Moderate Expression of Prostate-Specific Membrane Antigen, a Tissue Differentiation Antigen and Folate Hydrolase, Facilitates Prostate Carcinogenesis

Veronica Yao, Anil Parwani, Christoph Maier, Warren DeWayne Heston, and Dean John Bacich

Departments of Urology and Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Mathematics Department, Indiana University of Pennsylvania, Indiana, Pennsylvania; and Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio

Abstract

Increased expression of PSMA, a differentiation antigen with folate hydrolase activity, is an independent marker of prostate cancer progression. Mice expressing moderate levels of human PSMA in their prostate develop PIN-like lesions by 9 months. The aim of this study was to determine whether PSMA is involved in prostate carcinogenesis and progression and, if so, the possible mechanism by which PSMA may exert its effects. Using prostates from PSMA-transgenic mice, we developed a tissue recombinant model that exhibits small atypical glands with features of adenocarcinoma. This was not observed in tissue recombinants that were composed of prostate tissues from the wild-type siblings. Cells from PSMA-transgenic tissue recombinants have the ability to form colonies in semisolid agar. PSMA may facilitate this phenotype by increasing the invasive ability of cells. Ectopic PSMA expression on PC-3 cells increased the invasive capacity of cells in in vitro invasion assays, which could be competed out by folic acid. These results suggest PSMA facilitates the development of prostate cancer, and the invasive ability of these cells may be modulated by folate levels. These findings show a novel mechanism that may contribute to the known role of folate in cancer prevention, and may lead to the use of PSMA inhibitors as novel chemopreventive agents for prostate cancer. Moreover, our model should prove useful for further dissecting pathways involved in prostate carcinogenesis and progression.

Introduction

Prostate cancer is the most commonly diagnosed cancer and second leading cause of cancer death in American men (1). When compared with all other cancers, the incidence of prostate carcinoma increases most rapidly with age (2). Successful management and elimination of recurrent and metastatic prostate cancer continues to present a major clinical challenge (3).

PSMA, a type II membrane glycoprotein, is expressed in the luminal epithelial cells of normal and hyperplastic prostate tissues, Prostatic Intraepithelial Neoplasia (PIN), and in primary and metastatic prostate cancers (5). Its expression in adenocarcinoma correlates with stage of disease and Gleason score (6, 7). PSMA expression is also higher in cancer cells from hormone-refractory patients (7, 8). Increased PSMA expression is an independent marker of recurrence (9, 10). Interestingly, endothelial cells of the neovascularature of almost all solid tumors express PSMA but not cells in the neovascularature associated with normal tissues (11–14).

PSMA has glutamate carboxypeptidase II activity that cleaves α-linked glutamate from N-acetylaspartyl glutamate (NAALADase activity; ref. 15) and γ-linked glutamates from polyglutamated folates sequentially (folic acid hydrolase activity; refs. 16, 17). Prostate cancer tissues have significantly elevated levels of PSMA enzymatic activity compared with normal prostate and BPH tissues (18). Increase in both expression and enzymatic activity of PSMA in aggressive prostate tumors imply that PSMA provides a selective advantage for cells expressing it, thereby contributing to the development and progression of prostate cancer.

Transgenic mice have been generated that express human PSMA in their ventral, lateral, and dorsal prostate lobes under the control of the human prostate-specific antigen promoter and enhancer (19). The level of PSMA expressed in the prostates of the transgenic mice is comparable with that in normal human prostate tissues. The level of folate hydrolase activity in the prostate of the transgenic mice is similar to the endogenous level seen in the murine brain and is significantly greater than in the prostates of nontransgenic mice. Characterization of PSMA-transgenic mice found that their prostates started to develop PIN-like lesions as early as 21 weeks, with the majority (above 60%) developing PIN-like lesions by age 9 months. Prostates of the wild-type siblings did not exhibit PIN lesions (19). The presence of PIN-like lesions in PSMA-transgenic mice suggests that PSMA plays a role in the control of cell division or transformation, and as such the PSMA-transgenic mouse could be a suitable model for examining potential causes of prostate carcinogenesis. However, the length of time for PIN-like lesions to arise in the majority of animals is too long for the model to be cost effective, and thus far, the model has not progressed from PIN lesions to cancer.

