ADAMTS-1 Metalloproteinase Promotes Tumor Development through the Induction of a Stromal Reaction In vivo

Natacha Rocks, Geneviève Paulissen, Florence Quesada-Calvo, Carine Munaut, Maria-Luz Alvarez Gonzalez, Maud Gueders, Jonathan Hacha, Christine Gilles, Jean-Michel Foidart, Agnès Noel, and Didier D. Cataldo

Laboratory of Biology of Tumors and Development, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Research, GIGA-Cancer and GIGA-F, University of Liege and CHU of Liège, Liège, Belgium

Abstract
ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin motifs), the first described member of the ADAMTS family, is differentially expressed in various tumors. However, its exact role in tumor development and progression is still unclear. The aim of this study was to investigate the effects of ADAMTS-1 transfection in a bronchial epithelial tumor cell line (BZR) and its potential to modulate tumor development. ADAMTS-1 overexpression did not affect in vitro cell properties such as (a) proliferation in two-dimensional culture, (b) proliferation in three-dimensional culture, (c) anchorage-independent growth in soft agar, (d) cell migration and invasion in modified Boyden chamber assay, (e) angiogenesis in the aortic ring assay, and (f) cell apoptosis. In contrast, ADAMTS-1 stable transfection in BZR cells accelerated the in vivo tumor growth after s.c. injection into severe combined immunodeficient mice. It also promoted a stromal reaction characterized by myofibroblast infiltration and excessive matrix deposition. These features are, however, not observed in tumors derived from cells overexpressing a catalytically inactive mutant of ADAMTS-1. Conditioned media from ADAMTS-1—overexpressing cells display a potent chemotactic activity toward fibroblasts. ADAMTS-1 overexpression in tumors was associated with increased production of matrix metalloproteinase-13, fibronectin, transforming growth factor β (TGF-β), and interleukin-1β (IL-1β). Neutralizing antibodies against TGF-β and IL-1β blocked the chemotactic effect of medium conditioned by ADAMTS-1—expressing cells on fibroblasts, showing the contribution of these factors in ADAMTS-1—induced stromal reaction. In conclusion, we propose a new paradigm for catalytically active ADAMTS-1 contribution to tumor development, which consists of the recruitment of fibroblasts involved in tumor growth and tumor-associated stroma remodeling.

Introduction
The evolution of a carcinoma depends not only on the acquisition of new properties by neoplastic cells but also on complex interactions occurring between the latter and the microenvironment (1). It is becoming increasingly clear that tumor stroma undergoes significant remodeling leading to the elaboration of a permissive environment for the vascularization, growth, and invasion of tumor cells (2–4). Fibroblasts are predominant cells in carcinoma-associated stroma and contribute to cancer progression through their production of growth factors and/or matrix degrading proteinases such as metalloproteinases (2, 5–7). The up-regulation of matrix metalloproteinases (MMP) is one of the physiologic changes that occur when fibroblasts undergo senescence and likely contributes to the higher frequency of cancers associated to aging (8).

The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) are MMP-related enzymes (9, 10). Their multidomain structure endows these secreted proteins with various functions. Some ADAMTS participate in different steps of cancer progression including cell proliferation, apoptosis, migration, invasion, and angiogenesis (11, 12). Over the last few years, the list of substrates for ADAMTS has increased and includes type I and type II procollagens amino-propeptides, heparin-binding epidermal growth factor–like growth factor (HB-EGF), integrins, and E-cadherins (13–16).

Altered levels of ADAMTS have been documented in various cancers (12, 17–20). For instance, ADAMTS-1 production is modulated in lung, breast, or pancreatic cancers (18, 20, 21). The potential role of ADAMTS-1 in cancer progression is, however, not yet clearly defined because experimental studies in mice led to controversial data (22–24). A partial explanation for these discrepancies has been provided by the elegant study of Liu and colleagues (24) revealing that although the full-length ADAMTS-1 promotes metastasis, its -NH₂ or -COOH fragments lacking the catalytic activity display an inhibitory effect against metastasis.

The aim of the present work was to explore the contribution of ADAMTS-1 in lung cancer progression through the generation of ADAMTS-1—overexpressing human BZR cancer cells and to investigate the effect of ADAMTS-1 on the elaboration of a permissive microenvironment in vivo. For the first time, we provide evidence that catalytically active ADAMTS-1 induces a stromal reaction in vivo through the recruitment of fibroblastic cells and promotes tumor growth. This study provides new insight on the implication of an ADAMTS proteinase in the interplay between tumor cells and stromal cells.

Materials and Methods

Cell culture. Human lung carcinoma BZR cells and human lung fibroblasts were obtained from American Type Culture Collection. Cells were grown at 37°C in 5% CO₂ in DMEM supplemented with 10% fetal bovine serum, 2 mmol/L l-glutamine, and penicillin-streptomycin (100 IU/mL–100 μg/mL). Culture reagents were purchased from Invitrogen Corp./Life Technologies.

Note: A. Noel and D.D. Cataldo should be considered as co-senior authors.

Requests for reprints: Agnès Noel, University of Liege, Tower of Pathology (B23), 4th Floor, 4000 Liege, Belgium. Phone: 32-4-366-24-53; Fax: 32-4-366-29-36; E-mail: agnes.noel@ulg.ac.be.

