Innate versus Adaptive Immunity: A Paradigm Past Its Prime?

Lisa Borghesi and Christine Milcarek

Department of Immunology, University of Pittsburgh Department School of Medicine, Pittsburgh, Pennsylvania

Abstract

Studies in tumor immunology have relied upon the classic paradigm of distinct innate and adaptive parts of the immune system. However, recent advances in immunology suggest that this division may be overly simplistic, with emerging evidence of a breakdown in conventional hallmarks of each system. Here, we provide an overview of this area and discuss how the concept of a continuum of immune cell populations suggests novel areas of investigation in cancer research. [Cancer Res 2007;67(9):3989–93]

Introduction

Classically, the innate and adaptive arms of the immune response have been represented as two separate systems with distinct properties. The innate immune system is widely recognized to use a small number of germ line–encoded receptors that detect a limited set of conserved antigens. This system responds to antigens with fast kinetics and it lacks memory capabilities. In contrast, the adaptive immune system uses a large number of variable immune receptors to generate a vast repertoire. This system responds with relatively delayed kinetics and it possesses effective recall responses (Box I). Recently, several studies have described hematopoietic cells bearing the hallmark characteristics of both the innate and adaptive immune systems. Thus, it is becoming unclear how to classify the increasing number of hematopoietic populations that do not neatly fit within this binary scheme.

At present, there are seven major populations that do not conform to conventional bimodal criteria: natural killer T (NKT) cells, γδ T cells, CD8εαα T cells, B1 B cells, marginal zone (MZ) B cells, and subsets of both NK cells and neutrophils. As detailed below, these lymphocyte subsets are recognized to possess seminal properties of both the innate and adaptive responses. One consequence is that B1 lymphocytes, for example, are alternately referred to as either innate cells (1–3) or innate-like cells (4–6). Yet, B1 B cells fail to develop in rag-deficient or severe combined immunodeficient (SCID) mice, a hallmark criterion of adaptive immunity. So which classification of these cells is more accurate, innate, innate-like, or adaptive? Similarly, invariant NKT cells and γδ T-cell subsets are alternately grouped with innate or adaptive responses depending on the criteria emphasized (1, 3, 7, 8). As with B1 cells, neither invariant NKT cells nor γδ T cells develop in the absence of rag gene expression. Importantly, all these interpretations are scientifically justified because the developmental and functional properties blend key innate and adaptive characteristics. Thus, the lack of consensus stems not from promiscuous use of terminology but from an inability of the current framework to accommodate these populations in a biologically meaningful way. Recently, NK cells and neutrophils have been found to possess both memory and variable immune receptors, which have been thought to be specific features of adaptive immune cells. The findings and implications of these provocative studies (9, 10) have yet to be fully appreciated by the scientific community.

Box I: Conventional distinguishing characteristics of innate versus adaptive immunity

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Innate immunity</th>
<th>Adaptive immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptors</td>
<td>Invariant</td>
<td>Variable</td>
</tr>
<tr>
<td>Distribution</td>
<td>Non-clonal</td>
<td>Clonal</td>
</tr>
<tr>
<td>Memory</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Specificity</td>
<td>Degenerate</td>
<td>Specific</td>
</tr>
<tr>
<td>Response kinetics</td>
<td>Rapid</td>
<td>Delayed</td>
</tr>
</tbody>
</table>

Characteristics of the Conventional versus Nonconventional Hematopoietic Populations

Germ line–encoded or semi-invariant receptors. The two major molecular mechanisms underlying receptor diversification are V(D)J recombination and N region addition (Box II). Through V(D)J recombination, DNA segments encoding immune receptors are rearranged to produce novel combinations. The theoretical diversity of such a rearranging repertoire is tremendous [i.e., ~10^18 for immunoglobulins and ~10^26 for γδ T-cell receptors (TCR)], although this theoretical diversity is not achieved due to constraints that include biased gene segment usage and recombination failures. The diversity of the γδ TCR complex expressed by invariant NKT cells, for example, is constrained by the expression of a single rearranged TCRαβ chain (Vα14-Jα18 in mice and Vα24-Jα18 in man) paired with restricted TCRβ chain utilization (Vβ8.2, Vβ2, or Vβ7 in mice and Vβ11 in man; ref. 11). Likewise, CD8εαα T cells have skewed Vβ usage that seems to contribute to oligoclonaity (12).

