Kinome Profiling in Pediatric Brain Tumors as a New Approach for Target Discovery

Departments of 1Pediatric Oncology, 2Cell Biology, 3Pathology and Medical Biology, and 4Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands and 5PamGene International B.V., Hertogenbosch, The Netherlands

Abstract
Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains exceedingly complicated. Here, we introduce kinome profiling using flow-through peptide microarrays as a new concept for target discovery. Comprehensive tyrosine kinase activity profiles were identified in 29 pediatric brain tumors using the PamChip kinome profiling system. Previously reported activity of epidermal growth factor receptor, c-Met, and vascular endothelial growth factor receptor in pediatric brain tumors could be appreciated in our array results. Peptides corresponding with phosphorylation consensus sequences for Src family kinases showed remarkably high levels of phosphorylation compared with normal tissue types. Src activity was confirmed applying Phos-Tag SDS-PAGE. Furthermore, the Src family kinase inhibitors PP1 and dasatinib induced substantial tumor cell death in nine pediatric brain tumor cell lines but not in control cell lines. Thus, this study describes a new high-throughput technique to generate clinically relevant tyrosine kinase activity profiles as has been shown here for pediatric brain tumors. In the era of a rapidly increasing number of small-molecule inhibitors, this approach will enable us to rapidly identify new potential targets in a broad range of human malignancies. [Cancer Res 2009;69(14):5987–95]

Introduction
Cancers arise by an evolutionary process as somatic cells mutate and escape the restraints that normally withhold them from unlimited expansion. To forestall unlimited cell division, multiple mechanisms work in concert. Neoplastic progression is the net result of uncontrolled signaling through various protein kinase-mediated networks driving cell proliferation. In neoplasms, cell signaling involving these pathways can be affected by numerous factors: genetic, epigenetic, and environmental (1). In theory, these signals converge into a limited number of downstream effectors. The most prominent signal transduction pathways implicated to mediate these growth and suppressive signals include the Janus-activated kinase/Stat, phosphatidylinositol 3-kinase/Akt, and Ras/extracellular signal-regulated kinase and protein kinase Cα pathways (2). In pediatric brain tumors, research mainly focused on the potential involvement of specific protein kinases such as epidermal growth factor receptor, platelet-derived growth factor receptor, phosphatidylinositol 3-kinase, and Janus-activated kinase in cell proliferation and survival (3–8). The overall complexity and coregulation of the various signaling networks, however, has not been unraveled yet. Therefore, high-throughput procedures, such as kinome profiling, which generates comprehensive insight in cellular signaling without a priori assumptions, would enable us to directly assess a broader range of targets for future treatment strategies.

Microarray-based kinome profiling approaches have been subject of development over the last years (9–13). In the present study, this approach has been employed for the detection of aberrant kinase activity in neoplastic tissue for the first time. Global tyrosine kinase activity profiles of pediatric brain tumors were identified applying a newly developed peptide array system (PamGene; ref. 14).

In the PamChip tyrosine kinase profiling system, a sample is constantly pumped up and down through a porous microarray of 144 kinase substrates. The phosphorylation is determined by measuring the association of a fluorescently labeled anti-phospho-tyrosine antibody to the substrates phosphorylated by the kinase activities in the sample.

This procedure generated a comprehensive set of kinase-induced peptide phosphorylation profiles of all tumor samples included in this study. Peptide array data were validated by a combination of conventional and state-of-the-art techniques, such as cell survival assays and Phos-Tag SDS-PAGE, thereby establishing Src kinase as a primary target for therapeutic intervention in pediatric brain tumors.

The results show the usefulness of kinase activity profiling as a powerful approach to identify new potential targets for treatment.

Materials and Methods
Patient samples and cell lines. All tissue was obtained by surgical resection. After resection, the tissue was subjected to a short period of room temperature to transfer the tissue from operation room to the pathology department (mean time, 10 min). Subsequently, the tissue samples were snap frozen in liquid nitrogen and stored at −80°C.

Tissue material was histologically evaluated and graded according to WHO classification 2007 (15). Written informed consent and local ethics committee approval was granted for use of the patient material.