The aim of this study was to determine if PSMA is involved in prostate carcinogenesis and progression. We used the prostatic reconstruction model (20) comprising of rat urogenital mesenchyme (rUGM) and prostate tissues from PSMA-transgenic mice or their wild-type siblings grafted beneath the renal capsule of immunodeficient mouse hosts and given pharmacologic doses of hormones to achieve our objective. Similar models have been used to show that the absence of Rb gene may predispose prostatic epithelial cells to carcinogenesis (21); and to drive PIN lesions in the prostates of Nkx3.1 knockout mice to a progressively severe histopathologic phenotype (22). Using this model, we were able to elicit carcinogenesis in a timely manner and significantly advance the understanding of the role that PSMA plays in prostate cancer.
We also explored the mechanism by which PSMA plays a role in prostate cancer. Previously, we showed that PSMA provides a growth advantage for prostate cancer cells in medium containing low and physiologic folate levels (23). Ghosh and colleagues (24) found that PSMA-expressing PC-3 cells have reduced invasive capability in RPMI 1640. However, this medium contains ~2.3 μmol/L of folic acid, which is ~100 times the level found at physiologic levels. Therefore, we examined the invasive ability of PC-3 cells that do not express PSMA and those that express PSMA in physiologically relevant folate levels.

Materials and Methods

PSMA-transgenic mouse prostate tissues. Animals were housed in the University of Pittsburgh at the Department of Urology. All animal experiments were approved by and followed the guidelines set out by Institutional Animal Care and Use Committee. PSMA-transgenic mice and their wild-type siblings were kindly provided by Dr. Warren Heston (The Cleveland Clinic, Cleveland, OH). Mice (age matched, 27- to 33-wk-old) were killed, and prostates were harvested and microdissected to separate the prostate lobes.

Tissue separation, recombination, and grafting. Rat urogenital sinus were removed from 18-d embryonic fetuses of pregnant Sprague-Dawley rats (Taconic) and separated into epithelial and mesenchyme components as previously described (20). Prostate lobes from PSMA-transgenic mice and wild-type siblings were cut into small (0.2–0.5 mm) pieces and combined with 250,000 PC3 cells in 40 μL neutralized type I rat tail collagen gels as previously described (25). The gels of PSMA-transgenic or wild-type prostate tissue recombinants were incubated overnight in RPMI 1640 (Cambrex Corp.) containing 5% fetal bovine serum (FBS; Atlanta Biological) and 10-μM testosterone (Sigma). Tissue recombinants were grafted beneath the renal capsule of adult male nude (Nu/Nu) CD1 mice (Charles River Laboratories) as described previously (20). UGM alone was grafted to determine contamination from urogenital epithelium.

Host nude mice carrying PSMA-transgenic or wild-type prostate tissue recombinants were treated hormonally at the time of grafting by implanting s.c. a Silastic capsule [1.54-mm inside diameter and 3.18-mm outside diameter (Dow-Corning Co.)] tightly packed with 25 mg of testosterone propionate (T) and 2.5 mg of 17α-estradiol benzoate (E2; Sigma). Eight weeks postgrafting, host nude mice were killed and each of tissue recombinant was carefully dissected from the host kidney, weighed, and cut into small pieces (0.5–2 mm). Tissue pieces were either paraffin embedded or recombined with fresh UGM cells in collagen gels and then regrafted for a further 8 wk under the renal capsule of male nude mice. After a total of 16 wk under the renal capsule, the tissue recombinants were recombined with fresh UGM to again grown under the renal capsule of male nude mouse hosts for a further 8 wk. Animals were treated hormonally with fresh T&E2 upon each sequential serial grafting.

Histopathology and hoescht 33258 dye staining. Tissue sections were stained with H&E for histopathology and Hoechst dye 33258 (Calbiochem) to confirm that the epithelium was of mouse origin and the stroma of rat origin (26). H&E and CK14-stained slides were examined blindly by a pathologist (Dr. A. Parwani) to determine the incidence of normal, hyperplasia, PIN or adenocarcinoma in wild-type and PSMA-transgenic tissue recombinants. The Jonckheere-Terpstra test was used to determine whether there is a difference in the wet weights between PSMA-transgenic or wild-type prostate tissues (Table 1). There was no significant difference in the wet weights between PSMA-transgenic and wild-type tissue recombinants; however, the wet weights of both declined with passage (Table 1). The wild-type recombinants harvested after 8, 16, and 24 weeks under the kidney capsule. At each time point, the UGM control grafts weighed significantly less (P < 0.05) than recombinants that included PMSA-transgenic or wild-type prostate tissues. The Fisher's exact test was used to analyze the incidence of PIN and foci with features of adenocarcinoma in wild-type and PSMA-transgenic tissue recombinants. The Jonckheere-Terpstra test was used to determine whether there is histopathologic progression with serial grafting of the tissue recombinants.