Box II: Key concepts in receptor diversity

V(D)J recombination: The mechanism by which V, D, and J gene segments encoding immunoglobulin and TCR loci are rearranged. Recombination is mediated by the V(D)J recombinase complex within which the rag1/2 genes initiate DNA cleavage. Terminal deoxynucleotidyl transferase (TdT): Enzyme that adds template-independent nucleotides at the junction between gene segments during V(D)J recombination. Splice variants of TdT delete nucleotides. TdT activity contributes tremendous diversity to the immunoglobulin and TCR repertoires.

©2007 American Association for Cancer Research. doi:10.1158/0008-5472.CAN-07-0182

Requests for reprints: Lisa Borghesi, Department of Immunology, University of Pittsburgh Department School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261. Phone: 412-383-7074; Fax: 412-383-8098; E-mail: borghesi@pitt.edu.
Box II continued.

Germ line encoded:

Classic genetic definition: Derived from the original sequence of DNA inherited from a predecessor; heritable genetic material.

Immunologic definition: Derived from the original sequence of DNA inherited from a predecessor in the absence of the somatic addition of non-template-encoded nucleotides. Importantly, and confusingly, immune receptors transcribed from V(D)J rearranged loci are still referred to as germ line encoded, although the DNA configuration has changed. The implication is that these receptors arise from sequences strictly encoded by the original DNA template, in the absence of non-templated modifications by TdT.

N region addition refers to the random insertion or excision of nucleotides at junctions between rearranged segments. Both B1 B cells and γδ T cells predominate during fetal development when TdT, the enzyme that inserts/deletes non-template-encoded nucleotides at D-J and V-DJ junctions, is absent or is expressed at low levels in bone marrow and thymus. The paucity of TdT during this stage of V(D)J rearrangement produces antigen receptors that, while rearranged, are essentially germ line encoded (see Box II). For example, >90% of pre-B cells from newborn infants lack N region additions versus <2% of adult pre-B cells. Within the individual B-cell subsets, 38% of B1a cells lack N region additions at V-D-J junctions compared with 20% of B1b cells and only 7% of B2 cells (13). The different degree of diversity in B1a versus B1b cells is interesting because B1a cells produce natural antibody that provides protection during initial infection, whereas B1b cells provide neutralizing antibodies with slower response kinetics (2). For this reason, B1a cells are considered to mediate innate immune responses, whereas B1b cells mediate adaptive or acquired immunity (2, 14). MZ B cell are also enriched for canonical joints that lack non-templated additions (15). The paucity of N region modifications further exacerbates biased usage of V region segments by favoring homology-directed recombination rather than random rearrangement. For example, diversity of the γδ T cell repertoire is limited to ~70 potential pairs due to the combination of restricted V region gene usage and paucity of N region additions at TCRy loci. Thus, whereas individual clones bearing junctional diversity at immunoglobulin or TCR loci are detectable, the antigen receptor repertoires of NKT cells, B1 B cells, and γδ T cells are only a fraction that of αβ T and B2 B cells.

Antigenic specificity. Receptors of the innate versus adaptive immune system are also distinguished by the nature and composition of the antigens to which they will react. Innate immune receptors commonly recognize a limited number of target molecules, including lipopolysaccharide, phosphoantigens, lipids, and double-stranded RNA, that are widely expressed by many infectious agents. Adaptive immune receptors recognize complex proteins that can be widely shared or uniquely expressed by individual pathogens. In contrast to innate immune receptors for which ligands seem to be highly conserved, receptors of the adaptive immune system detect both conserved and non-conserved ligands. Although the ligands for innate versus adaptive immune receptors differ, it is important to realize that recognition of a restricted array of antigens does not necessarily imply a lack of specificity in the innate immune system (16), rather the fundamental difference in the innate immune system is in the nature of the antigens it recognizes.

