested that the down-regulation of LEDGF was a specific consequence of Hsp70-2 depletion (Fig. 2B). Accordingly, ectopic Hsp70-2 containing two silent mutations in the sequence recognized by A2.2 siRNA inhibited the A2.2-mediated down-regulation of LEDGF (Fig. 2B). Moreover, ectopic Hsp70-2 enhanced the expression of LEDGF in control cells further supporting the role of Hsp70-2 as a positive regulator of LEDGF expression (Fig. 2B). Interestingly, this regulatory effect was specific for Hsp70-2 because the depletion of
highly homologous cytosolic Hsp70 family members (Hsp70-1, Hsp70-1L, Hsp70-6, and Hsc70) did not down-regulate LEDGF mRNA (Fig. 2A). The LEDGF expression depended on the Hsp70-2 also in MCF-7 breast cancer cells and in HBL-100 breast epithelial cells, suggesting that Hsp70-2 is a general regulator of LEDGF expression levels (Fig. 2C). Importantly, the ectopic expression of LEDGF effectively inhibited the cell death induced by Hsp70-2 depletion (Fig. 2D). Thus, Hsp70-2 and LEDGF are coregulated, and the down-regulation of LEDGF is an essential mediator of the cell death induced by Hsp70-2 depletion.

Depletion of LEDGF triggers lysosomal cell death pathway in cancer cells. To test whether the down-regulation of LEDGF is sufficient to induce cell death, we designed two nonoverlapping siRNAs (L1 and L2) that effectively inhibited the expression of LEDGF in various cell types (Fig. 3). LEDGF depletion decreased the density of HeLa cells in a time-dependent manner resulting in 60% to 65% reduction 4 days after the transfection (Fig. 3A). The reduced cell density was not associated with the G1 cell cycle arrest or senescent-like flat phenotype characteristic of Hsp70-2-depleted HeLa cells (Fig. 3B and data not shown). Instead, the microscopic analysis revealed increasing numbers of detached rounded cells and apoptosis-like chromatin condensation in over half of the cells 4 days after the transfection (Fig. 3B). The increase in cell death was further evidenced by the loss of plasma membrane integrity as shown by the release of a cytosolic enzyme (LDH) into the supernatant 3 days after the transfection (Fig. 3B). Notably, ectopic LEDGF cDNA with three silent mutations in the sequence recognized by the L2 siRNA (LEDGF*) reversed the cell death phenotype induced by the L2 but not the L1 siRNA (Fig. 3C). Correspondingly, ectopic wild-type LEDGF that was effectively silenced by the siRNAs failed to confer any rescue. Thus, the observed cell death phenotype was a specific consequence of LEDGF depletion. A similar phenotype was observed in LEDGF-depleted breast cancer (MCF-7) and osteosarcoma (U2OS) cells that detached and rounded up 2 to 4 days after the transfection, resulting in a dramatically reduced cell density, whereas the immortalized epithelial cells (HBL-100 and MCF-10A breast epithelium and PNT1A prostate epithelium) and primary lung

![Figure 3](image-url). Depletion of LEDGF induces apoptosis-like cell death in cancer cells. A, HeLa cells transfected with control siRNA or two nonoverlapping siRNAs against LEDGF (L1 and L2) were analyzed for the expression of LEDGF and GAPDH by immunoblotting 72 h posttransfection and for cell density by MTT reduction assay 1 to 4 days after the transfection. The data are presented as percentage of MTT reduction in untreated cultures. Points, means of three triplicate experiments; bars, SD. B, HeLa cells were transfected with the indicated siRNAs and analyzed for the plasma membrane integrity by the LDH release assay (72 h) and the apoptosis-like nuclear condensation by microscopy (96 h). Columns, means of three (LDH assay) or four (nuclear condensation) independent experiments; bars, SD. Bar, 80 μm (top) and 20 μm (bottom). C, HeLa cells transfected with an empty vector or cDNAs encoding for wild-type LEDGF (LEDGFwt) or LEDGF with three silent mutations in the sequence corresponding to the L1 siRNA sequence (LEDGF*) and the indicated siRNAs were analyzed for cell density by MTT assay 96 h after the plasmid transfection. The data are presented as percentage of MTT reduction in untreated cultures. Columns, means of three triplicate experiments; bars, SD. D, the indicated cell lines were transfected with the control or LEDGF siRNA and analyzed 96 h later for cell density by MTT assay. The data are presented as percentage of MTT reduction in untreated cultures. Columns, means of three triplicate experiments; bars, SD. **, P value <0.01 as compared with cells transfected with either L1 or L2 (A), control siRNA (B and D) or vector (C).
Figure 4. Knockdown of LEDGF induces cathepsin-dependent cell death that bypasses the Bcl-2 checkpoint.