Results

To test if PSMA is involved in prostate carcinogenesis, we grafted tissue recombinants consisting of PSMA-positive or nontransgenic (wild-type) prostate tissues with UGM under the kidney capsule of host mice also implanted with Silastic tubes containing T&E2. It has previously been shown that implantation of T&E2-filled silastic capsules into nude mice significantly increases their plasma testosterone levels at 1 month and estradiol levels at 2 and 4 months postimplantation (28). Tissue recombinants were harvested after 8, 16, and 24 weeks under the kidney capsule. At each time point, the UGM control grafts weighed significantly less (P < 0.05) than recombinants that included PMSA-transgenic or wild-type prostate tissues (Table 1). There was no significant difference in the wet weights between PSMA-transgenic and wild-type tissue recombinants; however, the wet weights of both declined with passage (Table 1). The wild-type recombinants grafted for 8 weeks had a larger mean wet weight (103.2 ± 5.2 mg) than recombinants grown for 16 weeks (70.8 ± 11.4 mg), although this did not reach statistical significance (P > 0.05). By 24 weeks, the mean wet weight (57.3 ± 8.3 mg) had decreased even further,
resulting in a statistically significant difference in size between wild-type tissue recombinants at week 8 and 24 ($P < 0.01$). Similarly, for PSMA-transgenic tissue recombinants, the mean wet weight at 8 weeks (90.2 ± 7.4 mg) was significantly larger than the mean wet weight at 16 weeks (59.6 ± 6.5 mg; $P < 0.01$) and at 24 weeks (62.8 ± 8.7 mg; $P < 0.05$). The decline in wet weights with serial grafting may be due to the limited proliferative capacity of the majority of cells in the tissue recombinants. At no time did the tissue recombinants grow beyond the immediate area of the renal capsule and invade the host kidney.

Both wild-type and PSMA-transgenic tissue recombinants formed large masses of well-differentiated prostatic glands surrounded by dense sheets of stromal cells when grown for 8, 16, and 24 weeks under the renal capsule (Fig. 1A, left). As determined by Hoechst 33258 nuclear staining, the epithelial cells were of mouse origin, whereas the stroma was mostly of rat origin (Fig. 1A, right). Their genotypes of wild-type and PSMA-transgenic tissue recombinants were confirmed by staining with anti-human PSMA antibody (Fig. 1B, top left and top right). Prostatic glands were lined by glandular epithelial cells that expressed CK18 (Fig. 1B, bottom left) and surrounding by stromal cells that expressed smooth muscle α-actin (Fig. 1B, bottom right).

We determined the proliferation index of the recombinant tissue by dividing the number of epithelial cells with Ki-67–stained nuclei by the total number of epithelial cells (Fig. 1C, left). As shown in Fig. 1C (right), the mean proliferation index of PSMA-transgenic tissue recombinants was greater than that of wild-type tissue recombinants at week 8, 16, and 24, although this did not reach statistical significance.

Analysis of H&E and CK14 staining of PSMA-transgenic tissue recombinants revealed the presence of small atypical glands with features of adenocarcinoma at 16 and 24 weeks (see arrows in Fig. 2). These recombinants also displayed hyperplastic ducts and PIN-like lesions at 8, 16, and 24 weeks (Fig. 2). Ducts with nuclear stratification and/or crowding and rare CK14-expressing basal cells were classified as PIN lesions, whereas adenocarcinoma were defined as small atypical glands with prominent nuclei and nucleoli as well as absence of basal cells as evidenced by negative CK14-staining. PIN-like lesions and some of the small atypical glands expressed E-cadherin along adjacent epithelial cell membranes (Fig. 2). However, other small atypical glands displayed abnormal and variable (weak membrane or cytoplasmic) E-cadherin staining (see arrows in Fig. 2).