What types of antigens are recognized by non-conventional cells, also termed bridge cells? In the case of B1 B cells, sugar and lipid antigens are recognized. Indeed, ~5% to 8% of the B1 repertoire in the murine peritoneal cavity reacts to phosphorylcholine (14). These patterns contrast with the recognition specificities of αβ T cells and B2 B cells, which are largely, but not exclusively, characterized by peptide epitopes. Alternately, classic NKT cells are defined by CD1-restricted recognition of αGalCer, a mimic of microbial cell wall glycosylceramides, as well as other bacterial products. αGalCer-responsive NKT cells mediate effective antitumor responses in murine models of fibrosarcoma as well as carcinomas of the colon, breast, or lung (17). The immunotherapeutic potential of these cells was recently highlighted by a phase I trial in which autologous NKT cells expanded with αGalCer and interleukin 2 were shown to be well tolerated by patients with advanced non-small-cell lung cancer (18). In contrast to αβ T cells, γδ T cells do not require binding and presentation by classic MHC. Rather, a high proportion of human circulating γδ T cells recognize small phosphorylated molecules of mycobacterial origin, including organic phosphates and alkylamines. Treatment of human tumor cells with therapeutic drugs containing aminophosphonates generates a novel antigen structure that stimulates human γδ T cells, suggesting a new strategy for cancer immunotherapy (19).

Human γδ T cells have been shown to prevent or inhibit the growth of breast cancer cell lines in vitro (20) and autologous melanoma in a human tumor/SCID model in vivo. The distinct in vivo trafficking patterns of V61 versus Vδ2 γδ T cells may be useful for targeting specific tumor types (21, 22). The recognition of the distinct reactivities of bridge populations combined with their role in cancer immunosurveillance offers the tremendous potential for novel disease therapies.

Response kinetics. Cells of the innate immune system respond quickly, in minutes to hours, after microbial infection. By contrast, adaptive immunity offers a highly tailored response delivered at the expense of delayed kinetics, which can be on the order of weeks to peak responsiveness. Like innate immune cells, both B1 B and MZ B cells respond rapidly to limit bacterial spread during invasion, with a peak of IgM production occurring 3 to 4 days after antigen encounter. Like conventional B2 cells, the activity of the Blimp-1 transcriptional repressor is also required in B1 B cells despite the different kinetics of responsiveness of these two lineages (6). In a model of *Listeria* infection, γδ T cells can also respond rapidly to infection, with peak expansion at ~10 days following infection (23). Both CD8αα T cells and NKT cells are activated and produce IFNγ within hours after activation. Thus, the combination of rapid response kinetics and patterns of specific reactivity to microbial antigens enables these lymphocyte populations to bridge the temporal gap between innate and adaptive responses.

Clonal selection. Another hallmark of the adaptive response is the clonal distribution of unique immune receptors. The expression of a single type of immune receptor by an individual lymphocyte enables clonal selection of each cell based on the affinity of that receptor for its ligand. Hence, a small number of specific naive cells expand in response to particular antigenic epitopes. One consequence of clonal selection is that the αβ T-cell and B2 B repertoires of the adaptive immune system are unique to each individual. By contrast, germ line-encoded receptors within the innate immune system can be restricted to specific subsets, but
they are not clonally distributed. Thus, groups of individuals within a particular species may share an identical receptor repertoire (16). Consistent with the adaptive immune system, NKT cells, γδ T cells, CD8αα T cells, B1 B cells, and MZ B cells each express a single type of immune receptor. The specific negative and positive selection mechanisms that control entry of these cells into the mature pool remains an active area of investigation.

