Targeting LMO2 with a Peptide Aptamer Establishes a Necessary Function in Overt T-Cell Neoplasia

Alex Appert,1,2 Chang-Hoon Nam,1,4 Natividad Lobato,1,5 Eva Priego,3,6 Ricardo Nunez Miguel,3 Tom Blundell,1 Lesley Drynan,1 Helen Sewell,1 Tomoyuki Tanaka,1,7 and Terence Rabbitts1

1Medical Research Council Laboratory of Molecular Biology; 2Division of Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital; 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom; Korea Institute of Science and Technology Europe, Forschungsgesellschaft mbH, Saarbrücken, Germany; 4Oryzon, Parc Cientific de Barcelona, Barcelona, Spain; 5Instituto de Química Médica (Consejo Superior de Investigaciones Científicas), Madrid, Spain; and 6Leeds Institute of Molecular Medicine, St. James's University Hospital, University of Leeds, Leeds, United Kingdom

Abstract

LMO2 is a transcription regulator involved in human T-cell leukemia, including some occurring in X-SCID gene therapy trials, and in B-cell lymphomas and prostate cancer. LMO2 functions in transcription complexes via protein-protein interactions involving two LIM domains and causes a preleukemic T-cell development blockade followed by clonal tumors. Therefore, LMO2 is necessary but not sufficient for overt neoplasias, which must undergo additional mutations before frank malignancy. An open question is the importance of LMO2 in tumor development as opposed to sustaining cancer. We have addressed this using a peptide aptamer that binds to the second LIM domain of the LMO2 protein and disrupts its function. This specificity is mediated by a conserved Cys-Cys motif, which is similar to the zinc-binding LIM domains. The peptide inhibits Lmo2 function in a mouse T-cell tumor transplantation assay by preventing Lmo2-dependent T-cell neoplasia. Lmo2 is, therefore, required for sustained T-cell tumor growth, in addition to its preleukemic effect. Interference with LMO2 complexes is a strategy for controlling LMO2-mediated cancers, and the finger structure of LMO2 is an explicit focus for drug development. [Cancer Res 2009;69(11):4784–90]

Introduction

The molecular cloning of chromosomal translocation junctions and cDNA copies of genes affected by the chromosomal translocations resulted in the definition of how these abnormal chromosomes affect tumorigenesis (reviewed in ref. 1). Chromosomal translocations in T-cell acute leukemia (T-ALL) involving chromosome 11, band p13, resulted in the isolation of LMO2 gene (2, 3), which belongs to a family of four genes, encoding small LIM-only proteins, in which LMO1 is also involved in chromosomal translocations in T-ALL (4, 5). LMO1 and LMO2 affect T-ALL by interfering with T-cell differentiation before the appearance of overt T-cell neoplasia (6–11). Recently, LMO2 has been further implicated in T-ALLs arising after retroviral insertion during gene therapy trials, and in B-cell lymphomas and prostate cancer. LMO2 is a transcription regulator involved in human T-cell leukemia, including some occurring in X-SCID gene therapy trials, and in B-cell lymphomas and prostate cancer. LMO2 functions in transcription complexes via protein-protein interactions involving two LIM domains and causes a preleukemic T-cell development blockade followed by clonal tumors. Therefore, LMO2 is necessary but not sufficient for overt neoplasias, which must undergo additional mutations before frank malignancy. An open question is the importance of LMO2 in tumor development as opposed to sustaining cancer. We have addressed this using a peptide aptamer that binds to the second LIM domain of the LMO2 protein and disrupts its function. This specificity is mediated by a conserved Cys-Cys motif, which is similar to the zinc-binding LIM domains. The peptide inhibits Lmo2 function in a mouse T-cell tumor transplantation assay by preventing Lmo2-dependent T-cell neoplasia. Lmo2 is, therefore, required for sustained T-cell tumor growth, in addition to its preleukemic effect. Interference with LMO2 complexes is a strategy for controlling LMO2-mediated cancers, and the finger structure of LMO2 is an explicit focus for drug development. [Cancer Res 2009;69(11):4784–90]

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Requests for reprints: Terence H. Rabbitts, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, LS9 7TF, United Kingdom. Phone: 44-113-343-8518; Fax: 44-113-343-8601; E-mail: thr@leeds.ac.uk.