In contrast, at no point did we observe adenocarcinoma in the wild-type prostate tissue recombinants, although we did observe normal, hyperplastic, and focal PIN-like glandular structures (Fig. 2). Normal glands were lined by a single layer of columnar epithelial cells with a continuous layer of CK14-expressing basal epithelial cells. Hyperplastic ducts were lined by multilayered luminal epithelium with a patchy layer of basal cells. Some glands displayed features typical of human PIN, including cribriform, tufted, or papillary architecture of epithelial cells with atypical and hyperchroromatic nuclei, enlarged nucleoli (one or more), and mitotic bodies. CK14 staining showed that the PIN-like glands had a patchy basal cell layer (Fig. 2). E-cadherin was expressed along adjacent epithelial cell membranes (Fig. 2).

We next compared the histopathologic features of both types of recombinants at each time point. Although a recombinant may display glands with all histologic types (normal, hyperplasia, PIN, and small atypical glandular foci with features of adenocarcinoma), only the most advanced histologic phenotype found in each of the tissue recombinant was noted. As shown in Table 2, the majority of wild-type tissue recombinants displayed minor PIN-like lesions (PIN 1 and 2) at 8 (78%), 16 (64%), and 24 (79%) weeks. More importantly, none (0%) of the wild-type tissue recombinants displayed glandular foci with features of adenocarcinoma. In contrast, a variable number of small atypical glandular foci with features of adenocarcinoma were present in PSMA-transgenic tissue recombinants at 8 (4%), 16 (30%), and 24 (46%) weeks. This difference is statistically significant at 16 ($P = 0.046$) and 24 ($P = 0.012$) weeks but not at 8 ($P = 0.719$) weeks, as determined by the Fisher’s exact test. In addition, unlike wild-type tissue recombinants, PSMA-transgenic tissue recombinants displayed a statistically significant ($P = 0.0014$) progression from PIN lesions to foci suspicious for adenocarcinoma with serial grafting, as determined by the Jonckheere-Terpstra Test. This is illustrated by a concomitant increase in the number of tissue recombinants with small atypical glands with features of adenocarcinoma (4%, 29%, and 46%) and a decline in the number of recombinants with PIN lesions (96%, 71%, and 50%) as their worst histology over the course of the experiment.

Although both wild-type and PSMA-transgenic tissue recombinants displayed PIN-like lesions, the cytologic and pathologic atypia of PIN-like lesions in wild-type tissue recombinants were less severe than those in PSMA-transgenic tissue recombinants. PIN-like lesions of both wild-type and PSMA-transgenic prostate tissue recombinants were scored blindly by a single pathologist. The classification of PIN lesions was based on the architectural and cytologic atypia. The scale ranged from 1+ to 3+, with 3+ representing the most severe histopathology (see Supplementary Data). PIN-like lesions scored as 1+ (least severe) displayed

| Table 1. Wet weights of rat UGM alone, wild-type, and PSMA-transgenic prostate tissue recombinants after 8, 16, and 24 wk of kidney grafting in intact male nude host mice treated with testosterone and estradiol |
|-----------------|-----------------|-----------------|
| | Wild-type tissue recombinants | PSMA-transgenic tissue recombinants |
| rUGM only | 103.2 ± 5.2 mg (9) | 90.2 ± 7.4 mg (20) |
| 8 wk | 19.2 ± 4 mg (11) | 59.6 ± 6.5 mg (26)* |
| 16 wk | 20.4 ± 5.2 mg (7) | 62.8 ± 8.7 mg (92)* |
| 24 wk | 19.7 ± 3.9 mg (8) | 37.3 ± 8.3 mg (27)* |

NOTE: There was no difference in wet weights of wild-type and PSMA-transgenic tissue recombinants. Wet weights of both tissue recombinants declined significantly with serial grafting. Data are reported as mean ± SE (n).

* $P < 0.01$.