©2008 American Association for Cancer Research. DOI: 10.1158/0008-5472.CAN-08-0548

Research Article
Preparation of cDNA constructions, mutation, and transfection of BZR cells with human ADAMTS-1 or ADAMTS-1 E/Q cDNA. Full-length wild-type human ADAMTS-1 cDNA (hADAMTS-1; OriGene) was subcloned at NotI sites into pcDNA3.1-zeo mammalian expression vector (Invitrogen) under the control of the cytomegalovirus promoter. An amino acid–substituted mutant of ADAMTS-1, E386Q, was constructed by mutagenesis based on a PCR technique (Stratagene). The nucleotide sequences of the mutants were confirmed by direct sequencing. The recombinant plasmids or the empty pcDNA3.1-zeo vector used as control was stably transfected into BZR cells by electroporation in serum-free medium at 250 V and 960 μF using a gene pulsar system (Bio-Rad Laboratories). Transfected populations were subjected to a selective pressure of zeocin (6 mg/mL; Invitrogen). Clones were screened by semiquantitative reverse transcription-PCR (RT-PCR) and Western blotting for ADAMTS-1 expression.

Preparation of conditioned media, mRNA and protein cell/tissue extracts. Cells (10⁶) were seeded in 100-mm-diameter Petri dishes (Falcon, Becton Dickinson) in serum-containing medium for 24 h. After 48 h of culture in serum-free medium, conditioned media were harvested, clarified by centrifugation, and stored at −20°C. Total protein cell extracts were prepared from cell monolayer by incubation for 15 min in radioimmuno precipitation assay buffer [50 mmol/L Tris-HCl (pH 7.4), 150 mmol/L NaCl, 1% NP40, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 5 mmol/L iodoacetic acid, 2 mol/L phenylmethylsulfonyl fluoride]. After a 20-min centrifugation (10,000 rpm), supernatants were stored at −20°C. Total proteins were extracted from tumor tissues by incubating the crushed tissue with a lysis buffer (40 mmol/L Tris, 20% sucrose) containing 2% SDS. Protein concentrations were determined using DC protein Assay kit (Bio-Rad Laboratories). Total RNA was extracted from cell monolayer or tumor tissues using High Pure RNA Isolation kit or High Pure RNA Tissue kit, respectively (Roche Diagnostics Applied Science), as recommended by the manufacturer.

Semiquantitative RT-PCR analysis. RT-PCR was done on 10 ng of total RNA using the GeneAmp thermostable rTth RT-PCR kit (Applied Biosystems). Primers (Eurogentec) were used in this study as designed as follows: ADAMTS-1, 5'-CGGCAACCACTGAGAAGTTG-3' (sense) and 5'-GAGCCACACCAACATCGAAGTGAA-3' (antisense); interleukin-1β (IL-1β), 5'-AAACAGATGAAGTGCTCCTTCAGG-3' (sense) and 5'-TGGGAGAACAC-CACTTGTGCTC3- (antisense); MMP-1, 5'-GGAGAACACATCTGGAG-TACAGGA-3' (sense) and 5'-TTGGCCCGATGATCTCCCCTGACA-3' (antisense); MMP-8, 5'-CAAAGGGGAGGAAGCCACTAATGCTG-3' (sense) and 5'-TGGAGGATTGCCTGACCTCTTCT-3' (antisense); MMP-13, 5'-ATGA-TCTTAAAGCAAGACCTCTTG-3' (sense) and 5'-TGGGAAATACCTCCA-GAATGTCTCTAA-3' (antisense); TGF-{(β1), 5'-GGATACCCAATGCCTTCTTTAAAGACAGATTCTTCTGG-3' (sense) and 5'-TCTTTAAAGACAGATTCTTCTGG-3' (antisense); transforming growth factor-β1 (TGF-β1), 5'-GGGAGAGGGCCCGCATCCTGACCC-5'- (sense) and 5'-TGATCGTCCGTCAGTACCAGCTCCCA-3' (antisense); and 28S, 5'-GGTTCCACCACTACTAATGGAGAAGGC-3' (sense) and 5'-GATCTCAGTACCTTAGGGCCCTGAC-3' (antisense). RT-PCR products were resolved on 10% polyacrylamide gels and quantified by Fluor-S Multimag (Bio-Rad Laboratories) after Gelstar staining (Sanverich). To normalize mRNA levels in different samples, results are expressed as a ratio between the intensity of each band and that of the corresponding 28S rRNA value.

Western blotting and ELISA. Samples (conditioned medium, cell or tissue lysates; 20 μg of total protein extracts) were separated under reducing conditions on polyacrylamide gels and transferred to polyvinylidene difluoride membrane (NEN). After blocking in PBS containing 10% nonfat milk and Tween 20 (0.05%), membranes were incubated overnight at 4°C with the primary antibody rabbit polyclonal anti–ADAMTS-1 (Sigma Aldrich), mouse polyclonal anti–MMP-13 (Fuji Chemical Industries), rabbit polyclonal anti–collagen 1 mouse monoclonal anti–TGF-β, or mouse polyclonal anti–fibronectin (Sigma Aldrich). Immunoreactive proteins were visualized using the corresponding secondary antibody conjugated with horseradish peroxidase (HRP; DAKO) and the enhanced chemiluminescence detection kit (Perkin-Elmer Life Sciences). As loading control, actin levels were determined. Results are expressed as ratio between measured protein levels and corresponding actin levels. IL-1β levels were assessed using commercial ELISA (R&D Systems).