Tyrosine kinase activity profiles of 29 pediatric brain tumors (9 ependymomas, 7 pilocytic astrocytomas, and 13 primitive neuro-ectodermal tumors, of which 10 medulloblastomas) were generated
We used the cell lines Uw-402, Uw-426, Uw-473, Res-256 (medulloblastoma; Dr. Michael S. Bobola, Seattle Children’s Hospital Research), DAOY and 293T were cultured in DMEM (Lonza) supplemented with 10% fetal bovine serum. HL-60, TF-1, and DLD-1 were grown in RPMI 1640 (Lonza) with 10% fetal bovine serum. Cell cultures contained 100 units/mL penicillin and 100 μg/mL streptomycin (PAA Laboratories). Granulocyte/macrophage colony-stimulating factor (Novartic) was supplemented to the TF-1 cultures (10 ng/mL).

Tyrosine kinase activity profiling using PamChip peptide arrays. Kinase activity profiles were determined using the PamChip tyrosine kinase microarray system (PamGene). This microarray consists of 144 unique peptide sequences spotted onto a porous membrane enabling constant flow-through of the reaction mixture.8 Each peptide represents a 15-amino acid sequence corresponding to a putative endogenous phosphorylation site, which functions as a tyrosine kinase substrate (Supplementary Table S2). Phosphorylation is visualized by measurement of the endpoint fluorescent signal emitted as a consequence of fluorescein-labeled anti-phosphotyrosine antibody binding (PY20).

Tissue was lysed in M-PER reagent containing phosphatase and protease inhibitors (Pierce). The reaction mixture consisted of 1× ABL buffer (Westburg), 100 μmol/L ATP (Sigma-Aldrich), 20 μg/mL PY20 (Exalphi), and 5 μl yase. Before loading, the reaction mixture onto the array a blocking procedure was done with 0.2% bovine serum albumin (Calbiochem). The experiment was repeated 8 times for each tissue sample to study technical reproducibility. After loading the cell lysates onto the PamChip arrays, incubation was commenced for 60 cycles using the PamStation96 followed by washing and FITC fluorescence measurement of all peptide spots.

The optimal protein concentration was determined by adding samples with various protein concentrations to the array. Between 0.5 and 1.5 μg/μl, variation in the total amount of protein applied to the array did not influence signal intensity (data not shown). Protein concentrations were measured in the first experiments to standardize the tissue procedure (12 slices of 5 μm of a tissue block measuring 5 × 5 mm). Tissue-Tek OCT compound (Sakura Finetek) used in the tissue freezing procedure did not affect kinase activity.

Immunoblotting of phosphorylated Src. The immunoblotting procedure was done basically as described previously (16). Frozen tissue was lysed in 250 μL radioimmunoprecipitation assay buffer containing Complete solution (Roche Diagnostics) and 1 mmol/L Na3VO4. Cultured cells were washed with ice-cold PBS and scraped in 500 μL radioimmunoprecipitation assay buffer. Lysmmi sample buffer was supplemented and the lysate was boiled for 5 min.

To visualize the levels of phosphorylated Src, a newly developed immunoblotting technique was applied using a phosphate-binding molecule (Phos-Tag AAL-107; NARD Institute; ref. 17). Together with 0.2 mmol/L MnCl2(H2O)4, 0.1 mmol/L Phos-Tag AAL-107 ligand was added to the SDS-PAGE (7.5%). Protein was blotted onto a polyvinylidene fluoride membrane (Millipore). Blots were incubated at 4°C in 5% bovine serum albumin containing a primary antibody against total Src (2 μg/mL stock; 1:1,000; 360D10 rabbit monoclonal antibody; Cell Signaling) overnight followed by incubation with swine anti-rabbit peroxidase-conjugated antibodies (1:3,000; P0217; DAKO) at room temperature for 1 h. Antibody binding was visualized by enhanced chemiluminescence. β-Actin was probed as a protein loading control (200 μg/mL stock; 1:3,000; sc-7778 mouse monoclonal antibody; Santa Cruz Biotechnology).

Cell survival assays. A WST-1 colorimetric viability assay protocol was done following the procedures recommended by the manufacturer (Roche). Cells were seeded at a density of 4 × 104 per well in medium (1% fetal bovine serum) and subjected to 0, 0.1, 0.5, 1, 2, and 20 μmol/L 4-amino-5-(4-methylphenyl)-7-(3,4-dipyridyl)pyrazolo [1,2-a]pyrimidine (PP1; Biomed International) or 0, 0.05, 0.1, 0.5, 1, 5, 10, 50, and 100 nmol/L dasatinib (BMS-354825; Bristol Myers Squibb) for 48 h (6 replicates for each concentration).