† $P < 0.05$ by Student’s t test.
prostatic hyperplasia with the glandular epithelial cells having uniform oval nuclei, some of which were slightly enlarged and/or exhibited weak hyperchromasia. Also, nucleoli were either absent or inconspicuous. PIN-like lesions with a score of 2+ (moderately severe) consisted of glands with moderate hyperplasia, larger cells, higher nucleus to cytoplasmic ratios, more prominent nucleoli, and more pronounced hyperchromasia. Cells with an overall papillary-type architecture displayed more crowding and stratification. Occasionally, a tufted type of architecture was also noted. PIN-like lesions with a score of 3+ (most severe) were characterized by a pronounced increase in cell size, more pleomorphism, striking hyperchromasia with enlarged nucleoli, and some cells contained more than one nucleoli—a feature more commonly seen in neoplasia. There was significant architectural disorder, including the presence of papillary tufts. At low power, these foci were very prominent due to the overall dark, hyperchromatic appearance of the nuclei, giving them an overall dark blue appearance in contrast to adjacent benign glandular structures. In addition, there was significant stratification of the nuclei, giving the appearance of multilayering.

Table 3 summarizes the incidence of 1+, 2+, and 3+ PIN-like in wild-type and PSMA-transgenic tissue recombinants. PIN-like lesions present in wild-type tissue recombinants never scored 3+ in severity. In contrast, in the PSMA-transgenic tissue recombinants, a score of 3+ was assigned to 23% (5 of 22), 25% (4 of 16), and 54% (7 of 13) of PIN-like lesions at 8, 16, and 24 weeks, respectively. The incidence of PIN 3+ (most severe) in PSMA-transgenic tissue recombinants is statistically significant from wild-type prostate tissue recombinants at 8 (P = 0.00046), 16 (P = 0.0334), and 24 (P = 0.0000021) weeks as analyzed with the Wilcoxon Mann-Whitney test statistics. In addition, serial grafting led to a statistical significant (P = 0.0336) increase in the number of PSMA-transgenic tissue recombinants with PIN 3+ (most severe) as analyzed with the Jonckheere-Terpstra Test.

A hallmark characteristic of tumor cells is their ability to grow in an anchorage-independent manner (29). As shown in Fig. 3A, cells from PSMA-transgenic tissue recombinants, which had been grafted under the kidney capsule for 24 weeks, were able to grow and form an average of ~5 colonies of >30 cells in semisolid agar. In contrast, cells from wild-type tissue recombinants, which had

Figure 1. Histology and proliferation index of wild-type and PSMA-transgenic tissue recombinants. The urogenital mesenchyme microdissected from embryonic day 18 rat fetuses were combined with prostates from either wild-type or PSMA-transgenic tissues and grafted underneath the kidney capsules. A, wild-type and PSMA-transgenic tissue recombinants harvested from a representative host mouse showing size, 8 wk after kidney grafting (left). Hoechst 33258 staining of paraffin-embedded tissue recombinants show that the epithelial cells were of mouse origin because they contained several small discrete intranuclear fluorescent bodies, whereas their absence in stromal cells indicates that they are of rat origin (right). B, immunohistochemical staining of paraffin embedded wild-type (top left) and PSMA-transgenic (top right) tissue recombinants with monoclonal anti-mouse PSMA antibody show PSMA expression only in PSMA-transgenic recombinants. Immunohistochemical staining of paraffin-embedded tissue recombinants with CK18 and smooth muscle α-actin monoclonal antibodies show CK18-expression in luminal epithelial cells (bottom left) and α-actin expression in the stromal cells surrounding glandular structures (bottom right). Photomicrographs were captured at ×20 magnification. C, immunohistochemical staining of paraffin-embedded tissue recombinants with an anti-mouse Ki-67 monoclonal antibody show strong brown nuclear staining of cells undergoing proliferation. Arrows, Ki-67-positive cells (left). The cells positive for Ki-67 were counted by monitoring at least 200 luminal epithelial cells for normal, PIN, and carcinoma lesions in multiple regions of the same sample (right). There was no difference in the proliferation index of wild-type and PSMA-transgenic tissue recombinants grafted beneath the kidney capsule of intact nude mice hosts treated with T&E2 for 8, 16, and 24 wk. Columns, mean (n = 7) by Student’s t test; bars, SE. Photomicrograph was captured at ×40 magnification.
been grafted under the kidney capsule for 24 weeks, were not able to form colonies of >30 cells in semisolid agar.

