Metastasis Suppressor Function of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand-R in Mice: Implications for TRAIL-Based Therapy in Humans?

Anne Grosse-Wilde and Christopher J. Kemp

Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington

Abstract

Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapy, as it can induce apoptosis specifically in tumor cells but not in normal cells. Although earlier mouse tumor studies revealed a strong tissue dependency of TRAIL and its death receptor in suppressing primary tumorigenesis or experimental metastases, we recently found that TRAIL-R inhibits lymph node metastases without affecting primary tumor formation in a mouse model of multistage skin tumorigenesis. This finding uncouples the role of TRAIL in primary tumorigenesis from metastasis formation, likely by sensitization of previously TRAIL-resistant tumor cells upon detachment, an early step required for metastasis formation. Therefore, TRAIL-R is a novel metastasis suppressor, suggesting that TRAIL-related tumor therapy might be most effective in primary tumors and early metastatic cancers, before selection for TRAIL resistance occurs. [Cancer Res 2008;68(15):6035–7]

The Apoptosis-Inducing Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand System in Primary Tumorigenesis and Experimental Metastasis

The tumor necrosis factor–related apoptosis-inducing ligand (TRAIL/Apo2L) is a transmembrane protein expressed on activated cells of the immune system such as natural killer (NK) cells, T and B lymphocytes, monocytes, and dendritic cells. TRAIL binds to receptors containing a death domain, called death receptors. In humans, TRAIL has two receptors containing a death domain, TRAIL-R1 (DR4) and TRAIL-R2 (DR5/KILLER/TRICK2/APO2), whereas there is only one death receptor in mice equally homologous to both human death receptors, called TRAIL-R (1). In addition, in both humans and mice, TRAIL can also bind to three different receptors with no functional death domains, also called "decoy" or "regulatory receptors.” However, the physiologic function of these receptors with respect to TRAIL-signaling has not yet been fully investigated (1). Ligation of TRAIL death receptors can activate the extrinsic apoptosis pathway by recruiting the adaptor molecule FADD, resulting in Caspase-8 and Caspase-3 activation (2). For the biopharmaceutical industry, TRAIL has raised considerable interest, as TRAIL was shown to preferentially kill tumor cells, whereas nontransformed cells remained TRAIL-resistant in vitro and in vivo. Also, at least one of the two TRAIL death receptors is expressed on all cancer cells examined. Therefore, targeting the apoptosis-inducing TRAIL system is a promising antitumor strategy with little side effects. Recombinant TRAIL and agonistic antibodies against the human TRAIL death receptors are currently in clinical trials. Although 30% to 50% of tested human cancer cell lines are TRAIL resistant (3), most can be sensitized to TRAIL by prior treatment with chemotherapeutics, proteasome inhibitors, or γ-irradiation (1).

Due to these tumor cell–specific effects, it was suggested that a physiologic role of the TRAIL system is tumor suppression. Indeed, transplantation of TRAIL-sensitive tumor cells into syngeneic TRAIL-deficient mice led to increased subcutaneous tumor growth and experimental liver metastases (4, 5). This observed tumor surveillance effect of TRAIL was at least, in part, dependent on expression of TRAIL by activated liver NK cells (4, 6). Interestingly, lung NK cells do not express TRAIL (6), which could explain why experimental lung metastases were not accelerated in TRAIL-deficient mice (5, 7) and shows a tissue-specific effect of TRAIL-mediated tumor immune surveillance (6).

Autochthonous mouse tumor models using TRAIL and TRAIL-R–deficient mice also revealed a strong tissue dependency of tumor suppression by TRAIL and TRAIL-R. In some tissues, such as liver, lymphoid tissues (8), and muscle, the TRAIL system can inhibit primary tumor formation, whereas in epithelial tissues such as mammary gland and colon, it had no observable effect (1). Consistently, we found recently that neither carcinogen-induced skin tumor initiation nor tumor growth nor conversion was accelerated in TRAIL-R–deficient mice (9). Thus far, the reason for this observed tissue dependency of the tumor suppressor function of the TRAIL system is unclear. Although both mammary and skin cancer cell lines express TRAIL-R on their surface (9, 10), it remains to be determined whether primary tumor cells are TRAIL-resistant in vivo and/or whether insufficient TRAIL-expressing killer cells of the immune system gain access to those primary epithelial tumors. In addition, the tumor suppressor function of the TRAIL system in some tissues could be dependent on nonapoptotic functions of TRAIL and TRAIL-R signaling; there is some evidence that TRAIL-R can have an anti-inflammatory effect resulting in tumor protection (8).

TRAIL-R as a Metastasis Suppressor

Despite no difference in primary skin tumorigenesis in TRAIL-R–deficient mice, they developed a greater number of metastases to the lymph nodes than wild-type littermates (9). This was the first demonstration that TRAIL-R signaling could inhibit metastasis from autochthonous tumors, and that TRAIL-R can exert its antitumor effect in a tumor stage–dependent manner. Interestingly, carcinoma cells isolated from primary skin tumors of wild-type mice were initially TRAIL resistant. Because the latency of primary
skin tumors was not affected by TRAIL-R deficiency, we concluded that selection for TRAIL resistance of skin carcinoma cells during primary tumorigenesis was unlikely. An early required step in metastasis formation is detachment of tumor cells from the extracellular matrix. In epithelial cells, this can lead to anoikis as well as to sensitization of cells to apoptosis (11). Although anoikis seemed to be TRAIL-R-independent, detachment increased sensitivity of skin carcinoma cells to exogenously added TRAIL (ref. 9; Fig. 1). Detachment-induced TRAIL sensitization has also been reported in breast carcinoma cells (12) and ovarian carcinoma cells (13). The sensitization of skin carcinoma cells to TRAIL by detachment correlated with down-regulation of extracellular signal-regulated kinase (ERK) activity and inhibition of ERK activity sensitized attached carcinoma cells to TRAIL (9). In summary, the sensitization of carcinoma cells to TRAIL by detachment (Fig. 1), provides an explanation for how the TRAIL system could suppress metastases without affecting primary tumor formation. Furthermore, our data suggest that even if the primary tumor is TRAIL resistant, there could be a natural window of TRAIL sensitivity during early metastasis formation.