A, HeLa cells treated with a control, Hsp70-2, or LEDGF siRNAs for 72 h or with 50 μmol/L etoposide for 24 h were analyzed for effector caspase (DEVDase) activity (left). The values are represented as arbitrary units. Columns, means of three independent triplicate experiments; bars, SD. MCF-7 cells treated with LEDGF siRNA for 96 h or with 5 ng/mL TNF for 24 h were analyzed for cell density by MTT reduction assay (right). When indicated, zVAD-fmk was added to the cultures at the final concentration of 5 or 75 μmol/L 48 h before the analysis. The data are presented as percentage of MTT reduction in untreated cultures. Columns, means of three independent triplicate experiments; bars, SD.

B, single cell clones of MCF-7 cells transfected with an empty pCEP vector (pCEP-1 and pCEP-2) or pCEP encoding for Bcl-2 (Bcl-2-1 and Bcl-2-2) were treated with indicated siRNAs for 96 h or with 5 ng/mL TNF for 24 h and analyzed for the indicated proteins by immunoblotting and for cell density by MTT reduction assay. The data are presented as percentage of MTT reduction in untreated cultures. Columns, means of three independent triplicate experiments; bars, SD. C, HeLa cells were treated with a control or LEDGF siRNA for 48 h and stained with acridine orange (AO). The intensity of the red staining was analyzed as described in Materials and Methods. Representative confocal images (bar, 20 μmol/L) and histograms with average red staining intensity (AO) per pixel are shown. MCF7-eGFP-LC3 were treated with olicofectamine alone (–) or with control or LEDGF siRNAs for 72 h, fixed and analyzed for the translocation of LC3 to vesicular structures (autophagosomes) by confocal microscopy. Histograms with percentages of green cellular cross-sections with over five LC3 positive dots are shown (right). Columns, means for three independent duplicate experiments; bars, SD. D, HeLa cells treated with a control, Hsp70-2, or LEDGF siRNA for 72 h or with 50 μmol/L etoposide for 24 h were analyzed for the cytosolic and total cysteine cathepsin activities (left). The values for the cytosolic cysteine cathepsin activity are presented as percentages of the total activity. The same cells were analyzed 96 h later for apoptosislike nuclear condensation (right). When indicated, cathepsin B inhibitor (CRA12529) was added at indicated concentrations. Columns, means of three independent experiments; bars, SD. *, P value <0.05; **, P value <0.01 as compared with the cells transfected with a control siRNA (A, left; C, and D, left) or with a vector (B), or with the cells without zVAD-fmk (A, right) or CRA12529 (D, right).
fibroblasts (WI-38) retained their adherent phenotype and cell density upon LEDGF depletion (Fig. 3D and data not shown). The massive cell death in cancer cells depleted for LEDGF was not associated with a measurable effector caspase activity, and the potent pan-caspase inhibitor zVAD-fmk failed to inhibit the cell death in both HeLa and MCF-7 cells (Fig. 4A and data not shown). Furthermore, the cell death induced by LEDGF depletion was completely resistant to the antiapoptotic protein Bcl-2 that effectively inhibited TNF-induced apoptosis in MCF-7 cells (Fig. 4B). These data indicate that LEDGF depletion triggers a cell death pathway clearly distinct of classic cytochrome c- and caspase-mediated apoptosis. Thus, we investigated whether the LEDGF depletion induced a lysosomal cell death pathway characterized by an early increase in the volume of the acidic (lysosomal) compartment, permeabilization of lysosomes, and cathepsin-mediated execution (18, 35). Indeed, the cells depleted for LEDGF for 48 h displayed enhanced accumulation of acridine orange (an acidotropic and metachromatic weak base that emits red fluorescence when in high concentration), indicative of an increase of the volume of the acidic compartment of the cell (Fig. 4C). One day later (72 h after the siRNA transfection), LEDGF-depleted cells manifested with an increase in the number of autophagosomes (LC3-positive vesicles) and the destabilization of the lysosomes as shown by an increase in the cytosolic cysteine cathepsin activity (Fig. 4C and D). The lysosomal leakage was at least partially responsible for the cell death because a cell-permeable inhibitor of cathepsin B (CRA12529) conferred significant protection (Fig. 4D). Notably, the Hsp70-2 depletion induced a similar, albeit weaker, lysosomal leakage accompanied by cathepsin-dependent and caspase-independent cell death (Fig. 4A and D).

