The Role of ATF4 Stabilization and Autophagy in Resistance of Breast Cancer Cells Treated with Bortezomib

Manuela Milani, Tomasz Rzymski, Howard R. Mellor, Luke Pike, Alberto Bottini, Daniele Generali, and Adrian L. Harris

†Growth Factor Group, Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom and ‡Breast Unit, Istituti Ospitalieri Cremona, Cremona, Italy

Abstract

The ubiquitin-proteasome system plays a key regulatory role in cellular homeostasis. The inhibition of the 26S proteasome by Bortezomib leads to the accumulation of misfolded proteins, resulting in endoplasmic reticulum stress followed by a coordinated cellular response called unfolded protein response (UPR). Endoplasmic reticulum stress is also a potent inducer of macroautophagy. Bortezomib is a selective and potent inhibitor of the 26S proteasome and is approved for the treatment of multiple myeloma. Clinical trials with Bortezomib have shown promising results for some types of cancers, but not for some others, including those of the breast.

In this study, we show that Bortezomib induces the UPR and autophagy in MCF7 breast cancer cells. Surprisingly, Bortezomib did not induce phosphorylation of PERK, a key initial step of the UPR. We show that induction of autophagy by Bortezomib is dependent on the proteasomal stabilisation of ATF4 and up-regulation of LC3B by ATF4. We show that ATF4 and LC3B play a critical role in activating autophagy and protecting cells from Bortezomib-induced cell death. Our experiments also reveal that HDAC6 knockdown results in decreased LC3B protein and reduced autophagy. Our work shows that the induction of autophagy through ATF4 may be an important resistance mechanism to Bortezomib treatment in breast cancer, and targeting autophagy may represent a novel approach to sensitize breast cancers to Bortezomib. [Cancer Res 2009;69(10):4415–23]

Introduction

The ubiquitin-proteasome pathway plays a key regulatory role in cellular homeostasis through the degradation of multiple proteins implicated in the regulation of cell growth and apoptosis. The 26S proteasomes are multicatalytic protease complexes consisting of a 20S catalytic core and regulatory 19S subunit, responsible for most nonlysosomal intracellular degradation (1).

The dipeptide boronic acid Bortezomib is a selective and potent inhibitor of the 26S proteasome that reversibly inhibits the 20S catalytic core and regulates the degradation and recycling of long-lived proteins and cytotoxic-damaged organelles (11). Although autophagy occurs at basal levels playing a critical role in maintaining cellular homeostasis, it is also involved in many physiologic and pathologic processes (12). Recent studies have demonstrated that autophagy is a key mechanism to protect cells from the proteasomal degradation of damaged proteins, including misfolded and damaged organelles, and that it plays a critical role in maintaining cellular homeostasis and protection against a variety of malignancies (2). Although Bortezomib is now approved for the treatment of multiple myeloma, clinical experience with Bortezomib has shown limited activity against solid tumors, including those of the breast, when used as a single agent (3).

The inhibition of the 26S proteasome by Bortezomib may lead to the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum lumen resulting in activation of the unfolded protein response (UPR), through the action of three key endoplasmic reticulum–resident transmembrane proteins, PERK, IRE1, and ATF6 (4–6). PERK is a member of a family of protein kinases that phosphorylates the α subunit of the cytosolic eukaryotic translation initiation factor eIF2α, resulting in a reduced global protein synthesis and in a preferential translation of selected mRNAs including Activating Transcription Factor 4 (ATF4; refs. 5, 6). ATF4 orchestrates a gene expression program involved in oxidative stress, amino acid synthesis, differentiation, metastasis, and angiogenesis known as integrated stress response (5, 6). The UPR leads to simultaneous activation of both adaptive and proapoptotic pathways. One of the best characterized of these pathways is mediated by cyclophosphamide-Adriamycin-vincristine-prednisone (CHOP; Oncovin)/GADD153 a transcription factor, regulated by ATF4, which activates the transcription of GADD34, which interacts with protein phosphatase 1 to catalyze eIF2α dephosphorylation (5).

Previous reports have identified endoplasmic reticulum stress and the eIF2α/PERK pathway as potent inducers of macroautophagy where it promotes cell survival (7, 8); however, the molecular mechanism is not yet clear (9, 10). Autophagy is an evolutionarily conserved caspase-independent process, responsible for the degradation and recycling of long-lived proteins and cytotoxic-damaged organelles (11). Autophagy begins in the cytoplasm with formation of double membrane vesicles, known as autophagosomes that sequester cytoplasmic material, including organelles and fuse with lysosomes where the contents are degraded by acidic lysosomal hydrolases. Microtubule-associated protein 1 light chain 3B (LC3B) is one of the key factors in autophagosome formation. During autophagy, LC3-I is cleaved and conjugated to phosphatidylethanolamine to form LC3-II, which is associated with the preautophagosomal structures (12).