Cell proliferation assays. 5-Bromo-2-deoxyuridine cell proliferation assays were done following the procedures recommended by the manufacturer (Merck Biosciences). Cells were seeded at a density of 2 × 104 per well and incubated with either 0, 2, or 20 μmol/L PP1 in medium containing 1% fetal bovine serum (6 replicates for each concentration). 5-Bromo-2-deoxyuridine was added after 0, 24, or 48 h incubation with PP1 followed by another 24 h of incubation.

Data analysis and statistics. Quantification of spot intensities was conducted using Bionavigator software (PamGene).

Background was determined by plotting all signals against the relative SE over the replicates. The threshold signal intensity was read from the trend line at an relative SE of f < 37%, above which signals were considered to reflect a genuine phosphorylation event. Phosphorylation values with a relative SE exceeding 37% were excluded from further analysis. Data analysis was done in RRB-Array Tools version 3.5.0 (18). Data normalization was achieved by determining the median signal over each array. Differences in peptide phosphorylation were statistically assessed with nonparametric Mann-Whitney U tests in SPSS (release 14.0.2).

Differences in 5-bromo-2-deoxyuridine incorporation levels were statistically assessed with Kruskal-Wallis one-way ANOVA (SPSS).

The Phospho-ELM BLAST tool (PhosphoBase Resource Release 7.0) was applied to determine the kinases potentially responsible for phosphorylation of a specific peptide.7

Results

Tyrosine kinase activity profiles of pediatric brain tumors. The flow-through feature of the PamChip tyrosine kinase profiling system resulted in a low and evenly distributed background signal, making it possible to measure kinase activity in high resolution. Measuring the signal intensities of highly phosphorylated peptides at multiple time points indicated that the phosphorylation signals did not reach the plateau during the run.

To study the reproducibility of the peptide array data, we generated kinase profiles in separate assay-runs on the same day and on separate days. Hierarchical clustering showed comparable lists of phosphorylation values in both cases. Furthermore, regression analysis comparing the phosphorylation values of identical patient tissue, prepared and analyzed on separate days, rendered a R2 value of 0.79 (Supplementary Fig. S1).

To determine the time window for measuring tyrosine kinase activity (time between tissue resection and freezing during operation), kinase activity profiles of tumor tissue lysed after either, 2, 5, 10, 20, or 30 min incubation at room temperature were established. No differences in kinase activity profiles were observed up until 30 min of room temperature with a R2 of 0.91 comparing the values after 2 and 30 min of incubation (Supplementary Fig. S2). Thus, we can conclude that kinase activity is sufficiently stable to allow analysis according to our experimental setup.

6 www.PamGene.com

7 http://phospho.elm.eu.org/pELMBlastSearch.html

Published OnlineFirst June 30, 2009; DOI: 10.1158/0008-5472.CAN-08-3660

Cancer Research

Downloaded from cancerres.aacrjournals.org on November 14, 2017. © 2009 American Association for Cancer Research.
Next, kinase activity profiles of pediatric brain tumor lysates were established. We used two methods to analyze the phosphor-
ylation data. First, phosphorylation intensities of the peptides were compared between the different brain tumor subtypes in accordance with the minimal kinome approach described by Diks and colleagues (Fig. 1; ref. 19). The minimal kinome approach determines the set of substrates, the phosphorylation of which is shared by >90% of all samples within one tumor type. The central nervous system primitive neuroectodermal tumor samples were excluded from this analysis. Second, differences in phosphorylation levels were assessed by class comparison.

On average, the ependymoma, astrocytoma, and medulloblastoma tumor lysates elicited phosphorylation of 70, 73, and 72 peptides, respectively (Fig. 2; Supplementary Table S3). Phosphorylation of 30 substrates appeared to be common to all pediatric brain tumor types. Within this set of 30 peptides (Supplementary Table S4), suggested to represent the minimal tyrosine kinome of pediatric brain tumors within the current set of substrates, high levels of kinase activity were observed on peptides corresponding with phosphorylation consensus sequences derived from ERBB2/HER-2 receptor and c-Met/hepatocyte growth factor receptor kinases. Furthermore, with the aid of the Phospho-ELM database, we identified 20 peptides that could potentially be phosphorylated by Src family kinases. Seven of these peptides were present in the established minimal tyrosine kinome of pediatric brain tumors.