In vitro proliferation, migration, and invasion assays. BZR cells were seeded in triplicates in 24-well plates on a plastic substrate (two-dimensional culture) or embedded in a type 1 collagen gel (2 mg/mL; three-dimensional culture) and maintained in standard culture conditions for up to 12 or 7 d, respectively. Cells were harvested at various time intervals. Cells were extracted from collagen gels by a 1-h treatment with bacterial collagenase (1 mg/mL; Sigma Aldrich) at 37°C. The DNA content of sonicated cell suspensions was determined by fluorometry using bis-benzimidazol H33258 reagent (Hoechst; ref. 25). Anchorage-independent growth was determined by soft agar assay (26). Cells were plated into 24-well plates in growth medium containing 0.3% agar, on top of a 0.6% agar gel. After 9 d, cells were stained with crystal violet for 1 h and photographed. Colonies were counted under a microscope at ×2 magnification. Each assay was done in triplicate in two independent assays.

For chemotaxis or chemoinvasion assays, uncoated or Matrigel-coated (25 μg/fILTER) filters (8-μm pore, Nucleopore) were used in 48-well invasion chamber (Neuroprobe), respectively. Lower wells were filled with 30 μL DMEM supplemented with 10% foetal bovine serum and 1% bovine serum albumin (BSA), media conditioned by ADAMTS-1–transfected cells, or media conditioned by control populations. In some assays, recombinant ADAMTS-1 (5 μg/mL; R&D Systems), anti–TGF-β1 (0.1 μg/mL; Abcam), and/or anti–IL-1α (1 ng/mL; R&D Systems) neutralizing antibodies were added in the lower wells. Cells were suspended in serum-free medium supplemented with 1% BSA (Fraction V, Acros Organics) and placed in the upper wells. Chambers were incubated at 37°C for 4 h (for fibroblast migration) or 6 h (for BZR migration and invasion). Cells having reached the lower surface of the filter were counted under a microscope at ×400 magnification (30 random fields). Results are expressed as mean number of migrating or invading cells per 30 fields ± SE and are those of one representative experiment done at least twice (each experimental condition done in quadruplicates).

Apoptosis measured by terminal deoxynucleotidyltransferase–mediated dUTP nick end labeling assay. BZR transfectants were seeded at 5 × 10⁵ cells per well in triplicates onto 24-well plates. After adhesion, cells were stimulated or not with etoposide (20 μmol/L; Calbiochem) for 24 h. Cells were then harvested for terminal deoxynucleotidyltransferase–mediated dUTP nick end labeling (TUNEL) staining. The proportion of cells showing DNA fragmentation was measured by incorporation of FITC–12–dUTP into DNA using terminal deoxynucleotidyltransferase (In Situ Cell Death Detection, Roche Diagnostics Applied Science) as described by the manufacturer. To determine total cell number, total cell nuclei were labeled with biotin-hexamido. The total number of TUNEL-labeled cells were counted in six random fields at ×400 magnification. Quantitative analysis of apoptosis is represented as the mean of the ratio of TUNEL-labeled cells by total number of cells (%) ± SE. Experiments were done at least twice in triplicates.

In vitro angiogenesis assessment: the aortic ring assay. Rat aortic explant cultures were prepared as previously described (27). Briefly, 1-mm-long aortic rings were embedded in three-dimensional collagen gels and cultured in MCD131 medium (Invitrogen) supplemented with media conditioned by ADAMTS-1 or control clones (volume/volume; ref. 28). Vascular endothelial growth factor (VEGF; 20 ng/mL) was used as a positive control. The cultures were kept at 37°C and examined every second day with a Zeiss microscope. Images were captured on days 6 and 9 for computerized quantification of the number of vessels formed according to previously described methods (28).

Assessment of tumor development in vivo. Male severe combined immunodeficient (SCID) mice (Harlan), 6 to 8 wk old, were used. Transfected BZR cells population or clone suspensions were prepared in serum-free DMEM and mixed with an equal volume of cold Matrigel (29). A final volume of 400 μL of mixed Matrigel and serum-free medium containing 10⁶ cells was injected into the flank of mice (n = 15). Tumor growth was assessed by measuring the length and width of tumors and the volume was determined by using the following formula: (length) × (width)² × 0.4 (ref. 29). Results from two independent assays are expressed as mean...
of tumor volumes of each experimental group ± SE. At the end of the experiment, animals were sacrificed and tumors and organs were resected. Half volumes of the tumors from experimental animals were fixed in 10% formalin and embedded in paraffin for histologic analysis. The other half of tumor was frozen in liquid nitrogen until use. Experiments were approved by the animal ethical committee of the University of Liege.