LEDGF enhances lysosomal stability, resistance to lysosome-targeting drugs, and tumorigenic potential of cancer cells. To further investigate the effects of LEDGF on cancer cell lysosomes, we created single cell clones of MCF-7 and HeLa cells that express ectopic LEDGF (Fig. 5A). The lysosomes isolated from the cells expressing ectopic LEDGF were significantly more resistant to an

![Figure 5. LEDGF induces resistance to the lysosomal cell death pathway and enhances tumorigenicity. A, stable single cell clones of MCF-7 and HeLa cells transfected with an empty vector or human LEDGF were analyzed for the expression of LEDGF and GAPDH by immunoblotting. B, the stability of lysosomes isolated from indicated MCF-7 transfectants was analyzed in vitro by incubating them for 45 min in isotonic (265 mOsm) and hypotonic (50–100 mOsm) conditions. The data are presented as percentage of cysteine cathepsin activity released to the supernatant. Columns, means of two independent duplicate experiments; bars, SD. C, the indicated MCF-7 transfectants were treated with 100 μM etoposide (Eto), 4 μM siramesine (Sira), 5 μM doxorubicin (Dox), 5 ng/mL TNF or 100 nmol/L staurosporine (STS) for 24 h and analyzed for cell density by MTT reduction assay. The data are presented as percentage of MTT reduction in untreated cultures. Columns, means of three independent triplicate experiments; bars, SD. D, the indicated HeLa transfectants (1.5 × 10⁶ per mouse, n = 5) were inoculated s.c. into SCID mice, and the tumor growth was followed for 33 days. The data indicate the percentage of mice with measurable tumors (r > 2.5 mm; left). Points, mean tumor volume in tumor-bearing mice; bars, SD (right). * P value <0.05; ** P value <0.01 when LEDGF-transfected cells are compared with either one of the vector-transfected cells (B and C) or when either one of LEDGF/75-transfected clones is compared with either one of vector-transfected clones (D).]
in vitro exposure to hypotonic stress than those originating from vector-transfected control cells (Fig. 5B). Thus, LEDGF is likely to affect the stability of lysosomes instead of inhibiting a specific signaling pathway that leads to the lysosomal membrane permeabilization. Accordingly, the ectopic LEDGF protected MCF-7 cells against the cell death induced by various agents that trigger the lysosomal membrane permeabilization, i.e., sirmesane, etoposide, doxorubicin, and TNF, whereas no protective effect was detected against a classic apoptosis inducer staurosporine (Fig. 5C; refs. 22, 24). The protection against cytotoxic drugs was dose dependent, the clone B (8.4-fold increase in the LEDGF expression) showing more pronounced drug resistance than the clone A (3.1-fold increase in the LEDGF expression). Moreover, the LEDGF-expressing MCF-7 clone B showed a tendency for an increased tumorigenic potential in an orthotopic breast cancer model in immunodeficient mice (data not shown). Even stronger enhancement of tumorigenicity was observed in a s.c. HeLa xenograft model, in which two single cell clones expressing ectopic LEDGF formed significantly more and significantly faster growing tumors than the two control clones (Fig. 5D).

Expression of LEDGF is increased in human breast and bladder cancer. We have earlier shown that the Hsp70-2 mRNA levels are elevated in a subset of primary and metastatic breast cancers (10). Prompted by our data showing that LEDGF is a potent survival factor that enhances tumorigenicity and that its expression is regulated by Hsp70-2 in cell culture, we next analyzed whether LEDGF expression is increased in human cancer tissues. The analysis of 80 breast biopsies originating from normal tissue (n = 11), primary carcinoma (n = 38), or metastatic carcinoma (n = 21) revealed that subpopulations of both primary tumors and metastases had higher LEDGF mRNA levels than the normal breast tissue (Fig. 6A). Furthermore, an analysis of microarray data on 90 bladder biopsies showed a significant increase in LEDGF mRNA expression in carcinomas invaded to the muscle (T2-4) as compared with the normal tissue as well as in both T2-4 carcinomas, and carcinomas invaded to the subepithelium and/or connective tissue (T1) as compared with the benign tumors (Fig. 6B). An additional analysis of 117 bladder biopsies by customized Affymetrix microarray platform Eos HU03 (36) supported the conclusion that LEDGF mRNA is elevated during bladder tumorigenesis by showing that the medians for the normal, benign tumor, T1 and T2-4 samples were 29 (n = 21; 47.6% of the values above the median), 7 (n = 31; 51.2% above the median), 35 (n = 20; 55% above the median), and 98 (n = 45; 55.5% above the median), respectively. Contrary to the breast and bladder carcinomas, analysis of Affymetrix microarray data on 118 colon biopsies (29) originating from sporadic microsatellite unstable tumors (n = 19), hereditary microsatellite unstable tumors (n = 15), or microsatellite stable tumors (n = 67) showed no significant differences in LEDGF expression levels when compared with normal colon (n = 17).