Differential phosphorylation of the vascular endothelial growth factor receptor 2 derived peptides was also observed. VEGFR2_Y1059 (DIYKDPPDYVRKGD) was phosphorylated by all of the included medulloblastomas, whereas some ependymoma and astrocytoma samples lacked phosphorylation of this peptide. Furthermore, VEGFR2_Y996 (EAPEDIYKDFLT) was phosphorylated by all astrocytomas and medulloblastomas but not all ependymomas.

Class comparison showed a significantly higher phosphorylation of the peptide LAT_Y200 (MESIDDYVNVPES) in astrocytomas compared with ependymomas. In addition, the phosphorylation of CBL_Y700 (EGEEDTEYMTPSS) by astrocytoma lysate was higher compared with medulloblastomas.

Overall, these results imply substantial overlap in kinase activity, whereas some phosphorylation events could be appreciated as potential druggable targets.

Tyrosine kinase activity profiles of neoplastic tissue and its normal counterpart. In the light of the observed similarities in kinase activity in three pediatric brain tumor types, we wondered whether these similarities are tumor specific. Therefore, we performed an experiment comparing kinase activity profiles of three diverse types of solid tumor. Kinase activity profiles of 9 pediatric brain tumors (A2, A6, A7, E2, E8, E9, M7, M8, and M9), 5 Wilms’ tumors, and 5 colon carcinomas were compared with normal kidney (n = 2) and colon tissue (n = 5). Because there is no possibility of getting healthy normal brain tissue and postmortem brain tissue is not applicable due to the slow decrease in body temperature after death resulting in autolysis, we decided to compare the various brain tumor tissues with a small panel of normal tissues to see if the resolution of the technique is sufficient to discern differences in kinase activity. After data processing, 88 peptides showed signal intensities below the threshold value. Twenty-eight peptides, including substrates for Wee1, Src, Ret, Pak, and platelet-derived growth factor receptor-β, proved to be phosphorylated by lysate of all three tumor types (Fig. 3; Supplementary Table S4).

For the two tissue-normal counterpart combinations, the neoplastic tissue displayed a different number of phosphorylated peptides, reflecting altered tyrosine kinase activity in neoplastic cells. The colon carcinomas rendered an average of 75 phosphorylated peptides compared with 58 peptides applying normal colon tissue. For Wilms’ tumors, this concerned 62 peptides compared with 66 in the normal kidney counterpart. Colon carcinoma lysate showed a
significantly higher kinase activity on 5 peptide residues compared with normal counterpart tissue. These peptides correspond with consensus sequences of Src, Ret, and FAK tyrosine kinases.

Applying the minimal kinome approach, the colon and kidney tumors together produced unique phosphorylation of 11 peptides compared with 1 in their normal counterparts (Fig. 3). Within this set of 11 tumor-specific peptides, phosphorylation of CDK2_Y15 (EKIGEGTYGVVYK) and MET_Y1230/Y1234/Y1235 (RDMYDKEYSYHN) can be appreciated. These peptides are also present in the established minimal pediatric brain tumor tyrosine kinome. Thus, although phosphorylation of a significant number of substrates is shared between tumors of different origin, also clear germ-line specific and tissue-specific phosphorylation patterns can be appreciated in cancers of different origin.

Differences in the phosphorylation status of Src-related peptides between pediatric brain tumor and normal tissue samples were assessed by class comparison. Interestingly, brain tumor lysate showed a significantly higher phosphorylation of 10 of the 20 peptides that were phosphorylated by >60% of all brain tumor lysates are displayed. Red and green spots, high and low signal intensities, respectively. Sample labels correspond with Supplementary Table S1: A, astrocytoma; E, ependymoma; M, medulloblastoma; C, central nervous system primitive neuroectodermal tumor. The peptide names correspond with the phosphorylation consensus sequences of the kinase from which they originated (Supplementary Table S2): Bold, peptides that are phosphorylated by >90% of the samples within one tumor type, as listed in Fig. 1.
potential Src substrates (Supplementary Fig. S3): ANXA1_Y20 (INEEVEQYVQTVK; \(P = 0.044 \)), EFS_Y253 (GGTDEGYDVPIL; \(P = 0.007 \)), ENOG_Y43 (SGASTGIYAELEL; \(P = 0.005 \)), P85A_Y607 (NENDTDQYSLVED; \(P = 0.012 \)), PAXI_Y118 (VGEEHHYVSFPNK; \(P = 0.009 \)), PAXI_Y31 (FLSEETPSYTPGT; \(P = 0.007 \)), PDPK1_Y9 (ARTTSQLYADVPI; \(P = 0.014 \)), PDPK1_Y373/Y376 (DEDCCGYDNYDNSLPS; \(P = 0.005 \)), SRC8_CHICK_Y477/Y483 (EYEPEITYEVAGAQ; \(P = 0.016 \)), and SRC8_CHICK_Y499 (YQAEEHTEDEYEN; \(P = 0.009 \)). These results imply Src activity to be a prominent characteristic of pediatric brain tumor growth.