We explored the mechanism by which PSMA may influence carcinogenesis by testing the invasive ability of PC-3 cells that do not express PSMA and those that express PSMA in physiologically relevant folate levels. As shown in Fig. 3B, we found that the invasive ability of PC-3 cells with ectopic expression of PSMA were not statistically significant compared with PC-3 cells that do not express PSMA in standard medium, which contains high (2.3 μmol/L; percentage invasion: 5.0% ± 0.6% and 11.0% ± 3.8% versus 7.3% ± 0.9% and 7.3% ± 4.1%) folate levels. However, PSMA-expressing PC-3 cells had increased invasive ability compared with non-expressing PC-3 cells in medium containing low (<1 nmol/L; 51.7% ± 13.0% and 36.0% ± 8.7% versus 6.2% ± 4.9% and 2.6% ± 3.1%) and physiologic folate levels (25 nmol/L; percentage invasion: 14.6% ± 3.9% and 11.9% ± 2.5% for PSMA-expressing PC-3 cells versus 1.2% ± 0.2 and 5.8% ± 2.1% for PC-3 cells transfected with vector only; P < 0.05). Two clones of PSMA-expressing PC-3 cells and vector-transfected PC-3 cells were used to confirm the results.

Discussion

PSMA-transgenic mice provide tantalizing preliminary evidence that PSMA contributes to prostate cancer development. However, PIN-like lesions in PSMA-transgenic mice did not progress to cancer. Given that carcinogenesis requires multiple insults, these lesions may not have acquired all of the underlying molecular traits necessary for malignant transformation. Previous work has shown that the tissue recombinant model provides the additional factors needed for cancer development. This model combines hormonal induction of prostate cancer (30–33) with enhanced epithelial proliferation elicited by embryonic rUGM (34–36). We used this model to more definitively evaluate the role of PSMA in prostate carcinogenesis and progression.

Prostatic hyperplasia, PIN, and foci with features of adenocarcinoma were observed in PSMA-transgenic tissue recombinants. In contrast, PIN 2+ was the most severe lesion observed in wild-type tissue recombinants, which may be induced by 17β-estradiol. Only PSMA-transgenic tissue recombinants developed PIN with the most severe architectural and cytologic atypia, PIN 3+. Serial grafting of the PSMA-transgenic, but not wild-type tissue recombinants, resulted in a statistically significant progression in the architectural and cytologic severity from PIN 2+ to PIN 3+. In addition, serial grafting led to progression of the PIN-like lesions in PSMA-transgenic tissue recombinants progressed to small atypical glands with features of adenocarcinoma.
In this model, the level of human PSMA expressed in PSMA-transgenic mice developed small atypical glands that appeared similar to adenocarcinoma. Such small atypical glands were absent in wild-type prostate tissue recombinants and prostate tissues from PSMA-transgenic mice. These small atypical glands did not form large masses of back-to-back glands but existed in isolation or in clusters of two to four glands. They exhibited features of adenocarcinoma such as nuclear pleomorphism, prominent and often multiple nucleoli, loss of CK14-expressing basal cells, and aberrant E-cadherin staining. Loss or abnormal E-cadherin expression has been associated with metastasis and poor prognosis (37). The fact that we were able to grow these small atypical cells in semisolid medium (anchorage-independent growth) provides further evidence of their tumorigenicity (38). Similar to Wang and colleagues (21), we were able to transplant the small atypical cell line 22 hours instead of 48 hours after seeding. We found that PC-3 cells look at the effects of ectopic PSMA expression on the invasive ability of PC-3 cells in RPMI 1640 containing low (<1 nmol/L), physiologic (25 nmol/L), and high (2.3 μmol/L) folate levels. In contrast to Ghosh and colleagues (24), we counted the number of invading cells 22 hours instead of 48 hours after seeding. We found that PC-3 cells expressing PSMA have greater invasive ability than nonexpressing cells in medium containing low and physiologic folate levels but not

At each time point, the PSMA-transgenic tissue recombinants developed small atypical glands with features of cancer, which increase in number with serial grafting. Table 2 shows the incidence of PIN-like lesions observed in wild-type tissue recombinants. Only PSMA-transgenic tissue recombinants displayed small atypical glands with features of adenocarcinoma. The number of these small atypical glands with features of adenocarcinoma increases with serial grafting of the tissue recombinants. The Fisher's exact test was used to analyze the incidence of PIN and foci with features of adenocarcinoma in wild-type and PSMA-transgenic tissue recombinants. The Jonckheere-Terpstra test was used to determine whether there is histopathologic progression with serial grafting of the tissue recombinants.