Candidate Bridge Populations

Memory NK cells? A conventional hallmark of the innate immune system is the absence of memory. Thus, repeated exposure to the same antigen does not lead to a qualitative or quantitative enhancement in the ensuing response. Unexpectedly, murine NK cells have recently been shown to have memory-like activity (9). Using a murine model of contact dermatitis, NK cells were shown to mediate hapten-specific memory responses up to 4 weeks after initial challenge. Contact sensitivity responses were detectable at comparable magnitude in rag-deficient animals, showing the B and T independence of this response. By contrast, depletion of NK cells in any of three experimental models, rag2−/−;c−/−, SCID × beige, or rag2−/− + anti-asialo-GM1 treatment, abrogated this memory response. The ability of NK cells to infiltrate sensitized tissue was specific to re-challenge with the original hapten. It remains unclear how long the initiating hapten persists in vivo and whether the primary response is fully subsided before re-challenge (3). Moreover, memory responses of NK cells seem to be strongly influenced both by mouse strain and the specific sensitizing hapten. Although the generality of these observations remains to be established, the description of these NK cells as “adaptable innate killers” (3) or “adaptive killers” (24) highlights the importance and the challenge of accurately characterizing these cells within the existing innate versus adaptive framework.

The memory capabilities of bridge lymphocytes are just beginning to be appreciated. B1 B lymphocytes are a lymphoid population also originally thought to lack memory. In a murine model of spirochete infection, IgM-producing B1b cells were shown to provide protective immunity as long as 80 days after the initial challenge (25). This result was unexpected because T-cell–mediated protective responses are not generally elicited by B cells of extrathymic origin. B cells from mouse strains variably expressing membrane-bound IgM were shown to mediate hapten-specific memory responses up to 4 weeks after initial challenge. Contact sensitivity responses were detectable at comparable magnitude in rag-deficient animals, showing the B and T independence of this response. By contrast, depletion of NK cells in any of three experimental models, rag2−/−;c−/−, SCID × beige, or rag2−/− + anti-asialo-GM1 treatment, abrogated this memory response. The ability of NK cells to infiltrate sensitized tissue was specific to re-challenge with the original hapten. It remains unclear how long the initiating hapten persists in vivo and whether the primary response is fully subsided before re-challenge (3). Moreover, memory responses of NK cells seem to be strongly influenced both by mouse strain and the specific sensitizing hapten. Although the generality of these observations remains to be established, the description of these NK cells as “adaptable innate killers” (3) or “adaptive killers” (24) highlights the importance and the challenge of accurately characterizing these cells within the existing innate versus adaptive framework.

The Immune Response as a Continuum

The overview of the major lineages of hematopoietic cells provided above illustrates clearly that not all immune cells can be assigned strictly to either the innate or the adaptive arm of the immune system. Little doubt exists about the important biological roles of NKT cells, γδ T cells, CD8αα T cells, B1 B cells, and MZ B cells, or that these subsets possess key features of both innate and adaptive immunity. The existence of bridge populations between the two classic subgroups of immune cells prompts a need to expand the paradigm of innate versus adaptive immunity. Revising our perspective on the immune system as an organizational continuum, rather than a dichotomy, acknowledges the bridge population subsets that have functional properties drawn from the innate and adaptive end points. Additionally, it allows one to integrate the concept of the bridge populations of immune cells with a unified terminology (Table 1).