Although autophagy occurs at basal levels playing a critical role in maintaining cellular homeostasis, it is also involved in many physiologic and pathologic processes (12). Recently, autophagy emerged as a multifunctional pathway activated in response to microenvironmental stress, intracellular damage caused by hypoxia, chemotherapeutic agents, virus infections, and toxins. Autophagy may also have a role in cell death and, as cancer cells often develop mutations that confer resistance to apoptosis, non-apoptotic forms of programmed cell death might be target for novel approaches (11, 12).
It has been shown that autophagy can act as a compensatory degradation system when the UPS is impaired by genetic mutations in Drosophila, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. Inhibition of both the proteasome and HDAC6 by tubacin induced accumulation of ubiquitinated proteins and toxicity in multiple myeloma cells (13–15).

Here, we have investigated the ability of Bortezomib to induce the UPR and autophagy and their role in resistance to Bortezomib in MCF7 breast cancer cells. We have identified autophagy as an important resistance mechanism to Bortezomib treatment in breast cancer and shown that ATF4 stabilization is a key component of this response. Targeting autophagy may represent a novel approach to sensitize breast cancers to Bortezomib.

Materials and Methods

Cells. The human breast cancer cell lines MCF7 and MDA MB 231 were provided by Cancer Research UK. Cells were maintained in DMEM (with 4.5 mg/mL glucose) supplemented with 10% (vol/vol) FCS, penicillin (100 U/mL) and streptomycin (100 μg/mL), and 4 mM L-glutamine (Life Technologies).

Compounds. Bortezomib was a gift from Millennium Pharmaceuticals, Inc. MG115, MG132, Thapsigargin, and Tunicamycin were from Calbiochem. Cobalt Chloride was from Sigma. siRNA treatment of cells and transfection procedures. Transfections of siRNA duplexes diluted to give a final concentration of 20 nmol/L in Opti-Mem I (Invitrogen Life Technologies) were performed with cells at 30% to 40% confluency using 24 μL Oligofectamine transfection reagent (Invitrogen).

Immunoblot analysis. Cells were lysed in M-PER buffer (Pierce) supplemented with Complete mini-protease inhibitor cocktail tablets (Roche Diagnostics) and phosphatase/kinase inhibitor cocktail (Sigma). Whole cell lysates were resolved by SDS-PAGE, electroblotted onto polyvinylidene difluoride membrane (Millipore), and probed with the indicated antibodies. Horseradish peroxidase–conjugated anti-rabbit or anti-mouse, goat or mouse secondary antibodies (Dako Inc.) were used with ECL Plus system (Amersham Biosciences) to visualize immunoreactive bands. Proteins were detected using antibodies according to manufacturer’s instructions. The mouse monoclonal antibody to HIF1α was from BD Biosciences, the rabbit polyclonal antibodies to ATF4 was from Santa Cruz Biotechnology, the mouse monoclonal to CHOP and mouse monoclonal to eIF2α and the rabbit monoclonal to PERK were from Abcam, the rabbit monoclonal to phospho-eIF2α and the rabbit polyclonal to HDAC6 were from Cell Signaling, the rabbit polyclonal to phospho-PERK was from Biologend, the mouse monoclonal antibody to MAP1LC3 was from NanoTools, the mouse monoclonal β-tubulin antibody was from Sigma, and the mouse monoclonal β-actin antibody was from Sigma. The mouse monoclonal β-actin antibody was from Sigma. The mouse monoclonal β-actin antibody was from Sigma.

Real-time quantitative PCR. In Real-Time Quantitative PCR experiments, the methods used by us for extraction, quantification, and evaluation of the quality of RNA were as previously described (16). cDNA was synthesized by using the High Capacity cDNA Archive kit (Applied Biosystem). qPCR assay and relative quantification of gene expression were performed on the basis of the method described by Pfaff (2001).

Immunochrometry. Cells were grown as monolayers on coverslips. Cells were fixed in −20°C cold methanol for 15 min, washed thrice with PBS, and blocked with 1% bovine serum in PBS (pH 7.5) for 30 min followed by overnight incubation with primary antibody at 4°C. Secondary fluorochrome-conjugated FITC or Cy3 (Dako) was used at dilution 1:500 in blocking buffer for 1 h. Cells were visualized by using a Nikon microscope fitted with the appropriate filters.