Table 2. PSMA expression facilitates formation of small atypical glands with features of cancer, which increase in number with serial grafting

<table>
<thead>
<tr>
<th>Time</th>
<th>Epithelium</th>
<th>Normal</th>
<th>Hyperplasia</th>
<th>PIN</th>
<th>Small atypical foci with features of adenocarcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 wk</td>
<td>Wild-type</td>
<td>1/9 (11%)</td>
<td>1/9 (11%)</td>
<td>7/9 (78%)</td>
<td>0/9 (0%)</td>
</tr>
<tr>
<td></td>
<td>PSMA+</td>
<td>0/23 (0%)</td>
<td>0/23 (0%)</td>
<td>22/23 (96%)</td>
<td>1/23 (4%)</td>
</tr>
<tr>
<td>16 wk</td>
<td>Wild-type</td>
<td>0/11 (0%)</td>
<td>4/11 (36%)</td>
<td>7/11 (64%)</td>
<td>0/11 (0%)</td>
</tr>
<tr>
<td></td>
<td>PSMA+</td>
<td>0/23 (0%)</td>
<td>0/23 (0%)</td>
<td>16/23 (70%)</td>
<td>7/23 (30%)</td>
</tr>
<tr>
<td>24 wk</td>
<td>Wild-type</td>
<td>2/19 (10.5%)</td>
<td>2/19 (10.5%)</td>
<td>15/19 (79%)</td>
<td>0/19 (0%)</td>
</tr>
<tr>
<td></td>
<td>PSMA+</td>
<td>0/26 (0%)</td>
<td>1/26 (4%)</td>
<td>13/26 (50%)</td>
<td>12/26 (46%)</td>
</tr>
</tbody>
</table>

NOTE: A pathologist determined the incidence of normal, hyperplasia, PIN, and adenocarcinoma in all specimens in a blinded fashion by analyzing H&E and CK14 staining of paraffin-embedded wild-type and PSMA-transgenic tissue recombinants. Only PSMA-transgenic tissue recombinants displayed small atypical glands with features of adenocarcinoma. The number of these small atypical glands with features of adenocarcinoma increases with serial grafting of the tissue recombinants. The Wilcoxon Mann-Whitney test was used to analyze the incidence of PIN 1+, 2+, and 3+ in wild-type and PSMA-transgenic tissue recombinants. The Fisher's exact test was used to analyze the incidence of PIN and foci with features of adenocarcinoma in wild-type and PSMA-transgenic tissue recombinants. The Jonckheere-Terpstra test was used to determine whether there is histopathologic progression with serial grafting of the tissue recombinants.

Table 3. PSMA expression facilitates formation of PIN-like lesions with more severe cytologic and histologic features than PIN-like lesions observed in wild-type tissue recombinants

<table>
<thead>
<tr>
<th>Time</th>
<th>Epithelium</th>
<th>PIN 1+</th>
<th>PIN 2+</th>
<th>PIN 3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 wk</td>
<td>Wild-type</td>
<td>5/7 (71%)</td>
<td>2/7 (29%)</td>
<td>0/7 (0%)</td>
</tr>
<tr>
<td></td>
<td>PSMA+</td>
<td>1/22 (4%)</td>
<td>16/22 (73%)</td>
<td>5/22 (23%)</td>
</tr>
<tr>
<td>16 wk</td>
<td>Wild-type</td>
<td>3/7 (43%)</td>
<td>4/7 (57%)</td>
<td>0/7 (0%)</td>
</tr>
<tr>
<td></td>
<td>PSMA+</td>
<td>4/16 (25%)</td>
<td>8/16 (50%)</td>
<td>4/16 (25%)</td>
</tr>
<tr>
<td>24 wk</td>
<td>Wild-type</td>
<td>9/15 (60%)</td>
<td>6/15 (40%)</td>
<td>0/15 (0%)</td>
</tr>
<tr>
<td></td>
<td>PSMA+</td>
<td>1/13 (8%)</td>
<td>5/13 (38%)</td>
<td>7/13 (54%)</td>
</tr>
</tbody>
</table>