In another tumor study, we found that tumor-free survival as well as the tumor spectrum of irradiated TRAIL-R–deficient mice was not significantly different from wild-type mice, with the majority of observed tumors in both genotypes being disseminated lymphomas of B-cell origin. Interestingly, in irradiated TRAIL-R–deficient mice which had developed lymphoma after two years, we observed increased dissemination of lymphoma to Peyer’s patches and mesenteric lymph nodes, although primary lymphomagenesis had not been affected. These data confirmed our finding of a specific antimetastatic effect of TRAIL-R expression in mice. It will be interesting to further analyze whether the antimetastatic effect of endogenous TRAIL signaling via TRAIL-R is particularly important for lymph node metastases. This could be facilitated through increased TRAIL expression in lymphatic cells or increased sensitization of tumor cells to TRAIL in the lymphatic system, for example, through cytokines such as γIFN (14).

Genes that reduce the metastatic propensity of tumor cells without affecting their tumorigenicity are defined as metastasis suppressors (15). By these criteria, Trail-r is a metastasis suppressor gene. Death of cancer patients is mostly due to metastatic spread of the primary tumor. Therefore, it is necessary to improve treatment of metastatic disease, for example by increasing expression and function of metastasis suppressors. To
date, >20 metastasis suppressors have been identified, many of which encode for intracellular signaling molecules (15), making them difficult to target therapeutically. By contrast, TRAIL receptors are expressed on the cell surface, and several TRAIL receptor agonists are already in clinical trials (1).

Implications of the Specific Role of TRAIL-R in Metastasis Suppression for Tumor Therapy

Increased selective pressure against tumor suppressors leads to their loss of function during primary tumorigenesis. For example, the tumor suppressor p53 is mutated in >50% of all primary human cancers. Similarly, most metastasis suppressors are lost, mutated, or down-regulated during the metastatic process. If TRAIL-R is also a metastasis suppressor in humans, we would predict loss of TRAIL-R-mediated apoptosis signaling in metastatic tumors when compared with primary tumors. Indeed, there is evidence for selective pressure on inactivating the TRAIL apoptosis pathway specifically in metastases by mutation or down-regulation of the TRAIL death receptors. This has been observed for example in metastases of breast cancer and melanoma (16, 17). Furthermore, metastatic cell lines also showed greater TRAIL resistance than their counterparts isolated from primary oral tumors (18). Interestingly, Caspase-8, an important downstream signaling component of death receptors, has also been identified as a metastasis suppressor (19). The metastasis suppressor function of caspase-8 could be also due to its function as a downstream mediator of death receptor–mediated apoptosis.

Although both Caspase-8 as well as TRAIL-R have been described as metastasis suppressors, depending on the context, both can also suppress primary tumor development. A tumor suppressor function of the TRAIL apoptosis pathway could result in TRAIL resistance of the primary tumor. In contrast, a metastasis suppressor role of the TRAIL system could lead to TRAIL resistance at the metastasis stage, whereas the primary tumor might remain sensitive or at least sensitizable to TRAIL–receptor–targeting drugs. In the future, it will be important to define whether selection for TRAIL resistance happens by irreversible gene mutation of TRAIL death receptors or of other essential signaling components of the apoptotic machinery, or by reversible regulation of expression of apoptotic modulators. Fortunately, TRAIL resistance is often due to reversible expression of TRAIL-R pathway modulators such as up-regulation of antiapoptotic molecules such as cFLIP, antiapoptotic Bcl family proteins, and IAPs, or by down-regulation of proapoptotic molecules (2). Therefore, TRAIL sensitivity can be easily increased by additional drugs such as the proteasome inhibitor Bortezomib, or conventional chemotherapeutics such as cisplatinum or paclitaxel, all of which are currently being tested in clinical trials together with TRAIL receptor–targeting drugs (1).

In conclusion, we recently found evidence for a metastasis suppressor function of the apoptosis-inducing TRAIL-R in mice, and current evidence suggests a similar function in humans. More studies are needed to determine the mechanism(s) and conditions by which tumor cells can acquire resistance to TRAIL during metastasis formation. These studies are likely to have major effect for TRAIL receptor–based cancer therapy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 1/7/2008; revised 3/12/2008; accepted 4/1/2008.

Grant support: NIH research grants R01 CA070414 and R01 CA099517 (C.J. Kemp).

References

Metastasis Suppressor Function of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand-R in Mice: Implications for TRAIL-Based Therapy in Humans?

Anne Grosse-Wilde and Christopher J. Kemp


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/68/15/6035

Cited articles
This article cites 18 articles, 7 of which you can access for free at:
http://cancerres.aacrjournals.org/content/68/15/6035.full.html#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
/content/68/15/6035.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.