Lysotracker staining. LysotrackerRed fluorescent dye (Invitrogen) was used on cells grown in monolayer according to the manufacturer's instructions. Cells were briefly washed thrice with fresh medium and visualized using a Nikon microscope fitted with the appropriate filters.
of HIF1α on the induction of ATF4 and LC3B, MCF7 cells transfected with RNAi against HIF1α were treated with 100 nmol/L of Bortezomib for 24 hours. There was no difference in induction of ATF4 and LC3B between HIF1α knockdown cells and SCR control (Fig. 2A).

Induction of ATF4 and LC3B by Bortezomib does not depend on activation of PERK. To directly determine the role of ATF4 in the cellular response to Bortezomib treatment, we compared gene expression in ATF4 siRNA and control (SCR) siRNA–transfected cells treated with Bortezomib (100 nmol/L) for 24 hours. Transient transfection with siRNA duplexes specific to ATF4 in Bortezomib-treated cells resulted in significantly reduced mRNA levels of LC3B (51% reduction; P = 0.02) and ATF4 target gene CHOP (38% reduction) as measured by qPCR (Fig. 2B). Also, ATF4 knockdown led to a significant reduction in ATF4 and LC3B protein levels compared with control siRNA (SCR)–transfected cells (Fig. 2C).

To determine a role of PERK activation versus ATF4 stabilization in Bortezomib-induced expression of LC3B, we transiently transfected cells with siRNA duplexes specific for PERK. No significant difference in ATF4 and LC3B protein levels was observed between PERK siRNA and control (SCR) siRNA–transfected cells treated with Bortezomib (100 nmol/L) for 24 hours (Fig. 2D) and phosphorylation of eIF2α was maintained. mRNA levels of CHOP and LC3B were also not affected by PERK knockdown in Bortezomib-treated cells as measured by qPCR (Supplementary Fig. S1A). In contrast, Tunicamycin-treated PERK knockdown cells showed reduced phosphorylation of eIF2α and reduced protein levels of ATF4 compared with the control (SCR) Tunicamycin–treated cells (Fig. 2D).

Increased autophagy in Bortezomib-treated cells is dependent on up-regulation of LC3B by ATF4. We used synthetic siRNA duplexes to specifically inhibit LC3B expression in Bortezomib-treated cells and thus block the up-regulation of
Autophagy. MCF7 cells transiently transfected with siRNA duplexes, specific to LC3B, showed a significant reduction in LC3B protein levels, whereas induction of ATF4 and phosphorylation of eIF2α by Bortezomib were not affected (Fig. 3A).

To investigate if Bortezomib-induced protein levels of LC3B contribute to induction of autophagy, we performed immunostaining using an antibody against LC3B to visualize autophagosomes. MCF7 cells showed an increase in LC3B-positive foci after 24 hours of treatment with Bortezomib, the hallmark of autophagy, whereas ATF4 and LC3B knockdown cells failed to induce significant LC3B-positive foci (Fig. 3B, C, and D).

Cells treated with Bortezomib for 24 hours also showed a significant increase in lysosomal mass as determined by Lyso-tracker, a red fluorescent dye that stains acidic compartments in live cells (Fig. 3B). Moreover LC3B knockdown cells showed a decrease in the lysosomal compartment compared with SCR control cells when treated with Bortezomib (100 nmol/L), as detected by Lysotracker staining (Supplementary Fig. S1B).

HDAC6 is involved in Bortezomib-induced autophagy. As HDAC6 has emerged as an important factor required for autophagic degradation in cells with mutated UPS, we investigated whether HDAC6 was also important for the induction of autophagy in cells where the proteasome was inhibited by Bortezomib. HDAC6 knockdown in Bortezomib-treated cells resulted in reduced LC3B protein levels (Fig. 4A). There was no significant change in LC3B mRNA levels, and HDAC6 knockdown did not affect
induction of the UPR as measured by mRNA levels of CHOP (Fig. 4B). In MCF7 cells transiently transfected with siRNA specific for LC3B, autophagy levels were greatly reduced compared with control siRNA-transfected cells and visualized by LC3B immunostaining (Fig. 4C).