Immunohistochemistry. Immunohistochemistry was done on 5-μm tumor sections. Sections were deparaffinized and, after unmasking antigens, treated with 3% H₂O₂ for 20 min to quench endogenous peroxidase activity. Blockade of nonspecific binding was done by incubation with PBS/BSA 10% (Fraction V, Acris Organics; for LYVE-1), normal goat serum [for smooth muscle actin (SMA)] and von Willebrand Factor (vWF)], or normal rabbit serum [for proliferating cell nuclear antigen (PCNA)] for 30 min. Sections were then incubated for 1 h with a mouse monoclonal anti-PCNA (DAKO; 1:200), a mouse monoclonal anti-vWF (DAKO; 1:200), or a rabbit polyclonal anti-LYVE-1 (kindly provided by K. Alitalo, University of Helsinki, Helsinki, Finland; 1:2,000). After several washes, slides were incubated with rabbit anti-mouse HRP-coupled secondary antibody (DAKO; 1:100; for PCNA) or with a biotin-coupled secondary antibody (DAKO; 1:400) followed by incubation with streptavidin/HRP complex (DAKO; 1:500; for SMA, vWF, and LYVE-1). Peroxidase activity was revealed with the 3,3′-diaminobenzidine hydrochloride kit (DAB, DAKO). Slides were counterstained with hematoxylin, mounted, and observed under a microscope.

For H&E-saffron staining, sections were deparaffinized and first stained with Mayer’s hematoxylin (Biogenex). After several washes, slides were dehydrated in ethanol and stained for 30 min with alcoholic safranin O (safranin 0.6% in 20% ethyl alcohol; Sigma Aldrich), rinsed, and mounted.

The yellow saffron staining and immunostainings were measured using Image J program. Results are expressed as the ratio between the surface of immunostaining and the total surface of tumor tissue analyzed. A minimum of 140 representative sections of each group were used for quantification.

In situ hybridization for Y mouse chromosome. Hybridization was done on serial paraffin sections. Slides were deparaffinized and dehydrated in ethanol 100%. After incubation in HCl 2N for 20 min, slides were rinsed thrice in 2× SSC (Promega) and incubated at 80°C for 15 min in sodium sulfocyanate (Sigma Aldrich) for cytoplasm denaturation. Slides were washed in 2× SSC and nucleus proteins were denatured for 5 min with proteinase K (Roche Diagnostic Applied Science). After incubation in PBS/MgCl₂/4% formaldehyde, sections were dehydrated in ethanol and dried for hybridization. Slides were then denatured for 5 min at 72°C on a heating block and hybridized with a mouse FITC chromosome Y labeled probe (Cambio) for 18 h in a humidified chamber at 37°C. Slides were then denatured for 5 min at 72°C and hybridized with mouse FITC chromosome Y labeled probe (Cambio) for 18 h in a humidified chamber at 37°C. Washes at 72°C in 1× SSC/0.3% Tween 20 and then in 2× SSC were done before dehydation. After HRP staining with an anti-FITC-HRP antibody (Roche Diagnostic Applied Science), slides were counterstained with hematoxylin, mounted, and observed under a microscope.

Hydroxyproline quantification of tumor tissue. Tumor tissues were hydrolyzed for 3 h at 137°C in 6 mol/L HCl. Hydroxyproline content was determined with a color-based reaction as described by Bergmann and Loxley (30). The standard curve used for hydroxyproline ranged from 0 to 3 mg/mL. For normalization, hydroxyproline values were divided by the dry mass of tissue hydrolyzed.

Statistical analysis. Statistical differences were assessed between the in vivo experimental groups using Mann-Whitney test (*, P < 0.05; **, P < 0.01; *** , P < 0.001).

ADAMTS-1 Promotes Stromal Reaction in Tumors

Figure 1. Characterization of stable BZR ADAMTS-1 transfectants and in vitro cell proliferation. A, RT-PCR (mRNA) and Western blot analysis (protein) of ADAMTS-1–expressing clones (AD1–AD3), ADAMTS-1–overexpressing population (ADp), control clones (C1–C3), and control population (Cp). Protein production was analyzed in cell lysates (cell) and in medium conditioned by cells (medium) as described in Materials and Methods. Expression of 28S rRNA (A) and production of actin (B) were used to ascertain equal loading. L, molecular markers. B to D, ADAMTS-1–transfected clones (AD1–AD2), control clones (C1–C2), and their corresponding populations (ADp and Cp) were cultured for various periods of time on plastic (B), in a collagen gel (C), or in a soft agar gel (D). Cell proliferation was measured by determining the DNA content (B and C) or by counting cell colonies after crystal violet staining (D) as described in Materials and Methods.
Results

Generation and in vitro characterization of BZR ADAMTS-1 stable transfectants. Human BZR cells were stably transfected with pcDNA3.1-zeo vector containing the full-length ADAMTS-1 cDNA (Fig. 1A) or with the empty pcDNA3.1-zeo plasmid as a control. Cell populations and clones obtained by zeocin selection were screened for ADAMTS-1 mRNA expression by RT-PCR and protein production by Western blotting (Fig. 1A). Three ADAMTS-1-overexpressing clones (AD1–AD3) and three control clones (C1–C3), as well as the corresponding populations (ADp or Cp), were selected for further in vitro and in vivo studies. A protein band of 87 kDa corresponding to the expected size of the mature enzyme was detected by Western blot in cell lysates and in the medium conditioned by ADAMTS-1-expressing cells (Fig. 1A). No ADAMTS-1 fragment was visualized, indicating that the enzyme did not undergo any cleavage.