Discussion

Transformation and tumor environment enhance the expression of lysosomal cysteine cathepsins and increase their secretion into the extracellular space (37-40). These changes lead not only to cathepsin-mediated increase in angiogenesis, tumor growth, and metastatic capacity, but also to an increased susceptibility to lysosomal destabilization and cathepsin-dependent cell death. Accordingly, tumor progression has been suggested to require cellular changes that confer resistance not only to apoptosis but also
to lysosomal cell death pathways (14, 15, 18). The data presented above identify LEDGF as an Hsp70-2–regulated protein that can mediate such changes by stabilizing the lysosomes and thereby enhancing tumor cell survival both in vitro and in vivo. Thus, both LEDGF and Hsp70-2 emerge as potential targets for therapy of invasive cancers with acquired defects in their apoptosis signaling.

We have earlier shown that Hsp70-2 depletion results in a substantial up-regulation of MIC-1 expression and MIC-1–dependent growth arrest specifically in cancer cells (10). The data presented here reveal an additional tumorigenic effect of Hsp70-2, i.e., positive regulation of LEDGF expression and LEDGF-mediated enhanced survival potential. Akin to the MIC-1 regulation, the transcriptional control of LEDGF is specific to Hsp70-2 because the depletion of highly related cytosolic Hsp70 members failed to down-regulate LEDGF mRNA levels. The two responses are, however, controlled differently. Whereas the regulation of MIC-1 expression is limited to cancer cells, Hsp70-2 regulates LEDGF levels also in immortalized epithelial cells. The up-regulation of MIC-1 that is limited to Hsp70-2–depleted cancer cells may thus be part of a stress response created by the absence of Hsp70-2, whereas the Hsp70-2–mediated positive control of LEDGF could reflect a more direct role for Hsp70-2 in the transcriptional regulation. This idea is supported by the data showing that both up- and down-regulation of Hsp70-2 affect LEDGF expression in cultured cells, and that expression of Hsp70-2 and LEDGF show a significant positive correlation in bladder biopsies.

Interestingly, our data show that LEDGF (and Hsp70-2) controls a lysosomal cell death pathway rather than caspase-mediated apoptosis: (a) the cancer cell death associated with the LEDGF depletion was not accompanied by detectable caspase activation, but was instead preceded by an increase in the volume of the acidic compartment of the cell, increased number of autophagosomes, and the leakage of the lysosomal proteases into the cytosol; (b) pharmacologic inhibition of cathepsin B, but not that of caspas, conferred significant protection against cell death induced by LEDGF siRNAs; (c) the antiapoptotic Bcl-2 failed to rescue the LEDGF-depleted cells from cell death; and finally (d) ectopic LEDGF stabilized the lysosomal membranes and conferred protection against agents known to trigger the lysosomal cell death pathway. Of special interest is the ability of LEDGF to confer protection to the sigma-2 receptor ligand that kills cancer cells by a t(9;11)(p22;p15) recurrent but rare translocation in acute and leukemia-related translocations, the COOH terminus of the nucleoprotein-98 is fused to the NH2 terminus of the nucleoprotein-98 gene. Such a fusion can result in the replacement of the NH2-terminal LEDGF sequences that act as transcriptional repressors with FXFG repeats of nucleoprotein-98 that possess strong transcriptional activation activity (45, 49).

In conclusion, our data define novel functions for Hsp70-2 and LEDGF in the control of the stability of cancer lysosomes. These data open exciting possibilities for the development of cancer therapies based on the inhibition of either expression or function of these proteins.
References

Correction: Lens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer

In this article (Cancer Res 2007;67:2559–67), which appeared in the March 15, 2007 issue of Cancer Research (1), there was an error in the Western blot in (Fig. 4B). In this blot, the loading control of the first three lanes was duplicated for the next three lanes, a mistake that occurred when assembling the figure. The authors have found the original uncut blot from the same experiment, which appears below. The authors regret this error.

Reference

Published online April 15, 2016.
doi: 10.1158/0008-5472.CAN-16-0685
©2016 American Association for Cancer Research.
Lens Epithelium-Derived Growth Factor Is an Hsp70-2 Regulated Guardian of Lysosomal Stability in Human Cancer

Mads Daugaard, Thomas Kirkegaard-Sørensen, Marie Stampe Ostenfeld, et al.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/67/6/2559

Cited articles This article cites 48 articles, 19 of which you can access for free at:
http://cancerres.aacrjournals.org/content/67/6/2559.full#ref-list-1

Citing articles This article has been cited by 23 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/67/6/2559.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.