The role of UPR and autophagy in survival of MCF7 cells treated with Bortezomib. We analyzed the effects of Bortezomib on viability of MCF7 cells transfected with RNAi specific to HDAC6 and treated with Bortezomib, autophagy levels were significantly more sensitive at 24 hours (65% ± 16% viability of control siRNA SCR cells, P < 0.0001; n = 6) and at 48 hours (53% ± 16% viability of control siRNA SCR cells, P < 0.0001; n = 6) of Bortezomib treatment (Fig. 5C). MCF7 cells transfected with siRNA against ATF4, LC3B, and SCR control were counted after 24 hours, 48 hours without any treatment (Fig. 6A), or after exposure to Bortezomib (Fig. 6B). Cells lacking either LC3B or ATF4 were significantly more sensitive (79.5% ± 2.6%, P = 0.0006, and 50% ± 4%, P < 0.0001) viability of control siRNA SCR–transfected cells, respectively; n = 3) at 48 hours of Bortezomib treatment, with the loss of ATF4 resulting in the greatest sensitivity to Bortezomib (Fig. 6B). Thus, in all assays, ATF4 knockdown conferred the greatest sensitivity. We also investigated the effect on proliferation in MB MDA231 cells. The cells were counted after 24, 48, and 72 hours of treatment with Bortezomib (10 nmol/L). The loss of ATF4 or LC3B lead to a significant increase in sensitivity to Bortezomib compared with SCR control cells after 24 hours (65% ± 3%, P = 0.04, and 47.5% ± 2%, P = 0.0024, viability of control siRNA SCR–transfected cells, respectively; n = 3), 48 hours (34% ± 6%, P = 0.003, and 18.5% ± 1%, P = 0.0006, viability of control siRNA SCR–transfected cells, respectively; n = 3), and 72 hours (29.0% ± 4.0%, P = 0.02, and 13% ± 1%, P = 0.0006, viability of control siRNA SCR–transfected cells, respectively; n = 3; Fig. 6C), consistent with the MCF7 results.

![Figure 3](Fig3.png)

Figure 3. LC3B is a rate-limiting factor for the induction of autophagy in MCF7 cells treated with Bortezomib. A, MCF7 cells transfected with RNAi for LC3B and control (SCR) were treated with Bortezomib for 24 h. Two different siRNA duplexes against LC3B were used, 2 and 3. Protein levels were measured by immunoblot analysis using antibodies against phospho-eIF2α (Ser51), ATF4, LC3B, and β-TUBULIN. B, MCF7 cells were treated with 100 nmol/L of Bortezomib for 24 h and stained with antibody against LC3B. 4,6-Diamidino-2-phenylindole (DAPI) nuclear counterstaining and Lysotracker staining are shown. C, MCF7 cells transfected with RNAi against ATF4 and control (SCR) were treated with 100 nmol/L of Bortezomib for 24 h and stained with antibody against LC3B. DAPI nuclear counterstaining is shown. D. MCF7 cells transfected with RNAi against ATF4 and control (SCR) were treated with 100 nmol/L of Bortezomib for 24 h and stained with antibody against LC3B. DAPI nuclear counterstaining is shown.
We performed FACS analysis to investigate cell death after 24, 48, and 72 hours of treatment with Bortezomib (100 nmol/L) in MCF7 cells transfected with RNAi specific to ATF4, LC3B, and SCR control. The loss of LC3B or ATF4 was associated with a significant increase in dead cells staining for both Annexin V and propidium iodide with respect to SCR control cells after 48 and 72 hours of treatment (Fig. 6D).

Discussion

Bortezomib is a selective and potent proteasome inhibitor currently available for treatment of multiple myeloma and several solid tumors but did not show activity in breast cancer (1, 2). Clinical trials showed no objective response in heavily treated
patients with metastatic breast cancer using Bortezomib as a single agent (20, 21).

Here, we investigated mechanisms of resistance to Bortezomib in MCF7 breast cancer cells, which have been previously described as cells relatively resistant to Bortezomib, and with high proteasome activity (22). Proteasome inhibition leads to the accumulation of misfolded proteins in cells resulting in endoplasmic reticulum stress (23). Endoplasmic reticulum stress activates the UPR, a cellular adaptive response that leads to an inhibition of protein translation through the phosphorylation of eIF2α.

In vivo studies have shown that PERK-eIF2α-ATF4 pathway plays an important role in tumor development as xenograft tumors derived from cells with an inactivated PERK-eIF2α-ATF4 are smaller and grow more slowly than wild-type cells (24). It has been reported that in pancreatic cells Bortezomib treatment did not induce phosphorylation of eIF2α, but two other studies showed that proteasomal inhibitors treatment lead to autophosphorylation of PERK in a head and neck squamous cell carcinoma model and eIF2α phosphorylation in mouse embryonic fibroblasts (29, 30), which shows the heterogeneity and complexity of the UPR in Bortezomib-treated cells. In our study, eIF2α phosphorylation was induced by Bortezomib in the PERK siRNA-treated cells, implying another kinase is activated.