Clones and populations were then compared in vitro in their proliferative and invasive capacities. ADAMTS-1 expression did not affect the proliferation rate on a two-dimensional plastic support (Fig. 1B) or in a three-dimensional collagen gel (Fig. 1C). In addition, no statistical difference of anchorage-independent growth was observed in soft agar assay (Fig. 1D). Moreover, the sensitivity of cells to etoposide was not affected by ADAMTS-1 overexpression, leading to similar apoptotic rates in all clones and populations, as assessed by the TUNEL assay (7.9 ± 2% for ADAMTS-1–overexpressing cells versus 5.8 ± 1.5% for control clones, \(P = 0.55 \)). Transfected cells were tested for their ability to

migrate through uncoated filters (migration assay) or to invade Matrigel-coated inserts (invasion assay) in modified 48-well Boyden chamber. The numbers of migrating or invading cells were found to be independent of ADAMTS-1 production (migration: 351 ± 53 for ADAMTS-1–overexpressing cells versus 364 ± 28 for control clones, \(P = 0.66 \); invasion: 541 ± 76 for ADAMTS-1–overexpressing cells versus 382 ± 37 for control clones, \(P = 0.12 \)). Because ADAMTS-1 has been described as a modulator of angiogenesis, we investigated the ability of selected clones and populations to modulate in vitro angiogenesis. Therefore, rat aorta rings embedded in a collagen gel were cultured in MCD culture medium supplemented with media conditioned by cells overexpressing ADAMTS-1 or control cells as previously described (29). Similar microvessel outgrowth was observed in all experimental conditions, suggesting that the secreted full-length ADAMTS-1 does not affect in vitro angiogenesis (number of vessels: 29 ± 4 for media conditioned by ADAMTS-1–overexpressing cells versus 37 ± 8 for media conditioned by control clones, \(P = 0.35 \)).

Taken together, these data show that, in vitro, ADAMTS-1 did not modulate the tested cell properties (cell proliferation, anchorage-independent growth, apoptosis, chemotaxis, chemoinvasion, and angiogenesis induction).

ADAMTS-1–driven enhancement of tumor development in vivo. To further evaluate the in vivo tumorigenic phenotype of ADAMTS-1 transfectants and appropriate controls, clones and populations were s.c. injected into immunodeficient SCID mice. The volume of tumors derived from ADAMTS-1–overexpressing populations (ADp) was higher than that obtained with control

Figure 2. ADAMTS-1 expression promotes in vivo tumor growth. A, tumor volumes assessed after 31 d were determined and data are expressed as fold induction in tumors overexpressing ADAMTS-1 (ADp) or the mutated ADAMTS-1 (ADp*) relative to the corresponding control (Cp; \(n = 38 \) for ADAMTS-1–overexpressing populations and corresponding control populations; \(n = 8 \) for the mutated ADAMTS-1 populations and corresponding controls). Data are expressed as fold induction relative to tumor size obtained with corresponding control populations. *, \(P < 0.05 \). B, representative examples of ADAMTS-1 levels in tumor tissues measured by RT-PCR (top) and Western blotting (bottom). Higher ADAMTS-1 mRNA and protein levels were detected in tumors derived from ADAMTS-1 transfectants, as assessed by RT-PCR and Western blot, respectively \((n = 38) \). C, PCNA immunostaining in tumors derived from ADAMTS-1–overexpressing cells (ADp) or control cells (Cp). Magnification, ×400. Right, quantification of PCNA immunostaining (PCNA staining/total area). ***, \(P < 0.001 \).
populations (Cp; \(P < 0.05 \); Fig. 2A). Similar results were obtained with individual clones (data not shown). Moreover, the progression of tumors derived from ADAMTS-1–expressing cells bearing a mutation in the catalytic domain (E/Q; ADp*) was similar to tumors derived from the corresponding control population (Cp2; magnification, \(\times 200 \)). Arrows delineate the presence of \(\alpha \)-SMA–positive cells. Bottom, quantification of \(\alpha \)-SMA immunostaining (\(\alpha \)-SMA staining/total area). **P < 0.001.

RT-PCR and Western blotting done on mRNA or proteins extracted from tumor samples (ADp and Cp) confirmed that higher ADAMTS-1 mRNA expression (\(P < 0.01 \)) and protein production (\(P < 0.05 \)) persisted in vivo in tumors induced by the injection of ADAMTS-1–overexpressing cells (Fig. 2B). Cell proliferation rate was determined in tumor samples (ADp and Cp) by immunostaining against PCNA. The proliferation index was higher in ADAMTS-1–overexpressing tumors (ADp) as compared with controls (Cp; \(P < 0.0001 \); Fig. 2C).

ADAMTS-1 overexpression promotes a stromal reaction in vivo. Tumor vascularization was analyzed by immunostaining with vWF antibody, whereas LYVE-1 antibody was used to assess lymphangiogenesis. No obvious difference of blood or lymphatic vascularization was observed in tumors generated by the ADAMTS-1–overexpressing or control cells (data not shown). In sharp contrast, staining for \(\alpha \)-SMA revealed the presence of increased number of \(\alpha \)-SMA–positive cells in the stroma of tumors derived from ADAMTS-1 transfectants (\(P < 0.001 \)). This observation implies a probable increased recruitment of host mesenchymal cells and their differentiation into myofibroblasts in ADAMTS-1–overexpressing tumors (Fig. 3A). The catalytic activity of ADAMTS-1 seems to play a key role in this process because tumors derived from cells overexpressing an inactive mutant of ADAMTS-1 did not display an enhanced number of recruited host cells (Fig. 3A). We then verified whether \(\alpha \)-SMA–positive cells were issued from host tissues or from a possible transdifferentiation of tumor cells themselves. Because tumors have been xenografted in male recipient mice, in situ hybridization for Y mouse chromosome was applied and compared with \(\alpha \)-SMA stainings on serial tumor sections. The \(\alpha \)-SMA and mouse Y chromosome stainings were detected in host cells infiltrating the tumor and associated to connective tissue structures (arrows; magnification, \(\times 400 \)).