©2009 American Association for Cancer Research. doi:10.1158/0008-5472.CAN-08-4774
Materials and Methods

Screening a peptide aptamer library with LMO2. A truncated form of LMO2 (amino acids 28–150) was fused to the LexA DNA binding domain in a modified version of pBTM116, in which the selectable marker for yeast TRP1 had been replaced by the LEU2 gene, allowing growth in a medium lacking leucine. This LexA-LMO2 construct was used as a bait to screen 10^6 transformants from a 20-mer peptide library (37) using the L40 yeast strain and following the protocol described (38). In this library (cloned in a vector with TRP1), which contains 10^6 initial members, the active site loop of *Escherichia coli* thioredoxin (TRX) is used as the scaffold to display the 20-mer peptides.

Mammalian two-hybrid assays. TRX peptide and the truncated LMO2 bait (amino acids 28–150) segments were subcloned into the mammalian pEF-VP16 vector as a fusion with the VP16 activation domain or into the pM vector (39) as a fusion with the Gal4 DNA-binding domain. The interaction between LMO2 and the peptides was tested in Chinese hamster ovary (CHO) cells using the dual-luciferase reporter assay system (Promega) according to the manufacturer’s instructions. All luminescence values by firefly luciferase were normalized against the values by renilla luciferase.

The best interacting peptide (PA207) was subcloned intact or as truncated versions in the pM vector, giving the fusion with the Gal4DBD directly or indirectly through a flexible linker consisting of three repeats of Gly-Gly-Gly-Gly-Ser. The mutated LMO2 preys have been described (36).

Protein purification and surface plasmmon resonance. Recombiant protein expression, purification, and surface plasmmon resonance analysis are described in the Supplementary Data.

Retrovirus infection into Lck-Lmo2 tumor T cells. A PCR fragment from Gal4DBD-linker-PA207 (Gal4DBD-LPA207, 12-mer) was cloned into pMIG retroviral vector (40). PlatE viral packaging cells (41) were plated in six-well plates (10^6 per well) and transfected with 2 μg of pMIG-Gal4DBD-LPA207 or pMIG empty vector using 8 μL of FUGENE6 reagent (Roche) per well to produce viral supernatants. Neoplastic T cells prepared from the thymoma of Lck-Lmo2 transgenic mice (36) were infected as described in the Supplementary Data.

Transplantation of retrovirally infected cells into Rag1 null recipients. After retrovirus infections, the percentage of green fluorescent protein (GFP)–expressing infected cells was assessed using flow cytometry before transplantation. The mixed population (2 × 10^6) were i.v. injected into Rag1−/− mice. Before transplantation, cell viability was measured by trypan blue exclusion. After the injection procedure, cell viability was again determined in the residual populations to ensure that injected cells were still viable. After ~6 wk, mice were sacrificed and GFP expression was analyzed in spleen cells by flow cytometry.

Structural in silico analysis. The LMO2 structural model with and without bound peptide was created in silico by comparative modeling using known structures of LIM proteins (42, 43). The detailed in silico modeling appears in the Supplementary Data.

Results

Anti-LMO2 peptide aptamers homologous to elements in LIM fingers. A yeast peptide aptamer library (37) was screened in the yeast two-hybrid screen and examined by CHO two-hybrid luciferase assays (A–C). A, the fold luciferase activation obtained by coexpression of a Gal4DBD-LMO2 fusion together with various peptide aptamer fusions with VP16 (TRX-PA14-VP16, etc). B, the fold luciferase activation obtained by coexpression of Gal4DBD-TRX-PA207 bait with preys comprising VP16 activation domain fusion with LMO family members (LMO1 and LMO4) or with zinc finger proteins, i.e., estrogen receptor α (ER; zinc finger type C2), protein kinase (TTK; zinc finger type C2H2), and GATA1 (DNA binding protein). The interaction with LMO2 binding partner LDB1 was used as a negative control. Error bars, SD (minimum of three independent experiments). Fold luciferase activations are relative to cotransfection of prey or bait + empty vector. D, alignment of amino acid sequences (single-letter code) of TRX peptide aptamers isolated from the yeast two-hybrid screen.
yeast with an LMO2 bait. The yeast peptide aptamer library consisted of a diverse set of clones expressing random peptides (20-mer) incorporated into the scaffold of bacterial TRX protein as an external loop. Transformants (3 × 10^6) were screened, and 15 were confirmed to be LMO2-specific binders. These clones were tested in a mammalian two-hybrid luciferase assay, and 10 showed a detectable reporter activity for LMO2 (Fig. 1A). The sequences of the peptides revealed the presence of a motif Cys-X-Cys or His-X-X-Cys in 12 of the clones (Fig. 1D). The similarity of this peptide motif to the zinc-binding regions of LMO2 (Supplementary Fig. S1B online) indicates that the peptides bind to LMO2 at a zinc atom coordination site.