Recent findings now suggest that the endoplasmic reticulum stress is a potent inducer of autophagy, although the mechanism is not clear (7, 8). Here, we show that Bortezomib induces LC3B, at both the protein and mRNA level by a mechanism involving ATF4. Induction of LC3B by ATF4 in Bortezomib-treated cells was
independent of PERK. We also show a novel role for ATF4 in regulating protein levels of LC3B, which were rate limiting for the induction of autophagy in Bortezomib-treated cells, and that autophagy was impaired in cells lacking ATF4.

The UPR is implicated in both a prosurvival response, to maintain cellular homeostasis, and in apoptotic cell death when responses are not sufficient to relieve endoplasmic reticulum stress (31). The loss of ATF4 and LC3B was associated with an increase in cell death, suggesting that ATF4 and autophagy play a prosurvival role under Bortezomib treatment. However, the precise mechanism of Bortezomib-induced endoplasmic reticulum–dependent cell death is still unclear and likely to be cell type specific (32). Several studies support the hypothesis that Bortezomib sensitizes cancer cells to endoplasmic reticulum stress–mediated apoptosis (4, 29). However, recent findings suggest that massive induction of endoplasmic reticulum stress response and autophagy, by the combination of Bortezomib with other stresses, such as hypoxia, may drive tumor cells into necrosis (32, 33). Interestingly, it was previously shown that the UPR is also involved in resistance mechanisms to a variety of agents, including the topoisomerase inhibitors (34). Other evidence showed that ATF4 could be induced by cisplatin and overexpression of ATF4 conferred cisplatin resistance in cells (35). Furthermore, the UPR has been shown to induce the multidrug resistance gene 1 in human cancer cell lines (36).

In our work, we investigated the role of UPR in resistance of MCF7 cells to Bortezomib, by the induction of prosurvival pathways that could help to relieve the protein overload. Stabilization of the ATF4 protein lead to the induction of LC3B; therefore, we also investigated a role of autophagy in Bortezomib resistance. LC3B knockdown cells showed impaired autophagy and were more sensitive to Bortezomib, suggesting that the induction of LC3B through ATF4 is an important mechanism of Bortezomib resistance. Cells lacking ATF4 were more sensitive to Bortezomib than those lacking PERK or LC3B, suggesting that ATF4 plays a key role in protecting cells from death under Bortezomib treatment, through additional autophagy-independent mechanisms.

Recent evidence has shown that a proteasome-independent pathway eliminates unfolded polyubiquitinated proteins, known as the aggresome pathway, is linked to autophagy. HDAC6, a microtubule-associated deacetylase, couples misfolded polyubiquitinated proteins to the dynein motor complex, resulting in the formation of aggresomes and clearance by autophagy (15). It has been shown that autophagy can act as a compensatory degradation system when the UPS is impaired by genetic mutations in Drosophila, and that HDAC6 is an essential mechanistic link in this compensatory interaction (37). Inhibition of both the proteasome and HDAC6 by tubacin induced accumulation of ubiquitinated proteins and enhanced toxicity in multiple myeloma and ovarian cancer cells, although the mechanism linking the two was not known (38). We have shown that the loss of HDAC6 is associated with strong reduction of the LC3B protein but did not have any effect on mRNA levels of LC3B in Bortezomib-treated cells. Moreover, we observed that HDAC6 knockdown cells were more sensitive to Bortezomib treatment. This may be directly linked with the down-regulation of LC3B in cells lacking HDAC6 but requires further study. From a clinical point of view, it would be an attractive possibility to target UPR in combination with Bortezomib to enhance the response of breast cancer to Bortezomib, and sensitize to environmental stress that normally occurs in solid tumors. Although currently no specific inhibitors of UPR are clinically available, we are screening for such compounds. Thus, autophagy and the HDAC6 pathway are important targets for synergistic therapy and combinations of drugs blocking these pathways represents a testable approach to sensitize cancer cells to Bortezomib.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 7/24/08; revised 2/10/09; accepted 3/9/09; published OnlineFirst 5/5/09.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Cancer Research UK, Cremona Breast Unit, Millennium Pharmaceuticals, Inc. (Cambridge, MA).

References

The Role of ATF4 Stabilization and Autophagy in Resistance of Breast Cancer Cells Treated with Bortezomib

Manuela Milani, Tomasz Rzymski, Howard R. Mellor, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-08-2839

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2009/04/28/0008-5472.CAN-08-2839.DC1

Cited articles
This article cites 38 articles, 26 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/10/4415.full.html#ref-list-1

Citing articles
This article has been cited by 21 HighWire-hosted articles. Access the articles at:
/content/69/10/4415.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.