To get deeper insights into the stromal reaction observed in tumor tissues, saffron staining was done on tumor sections to label fibrillar collagens (Fig. 4A). The percentage of saffron-positive area was 1.9 times higher in tumors derived from ADAMTS-1 transfectants (\(P < 0.001 \)). This observation implies a probable increased recruitment of host mesenchymal cells and their differentiation into myofibroblasts in ADAMTS-1–overexpressing tumors (Fig. 3A). The catalytic activity of ADAMTS-1 seems to play a key role in this process because tumors derived from cells overexpressing an inactive mutant of ADAMTS-1 did not display an enhanced number of recruited host cells (Fig. 3A). We then verified whether \(\alpha \)-SMA–positive cells were issued from host tissues or from a possible transdifferentiation of tumor cells themselves. Because tumors have been xenografted in male recipient mice, in situ hybridization for Y mouse chromosome was applied and compared with \(\alpha \)-SMA stainings on serial tumor sections. The \(\alpha \)-SMA and mouse Y chromosome stainings were detected in host cells infiltrating the tumor and associated to connective tissue structures (arrows; magnification, \(\times 400 \)).
ADAMTS-1–overexpressing cells as compared with tumors derived from control cells (17.6 ± 1.52% versus 9.2 ± 1.5%, \(P < 0.01 \); Fig. 4B). Collagen content in tumors derived from cells transfected with the proteinase-dead ADAMTS-1 did not show any differences when compared with collagen content observed in corresponding control tumors (6.47 ± 0.7% versus 4 ± 0.5%, \(P > 0.05 \)).

Measurements of total hydroxyproline in extracts from tumors revealed that tumor collagen content was twice elevated in ADAMTS-1–overexpressing tumors as compared with controls (\(P < 0.05 \); Fig. 4C). This enhancement of collagen deposit was further confirmed by Western blot analysis revealing higher amounts of the different type I collagen chains in ADAMTS-1–overexpressing tumors (Fig. 4D). Fibronectin production was also increased in tumors overexpressing ADAMTS-1 (\(P < 0.05 \); Fig. 4D).

Taken together, these results clearly point to an enhanced stromal reaction in ADAMTS-1–overexpressing tumors characterized by the recruitment of αSMA-positive cells and a higher collagen and fibronectin production.

ADAMTS-1 overexpression affects the production of stromal reaction regulators. We next analyzed the modulation of putative mediators of fibroblast recruitment (IL-1β), TGF-β, platelet-derived growth factor, and placenta growth factor) and of collagen matrix remodeling (interstitial collagenases MMP-1, MMP-8, MMP-13, and MMP-14). Among these molecules tested by RT-PCR analysis, we found higher levels of IL-1β (\(P < 0.05 \)), TGF-β (\(P < 0.05 \)), and MMP-13 (\(P < 0.01 \)) mRNAs in tissues derived from ADAMTS-1–overexpressing cells as compared with control tissues (Fig. 5A). In addition, mRNA levels of TGF-β (\(P = 0.0009; r = 0.6028 \)) as well as MMP-13 (\(P = 0.0004; r = 0.6402 \)) are correlated to the levels of ADAMTS-1 mRNA in tumor tissues. In all cases, protein

Figure 4. ADAMTS-1 promotes the formation of stromal structures and the production of stromal matrix components. A, saffron staining on primary tumors derived from ADAMTS-1 (ADp) or control cell populations (Cp) or cells overexpressing an inactivated ADAMTS-1 (ADp*). Magnification, ×400. B, quantification expressed as a percentage of the ratio between yellow saffron staining area and total tumor area analyzed. C, quantification of hydroxyproline in tumor extracts reflecting the collagen content. Hydroxyproline amounts were quantified on dried tumor tissues as described in Materials and Methods. D, representative example of Western blot analysis of α1 and α2 type I collagen chains (left) and fibronectin (right) in tumor extracts (\(n = 30 \)). Bottom, quantifications done by densitometric scanning. **, \(P < 0.01 \); *, \(P < 0.05 \).
analyses by Western blots or ELISA confirmed results obtained at the mRNA levels (Fig. 5B and C). Such modulation of TGF-β and IL-1β by ADAMTS-1 was also found in vitro. Indeed, the amounts of TGF-β and IL-1β released by ADAMTS-1 transfectants cultured in vitro were higher than those produced by control cells (Fig. 5B and C). However, it is interesting to note that only a faint nonmodulated MMP-13 expression was detected in vitro (data not shown). Altogether, these results show the effect of ADAMTS-1 overexpression on the modulation of mediators driving stromal reactions.
ADAMTS-1 promotes in vitro fibroblast chemoattraction.
To verify whether the catalytic activity of ADAMTS-1 is directly implicated in the recruitment of fibroblasts, we evaluated the ability of conditioned media from cell populations to attract fibroblasts in a 48-well chamber. The number of migrating fibroblasts was enhanced when the lower part of the chamber was filled with conditioned media originating from ADAMTS-1–overexpressing populations (P < 0.01). Moreover, media conditioned by ADAMTS-1–overexpressing cells bearing an inactive catalytic site (ADp*) failed to enhance fibroblast migration. However, recombinant ADAMTS-1 added to medium conditioned by control cells is not per se sufficient to attract fibroblasts (P < 0.01; Fig. 6A). Interestingly, neutralizing anti–TGF-β and anti–IL-1β antibodies affected migration of fibroblast in a separate experiment (P < 0.01). It is worth noting that the inhibition of fibroblast migration was higher when anti–TGF-β and anti–IL-1β were both added to the medium conditioned by ADAMTS-1–overexpressing cells (P < 0.005; Fig. 6B). This suggests that these two factors induced by ADAMTS-1 expression contribute to induce fibroblast migration.