NOTE: A pathologist scored PIN-like lesions 1+, 2+, and 3+ in increasing pathologic severity in a blinded fashion by analyzing H&E and CK14 staining of paraffin-embedded wild-type and PSMA-transgenic tissue recombinants. Although PIN-like lesions were observed in both wild-type and PSMA-transgenic tissue recombinants, only PSMA-transgenic tissue recombinants displayed PIN-like lesions scored 3+ (most severe) and the number of these lesions increased with serial grafting. The Wilcoxon Mann-Whitney test was used to analyze the incidence of PIN 1+, 2+, and 3+ in wild-type and PSMA-transgenic tissue recombinants. The Jonckheere-Terpstra test was used to determine whether there is histopathologic progression with serial grafting of the tissue recombinants.
in medium containing high folate levels. Increased invasive ability was most prominent in RPMI 1640 containing low (<1 nmol/L) levels of folic acid where prostate cancer cells expressing PSMA had ≈10-fold greater percentage invasion than prostate cancer cells transfected with vector only. Based on the data presented here and from our previous study (23), PSMA expression may increase the invasiveness of prostate cancer cells and provide cells with a growth advantage in the low folate tumor microenvironment. The observation that PSMA expression increases invasion, at least under physiologic folate conditions is not without precedent. Conway and colleagues (39) found that angiogenesis is impaired in PSMA-null animals due to reduced invasion of endothelial cells through extracellular matrix.

In conclusion, we have shown that PSMA, expressed at a level comparable with that of normal human prostate tissue and not mutated in any way, can initiate the development of prostate cancer using a hormone-induced tissue recombination model. PSMA may facilitate carcinogenesis by enhancing the proliferative and invasive capability of prostate cancer cells. This invasive capability can be blocked by folic acid. These findings show a novel mechanism that may contribute to current knowledge about the role of folate in cancer prevention and could potentially lead to the use of PSMA inhibitors as novel chemotherapeutic agents for prostate cancer. Our laboratory is currently using a compound that can inhibit the enzymatic activity of PSMA to investigate if it contributes to the initiation of prostate carcinogenesis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 6/20/2008; revised 8/25/2008; accepted 9/9/2008.

Grant support: Department of Defense Prostate Cancer Research Program under the award number W81XWH-05-1-0015. Views, opinions, and endorsements by the authors do not reflect those of the US Army or the Department of Defense. This work was also supported by a grant from the AFUD/AUAER Research Scholar Program and the Reston Ambassador’s Golf Classic for Prostate Cancer Research Fund.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Simon Hayward for his technical advice and our laboratory technician Diana Sica Harya.

References

10. Mitsiades CS, Lembessis P, Sourla A, Milathianakis C,

Figure 3. PSMA expression facilitates formation of cells with the ability to grow in an anchorage-independent manner and ectopic expression of PSMA on prostate cancer cell line increases invasion in medium containing physiologic level of folate. A, cells isolated from PSMA-transgenic tissue recombinants that had been grafted under the kidney capsule for 24 wk were able to form colonies of >30 cells on semisolid agar (left). In contrast, cells isolated from wild-type tissue recombinants did not form colonies on semisolid agar (right). Photomicrographs were captured at ×40 magnification. B, PC-3 cells expressing PSMA displayed increased invasive ability compared with PC-3 transfected with vector only in media containing physiologic (25 nmol/L) and low (<1 nmol/L) folate levels compared with those grown in high (normal medium, 2.3 μmol/L) folate medium. Transwell migration assay was performed using a Boyden chamber system. Data are reported as percent invasion through the Matrigel matrix and membrane relative to the migration through the control membrane; columns, mean (n = 3); bars, SE; *, P < 0.05, by Student’s t test.

Tsintavis A, Koutsilieris M. Molecular staging by RT-PCR analysis for PSA and PSMA in peripheral blood and bone marrow samples is an independent predictor of time to biochemical failure following radical prostatectomy for clinically localized prostate cancer. Clin Exp Metastasis 2004;21:495–505.

Moderate Expression of Prostate-Specific Membrane Antigen, a Tissue Differentiation Antigen and Folate Hydrolase, Facilitates Prostate Carcinogenesis

Veronica Yao, Anil Parwani, Christoph Maier, et al.