A conserved region extends a few residues on either of the core Cys/His-x-x-Cys motif, with generally two hydrophobic residues on the NH2 terminal side and one hydrophobic residue on the COOH terminal side of the core motif. Furthermore, a charged amino acid often occurs as one of the two amino acids between Cys/His and Cys (Fig. 1D).

The lead anti-LMO2 peptide aptamer binds to the second LIM domain. The binding site of TRX-PA207 on LMO2 was assessed using variant forms of LMO2 protein. CHO cells were cotransfected with plasmids expressing random peptides (20-mer) fused to the Gal4DBD (Gal4DBD-TRX-PA207) and LMO2(LIM1 + LIM2), LMO2(LIM1), or LMO2(LIM2) fused to VP16 (prey) with luciferase reporter plasmids (Fig. 1B). The luciferase activation with the LMO2(LIM1 + LIM2) prey and LMO2(LIM2) were stimulated by 25-fold and 160-fold, respectively, whereas the LMO2(LIM1) prey was inactive showing that TRX-PA207 binds to the second LIM domain of LMO2 (i.e., LIM2).

We assessed cross-reaction of the PA207 peptide aptamer with other LIM-only family members and with other zinc-binding proteins (Fig. 1C). Significant binding was only found with LMO2 and not with the other LIM-only or zinc finger proteins or the LIM-binding protein LDB1. The LIM domain is most closely related to the DNA-binding domain of the GATA fingers, but no appreciable binding was found with a GATA1 bait. Finally, the anti-LMO2 peptide aptamer is specific for the LIM fingers, as TRX-PA207 showed no binding to the zinc fingers of estrogen receptor α (zinc finger type C4) or the protein kinase TTK (zinc finger type C2H2; Fig. 1C).

We determined if the peptide could bind LMO2 in a semiconstrained form by expressing the peptide linked as a COOH terminal sequence fused with the Gal4DBD (bait). We used either a protein comprising Gal4DBD fused with the whole TRX-PA207 (Gal4DBD-TRX-PA207; Fig. 2A) with a Gly-Ser flexible linker (Gal4DBD-TRX-LPA207) or comprising Gal4DBD fused with just the 20 amino acids of the PA207 (Gal4DBD-LPA207) with preys comprising whole LMO2 (LIM1 + LIM2), the LIM1, or the LIM2 domain only. Both baits behaved equivalently in luciferase production, indicating binding to the LIM2 domain–only prey with greatest efficiency. Both fully constrained (Gal4DBD-TRX-PA207) and semiconstrained (Gal4DBD-LPA207) baits had identical binding to LMO2; thus, PA207 is able to meet its target site on LMO2 with only NH2 terminal linkage to the DBD carrier.

We assessed the required number of flanking amino acids needed for the binding by comparing four peptides as baits (Fig. 2B). High-luciferase stimulation was observed with both formulations of bait with the LIM2 domain prey, and when the linker was present, the PA207 of 12 or 8 amino acids was able to bind with the prey [-LPA207 (12 mer) or (8 mer); Fig. 2A]. Conversely, the direct fusion of Gal4DBD with PA207 resulted in diminished binding for peptide lengths of 12 or 8. This suggests that steric hindrance prevents the latter from having access to the LMO2 protein.

The conserved Cys-x-x-Cys motif of the peptide is required to bind LIM finger 4. Because LIM2 has the greatest binding with PA207, it suggests that the tertiary structure of LMO2 limits access to the peptide. Further definition of the PA207 binding on LIM2 domain was achieved with a series of LIM finger mutants with each side of each LIM finger changed to either the LIM sequences of ISL1 or LMO4 (36). These preys were coexpressed with the Gal4DBD-LPA207(12-mer) bait in the two-hybrid assay, and their relative expression levels were determined (Fig. 3A). The luciferase analysis showed the most significant effect with the mutant in which the right side of finger 4 (Fig. 3A) was changed into the
LMO2 sequence. In this mutant, no significant binding to PA207 was observed.