Formal recognition of the bridge populations and their unique functional properties highlights new areas for investigation. A significant therapeutic value may be realized by combining the essential properties of bridge and adaptive subsets to produce a single effector population that responds with rapid kinetics and confers long-term protection to infectious disease or cancer. Effective clearance of Streptococcus pneumoniae, a major cause of community-acquired pneumonia, requires a two-pronged immune response (2). B1a cells produce natural antibody that can protect against initial infection, whereas B1b cells are required to clear an established infection and provide long-term immunity. Could the rapidly responding B1a cells be armed through genetic engineering to elicit longer-term protective responses? The molecular differences underlying this division of labor are unclear. Both subsets produce IgM reactive to pneumococcal polysaccharide type 3, indicating that repertoire specificity alone may not be the fundamental difference in this case (2). Rather, other differences, such as the ability to class switch to IgG3 or the differential requirement for CD19 activity, may be important. As a broader question, are specific suites of genes associated with innate, bridge, and adaptive immunity? It has been argued that some of the populations described here, such as NKT cells, should be an innate population rather than a bridge population (29). Comparative analysis of gene expression profiles may help resolve this issue. Transcriptional profiling of three candidate bridge populations, including NKT cells and CD8αα T cells, suggests a shared expression pattern for such genes as GTPases important for resistance to intracellular pathogen (30). Finally, the distinct mechanism of antigen recognition (19), patterns of localization (21, 22), and kinetics of responsiveness of bridge populations (2) highlight their potential application to cancer vaccines and...
immunotherapy. The scheme presented in Table 1 may be refined as further investigations reveal general characteristics underlying each population.

Future Directions

Reorganizing the immune system as a continuum rather than a dichotomy makes at least three interesting predictions. One prediction is that bridge populations may offer excellent targets for vaccine therapy. Rather than providing an impoverished immune response whose activity is elicited in lieu of adaptive immunity, bridge populations may orchestrate entirely distinct patterns of immune responsiveness. γδ T cells neutralize a number of pathogens, including *Klebsiella pneumoniae*, for which αβ T cells are dispensable (31). Likewise, B1a and MZ B cells mount antibody responses in the absence of T cells. Vaccine strategies that target bridge populations may be useful for some situations in which current vaccines fail, such as those that are exclusively targeted to Th-dependent B2 B cells. Such strategies may have particular value for situations in which T-cell activity can be associated with fatal encephalitis, such as in the treatment of cancers of the brain or the therapeutic destruction of amyloid plaques in Alzheimer’s patients (32). The identification of a specific subset of dendritic cells that uniquely captures and transports blood-borne antigens to MZ and B1 B cells suggests one mechanism of targeted delivery (33). A second prediction based on the gaps in the continuum is that additional bridge populations will be identified. Notably absent is a bridge population derived from the macrophage lineage. Not only do macrophages and B lymphocytes share key functional properties, such as phagocytic capacity, but they can arise via a bi-potent macrophage/B-cell precursor (34). Whether these unusual bi-potent precursors give rise to functional, mature progeny that retain the characteristics of both lineages remains unknown. The occurrence of leukemias that express traits of both lineages remains unclear, and translocations can be heterogeneous. Similarly, cancers of neutrophilic origin, such as chronic neutrophilic lymphoma, require better criteria for diagnosis and identification of the underlying molecular defects including chromosomal abnormality (42). The current appreciation of recombination events in a subpopulation of NK cells and other hematopoietic lineages may aid in clarifying disease definitions and malignancy types.

Acknowledgments

Received 1/17/2007; revised 3/2/2007; accepted 3/6/2007.

Grant support: American Heart Association (L. Borghesi), Elsa U. Pardee Foundation (L. Borghesi), U.S. Immune Deficiency Network (L. Borghesi), and NIH grant R01CA086433 (C. Milcarek).

We thank Olja Finn, Ken Dorshkind, Bill Chambers, and Jay Kolls for insightful comments.
References

2. Haas KM, Poe JC, Streber DA, Tedder TF. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 2005;23:–18.

12. Martin F, Kearney JF. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and Blkl. Immunology 2000;120:39–49.

Innate versus Adaptive Immunity: A Paradigm Past Its Prime?

Lisa Borghesi and Christine Milcarek

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/67/9/3989

Cited articles
This article cites 42 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/67/9/3989.full#ref-list-1

Citing articles
This article has been cited by 8 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/67/9/3989.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.