Discussion
ADAMTS-1 is a multifunctional metalloproteinase whose expression has been detected in a variety of carcinomas (18, 20, 21, 31). Whether or not this enzyme promotes cancer development is currently a subject of controversy. In the present study, we have generated human bronchial BZR tumor cells overexpressing ADAMTS-1 or the proteinase-dead mutant of ADAMTS-1.

We report here that ADAMTS-1 overexpression accelerates tumor development and increases tumor cell proliferation rates after s.c. injection into SCID mice. This ADAMTS-1 tumor-promoting effect is associated with an enhanced stromal reaction evidenced by myofibroblasts infiltration and increased matrix deposition. Moreover, we show that the protumoral activity of ADAMTS-1 is dependent on the presence of an active metalloproteinase domain.

These data provide the first line of evidence for an implication of ADAMTS-1 in the stromal reaction associated to cancer development. Our study reveals the infiltration of tumors issued from ADAMTS-1–overexpressing cells by αSMA-positive cells corresponding to the recruitment of myofibroblasts, which have been described as key actors of tumor progression (2). To rule out the possibility that ADAMTS-1–overexpressing tumor cells could differentiate in vitro into mesenchymal-shaped cells, an in situ hybridization against the murine Y chromosome was assessed on tumor tissues and confirmed that host cells undergo a differentiation into myofibroblasts.

It is well established that tumor stroma influences cancer progression (3, 6, 7). Indeed, cancer-associated fibroblasts can directly influence tumor initiation and development either by secreting growth factors (2, 32–34) or by recruiting endothelial progenitor cells thereby promoting angiogenesis (35). In addition, cancer-associated fibroblasts are a source of extracellular matrix–degrading proteases such as MMPs that are essential for both tumor progression and metastatic process. Indeed, fibroblasts deficient for MMP-11 (5) or MMP-14 (36, 37) lose their capacity to promote the implantation of tumor cells in nude mice. Moreover, MMP inhibition blocked the tumor-promoting effect of stromal cells (6). In this context, our data showing that ADAMTS-1 production promoted the recruitment of myofibroblasts in tumors suggest that ADAMTS-1 contributes to the elaboration of a reactive stroma permissive to tumor progression (3, 7).

In line with a previous study reporting that ADAMTS-1 stimulates fibroblast migration in a wound healing assay (38), we show here that ADAMTS-1–overproducing tumor cells promote fibroblast migration in vitro. This could not be attributed to a direct effect of ADAMTS-1 because the recombinant enzyme alone failed to modulate fibroblast migration. Instead, our data show that this effect on fibroblast chemotaxis could be ascribed to an increased production of TGF-β and IL-1β. This new concept is supported by two findings. First, higher amounts of these two mediators were detected at mRNA and protein levels both in tumors and in cells overexpressing ADAMTS-1. Second, anti–TGF-β and/or anti–IL-1β neutralizing antibodies blocked the chemotactic effect of medium conditioned by ADAMTS-1–producing cells on fibroblast migration. These results indicate that ADAMTS-1 production leads to an increased secretion of TGF-β and IL-1β, thereby inducing the recruitment of fibroblasts and/or their
in vivo (7). Different hypotheses could explain the modulation of host-tumor interactions in tumor progression from breast cancers (47). These findings further emphasize the showing that MMP-13 expression is increased in myofibroblasts our model is the myofibroblasts recruited and activated by the MMP-13 by tumor cells. A putative cellular source of MMP-13 in this study did not affect gene expression and protein production of ADAMTS-1. MMP-13 is widely expressed in human malignant tumors (40, 44). In non–small-cell lung cancer, MMP-13 overproduction has recently been reported as a marker of poor prognosis (45). Moreover, in experimental models, targeted inhibition of MMP-13 inhibits tumor cell growth (46). MMP-13 could thus contribute to the enhanced tumor progression observed in the present study. When studied in vitro, ADAMTS-1 overexpression did not affect gene expression and protein production of MMP-13 by tumor cells. A putative cellular source of MMP-13 in our model is the myofibroblasts recruited and activated by the tumor cells. This hypothesis is in line with a previous study showing that MMP-13 expression is increased in myofibroblasts from breast cancers (47). These findings further emphasize the importance of host-tumor interactions in tumor progression (7). Different hypotheses could explain the modulation of MMP-13 protein production in vivo. A first hypothesis is that higher numbers of myofibroblasts in situ result in higher production of MMP-13. Alternatively, specific modulations of cell signaling by ADAMTS-1 could interfere with MMP-13 expression. This is supported by our finding that there are higher phosphorylation levels for phosphatidylinositol 3-kinase in tumors issued from ADAMTS-1–overexpressing cells, whereas phosphorylation of p42/44, p38, or c-jun NH2-terminal kinase is not affected.1