Mutations were made at each residue through the “right-hand” side of finger 4 (sequence in Supplementary Fig. S1 online), and the luciferase stimulation was determined with the Gal4DBD-LPA207 (12-mer) bait (Fig. 3B). Substitution of the Cys125 (involved in zinc coordination in finger 4) removed PA207 interaction, suggesting that the peptide aptamer binding site is the zinc-binding Cys-x-x-Cys motif of the LIM finger 4. Mutation of nonzinc binding finger 4 residues 128 and 130 decreased the reporter activity (Fig. 3B), whereas mutation of finger 4 residues 135 to 140 significantly decreased their binding activities to PA207. An important residue in the LMO2 protein also seems to be phenylalanine (residue 129), as changing at that position to glycine ablates peptide binding (Fig. 3B). The amino acids of the PA207 that have key interactions...
were similarly assessed by mutagenesis (Fig. 3C). Changing the cysteine residue 10 of PA207 to aspartate or histidine destroys binding, as does changing isoleucine (residue 8) to either aspartic acid or proline (but not the conserve change to leucine).

We have determined the binding affinity of PA207 with LMO2 in vitro using surface plasmon resonance with recombinant protein (i.e., GST-LMO2 and HIS-TRX-P207; Supplementary Fig. S2). Using different concentrations of TRX-PA207 protein, the average Kd for binding was calculated as 29 nmol/L.

**The peptide aptamer inhibits LMO2 protein function.** LMO2 is a protein interaction module (26, 27, 44–46) that operates by protein interaction in each of its functional settings, which includes hematopoiesis, angiogenesis, and leukemogenesis (8, 28, 47). Gene targeting approaches showed that Lmo2 null ES cells fail to undergo differentiation into erythroid (Ter119-expressing) cells, whereas de novo formation of endothelial (CD31-expressing) cells is unimpeded (21). We used ES cells in which Lmo2 has been disrupted by knock in of the lacZ gene into one allele (21) to stably transf ect with a plasmid which expressed Gal4DBD-LPA207. We observed that the PA207 had no effect on CD31-positive cell development (Fig. 4A), whereas it has an inhibitory effect on development of Ter119-expressing cells mimicking the Lmo2−/− ES cells (Fig. 4B). Therefore, the peptide aptamer binds to Lmo2 complexes and prevents specific function.

The effectiveness of the PA207 in LMO2-dependent tumorigenic models was analyzed using a preclinical mouse transplantation assay (36). Neoplastic T cells from an Lmo2-dependent transgenic mouse model were infected with retrovirus expressing the Gal4DBD-LPA207 and GFP reporter or vector only–expressing GFP. The proportion of infected cells was assessed using flow cytometry (Fig. 4C), and these populations were transplanted into mature lymphocyte-null Rag1 knockout mice. Spleen cells were collected from mice with splenomegaly, and the proportion of GFP-expressing cell was determined. A 90% reduction of GFP-positive neoplastic T cells was observed in the recipients that were transplanted with cells infected with retrovirus encoding PA207 (Fig. 4C) compared with those only expressing GFP (vector-only infections). These data are indicative of the specific growth inhibition of the neoplastic cells by PA207 in vivo in tumor-bearing mice.

**In silico modeling of LMO2 and peptide aptamer binding.** To build a model of the protein-peptide interaction, an in silico model of LMO2 was generated using mouse Lmo4 and partial mouse Lmo2 structural data (42, 43). Our in silico model indicates that the
peptide PA207 8-mer (sequence ILCHECVT) has similarities to the region of the LMO2 LIM2 finger 4 sequence FKCAACQK, which is itself responsible for binding the fourth zinc atom (residues 120 to 127; Supplementary Fig. S1 online). The most likely position for the peptide binding site is where the fourth Zn atom is in LMO2 (Fig. 5). The zinc atom of finger 4 seems to be the most exposed and may explain the interaction of the peptide at this position rather than the other three zinc atoms. A model was built carrying the LMO2 point mutation with phenylalanine to glycine in the codon 129 (F129G), indicating a distortion of the region-binding zinc. The phenylalanine is exposed to the peptide interaction, whereas the glycine is buried in the F129G mutant and the zinc atom of finger 4 is correspondingly less exposed (Supplementary Fig. S3), providing an in silico explanation for the effect of the F129G mutation on PA207 interaction with LMO2.

Discussion

LMO2 binding peptides target the zinc binding region of the LIM2 domain. The LMO2-binding peptides were selected from a random 20-mer library in the TRX scaffold (37), displayed binding through a Cys/His-x-x-Cys motif and preferential binding to the LMO2 LIM2 finger 4. Mutation of the cysteine residues in the peptide confirms the requirement for these residues (Fig. 3C), but other residues in the peptide have important interactions with LMO2, such as isoleucine residue 8 in PA207 (see Fig. 3C).

Our in silico model concurs with mutagenesis data and predicts that interaction with the peptide has structural consequences for the second LIM domain without direct changes to the first domain (Fig. 5). Thus, the mechanism by which the peptide elicits its effect on the biological role of LMO2 in the T-cell neoplasia assay may be by disrupting the transcription complex in which LMO2 is a bridging molecule.

Inhibition of LMO2 function by peptide aptamer. Our data show that the peptide aptamer (using the Gal4DBD scaffold) can prevent Lmo2-dependent T-cell neoplasia in a tumor transplant in vivo assay. This validates both PA207 and LMO2 sequences as important elements for any possible LMO2-based therapy. In addition, the PA207 replicates the effect of gene targeting knockout of Lmo2; thus, PA207 is an ideal reagent for investigating the normal LMO2 interactome. Cell-specific and temporal activation of the peptide aptamer would facilitate the dissection of properties of LMO2 transcription complexes in development.

The T-cell neoplasia transplant assay is a surrogate of T-cell neoplasia therapy. The results show that transplanted T cells expressing the PA207 macromodulator are severely growth impaired in the recipient mice, showing that Lmo2 functional activity is required for tumor maintenance in this mouse model. This means that LMO2 is a drug target for therapy of T-ALL and possibly other neoplasias, such as diffuse large B-cell lymphoma (30, 31) and prostate cancer (33), wherein aberrant LMO2 expression is reported. Furthermore, the peptide reported here will act as a lead for LMO2 drug development.

LMO2 is a validated therapeutic target in T-cell neoplasia. The Lmo2-dependent T-cell neoplasias that develop in the transgenic model occur as clonal tumors with long latency, showing that the Lmo2 transgene is necessary but not sufficient for cancer. Neoplasia is preceded by an Lmo2-dependent period of partial blockade of T-cell differentiation at the immature T-cell stage. As previously argued (48), this blockade of T-cell differentiation coincides with the expression of the Bag recombine, and so, in humans, the LMO2 chromosomal translocations will occur at that stage, resulting in inhibition of differentiation of the afflicted T cell and eventual appearance of overt cancer. The question of whether LMO2 is needed only for this preleukemic stage or also for the overt neoplastic stage is answered by our studies with PA207, showing overt tumor inhibition by the macrodrug. Thus, LMO2 is a therapeutic target in LMO2-expressing T-cell leukemias and perhaps also B-cell lymphoma and prostate cancer where LMO2 is expressed.

Our molecular data locates LIM finger 4 as a key region of LMO2 that could be the focus of small molecule drug development to ablate the transcription complex. This approach can be tackled by development of a mimetic compound, either by selection processes that compete the binding of the LMO2-binding peptide or by in silico virtual drug screens using either the modeling of the LMO2-peptide complex or from structures that may be obtained in the future. The specificity for LMO2 LIM fingers is especially encouraging for this drug development endeavor and seems to rely on structural features of the LMO2 protein not shared by the family members.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 12/22/08; revised 2/19/09; accepted 3/20/09.

Grant support: Leukaemia Research Fund (United Kingdom), Medical Research Council (United Kingdom), and University of Leeds. A. Appert and C.H. Nam were part funded by Lady Tata Memorial Fund fellowships, H. Sewell is the recipient of an LRF Gordon Pillar studentship, and M.N. Lobato was part funded by an LRF fellowship. E.M. Priego was supported by a grant from the Spanish Ministerio de Educacion y Ciencia.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. R. Brent for the peptide aptamer yeast library and Professor T. Kitamura for the PlatE packaging cell line.

References

22. Nam CH, Rabbitts TH. The role of LMO2 in development and in T cell leukaemia after chromosomal translocation or retroviral insertion. Mol Ther 2006;13:15–25.
Targeting LMO2 with a Peptide Aptamer Establishes a Necessary Function in Overt T-Cell Neoplasia

Alex Appert, Chang-Hoon Nam, Natividad Lobato, et al.