Taken together, these data provide evidence for the contribution of ADAMTS-1 in tumor development and progression. Accordingly, a protumoral activity has been reported for the full-length molecule in Lewis lung carcinoma or TA3 mammary carcinoma models (24). It has been ascribed by the authors to an increased ADAMTS-1 proteolytic activity toward HB-EGF and amphiregulin (24). Nevertheless, in the present study, the ADAMTS-1–mediated effects do not rely on HB-EGF or amphiregulin cleavage (data not shown). In contrast, antitumor effects have been attributed to ADAMTS-1 fragments, which inhibit tumor cell proliferation and repress tumor angiogenesis (24). Furthermore, ADAMTS-1 inhibits endothelial cell proliferation in vitro and angiogenesis in vivo by sequestration of VEGFα5 (22, 48). In this study, however, we do not detect any ADAMTS-1 fragments either in vitro or in vivo. In addition, no effect of ADAMTS-1 expression has been detected on the angiogenic response, both in tumors in vivo and in the aorta ring model in vitro. Therefore, the increased tumor development observed here is not linked to a modulation of angiogenesis. The effects observed in this work may rather rely on a paracrine effect resulting in enhanced production of factors recruiting fibroblasts, leading to the elaboration of a reactive stroma known to promote tumor development (3, 4, 7). This novel mode of action identified in the present study does not exclude the possibility that ADAMTS-1 functions through multiple mechanisms. There is an apparent contradiction with the study published by Liu and colleagues showing that the increased expression of full-length molecule of ADAMTS-1 promotes angiogenesis. However, in this work, the effects of ADAMTS-1 overexpression on tumor invasion and angiogenesis require the shedding of the transmembrane precursors of HB-EGF and amphiregulin (24). In our work, however, the ADAMTS-1 overexpression is apparently not implicated in the cleavage of HB-EGF or amphiregulin but rather modulates other proteins implicated in different pathways, such as TGF-β and/or IL-1β. Moreover, some technical differences such as animal models and cell lines might also account for those discrepancies.

Our study provides new evidence for the large diversity of ADAMTS-1 functions in cancer. Overall, our work represents the first demonstration that a MMP-related enzyme contributes to the recruitment of myofibroblasts and collagen deposition in tumors concomitantly with an up-regulation of TGF-β and IL-1β. These data provide a new mechanism for ADAMTS-1 involvement in tumor development.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
Received 2/18/2008; revised 8/11/2008; accepted 8/30/2008.

Grant support: Communauté française de Belgique (Action de Recherches Concertées); the Fonds de la Recherche Scientifique Médicale; the Fonds National de la Recherche Scientifique (FNRS, Belgium); the Fonds spéciaux de la Recherche (University of Liège); the Fondation Léon Frédéricq (University of Liège); the Direction générale des Technologies, de la Recherche et de l’Energie from the “Région Wallonne,” the European Union Framework Programs (FP6 and FP7); and the Interuniversity Attraction Poles Program-Belgian Science Policy (Brussels, Belgium). N. Rocks is a fellow of the Télévied Program (FNRS, Belgium); D. Cataldo is a research associate from the FNRS; and G. Paulissen is a research fellow from the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FNRS, Belgium).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Christine Fink, Fabrice Oliver, Fabienne Perin, Marie-Jeanne Nix, and Antoine Heyeres for their excellent technical assistance; Alain Colige and Betty Nusgens for helpful advice; and Silvia Blacher for quantification of aortic ring assay.

References

1 Unpublished data.

ADAMTS-1 Metalloproteinase Promotes Tumor Development through the Induction of a Stromal Reaction \textit{In vivo}

Natacha Rocks, Geneviève Paulissen, Florence Quesada-Calvo, et al.

\textbf{Updated version} \hspace{1em} Access the most recent version of this article at: \\
http://cancerres.aacrjournals.org/content/68/22/9541

\textbf{Cited articles} \hspace{1em} This article cites 48 articles, 16 of which you can access for free at: \\
http://cancerres.aacrjournals.org/content/68/22/9541.full#ref-list-1

\textbf{Citing articles} \hspace{1em} This article has been cited by 4 HighWire-hosted articles. Access the articles at: \\
http://cancerres.aacrjournals.org/content/68/22/9541.full#related-urls

\textbf{E-mail alerts} \hspace{1em} Sign up to receive free email-alerts related to this article or journal.

\textbf{Reprints and Subscriptions} \hspace{1em} To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

\textbf{Permissions} \hspace{1em} To request permission to re-use all or part of this article, use this link \\
http://cancerres.aacrjournals.org/content/68/22/9541. \hspace{1em} Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.