Src-mediated signaling might be important in pediatric brain tumor progression. Src phosphorylation levels were determined in three tissue samples of each brain tumor type, applying the newly developed Phos-Tag SDS-PAGE approach. This technique makes use of the affinity of phosphorylated proteins for the Phos-Tag ligand, resulting in retention of phosphorylated proteins, separating them from their unphosphorylated counterpart during electrophoresis. In theory, this will result in two or more distinct protein bands representing the phosphorylated and unphosphorylated status of the protein. Src possesses two key phosphorylation sites determining activity: the stimulatory site Tyr416 and the inhibitory site Tyr 527. Phosphorylation of both tyrosine residues renders the enzyme hyperactive (20, 21). Thus, three possible phosphorylation states can be appreciated: non-phosphorylated, single-phosphorylated at Tyr527 or Tyr416, and double-phosphorylated at both Tyr527 and Tyr416. On the Phos-Tag gels, we observed all three phosphorylation states, confirming Src kinase activation in tissue samples of all three brain tumor types as well as in each of 9 pediatric brain tumor cell lines (5 medulloblastomas, 3 astrocytomas, and 1 ependymoma; Fig. 4).

We observed a less active phosphorylation ratio of Src in the control cell lines HL-60, DLD-1, and 293T. To verify the functional role of Src kinases in pediatric brain tumor growth, cell survival assays were done using dasatinib and PP1 as potent Src family kinase inhibitors.

PP1 induced a dose-dependent decrease in cell survival in all brain tumor cell lines with LC50 (50% decline in cell survival) concentrations ranging from 1.1 to 9.7 \(\mu \text{mol/L} \) (Fig. 5). This was in agreement with the concentrations necessary to inhibit Src kinase activity (data not shown). Hardly any decrease in cell survival was seen in two leukemic cell lines (HL-60 and TF-1; LC50 > 20 \(\mu \text{mol/L} \)), suggesting other pathways to take over cell survival signaling in these cell lines. A substantially lower response to PP1 was also found in the colon carcinoma cell line DLD-1 (LC50 > 20 \(\mu \text{mol/L} \)) and the human embryonic kidney cell line 293T (LC50 > 20 \(\mu \text{mol/L} \)).
Also, dasatinib decreased cell survival in all pediatric brain tumor cell lines, except for the low-grade astrocytoma cell line Uw-467 (Fig. 6). Three cell lines reached LC50 within the applied concentration range: Uw-473, Res-186, and Res-196 (65, 20, and 17 nmol/L, respectively). No effect could be observed on the control cell lines, except for the positive control K-562. The high apoptosis rate of K-562 on treatment with dasatinib is accompanied by an attenuation of the levels of phosphorylated Bcr-Abl, c-Src, Lyn, and CrkL, indicating that this effect is not only the result of Src inhibition in this specific cell line (22).

Summarizing, Src inhibitors are able to induce tumor cell death in pediatric brain tumor cell lines, whereas no effect can be observed in the controls.

The effect of Src inhibition on cell cycle arrest was determined by performing 5-bromo-2-deoxyuridine proliferation assays with the medulloblastoma cell line Uw-473 (Supplementary Fig. S4). Cell survival assays done in parallel indicated a strong dose-dependent decrease in Uw-473 cell survival with PP1 added (P < 0.001). A significant dose-dependent decrease in Uw-473 cell proliferation rate on Src inhibition was observed as well (P < 0.01).

Discussion

In this study, we successfully applied a novel high-throughput technique to generate tyrosine kinase activity profiles of pediatric brain tumors and show its usefulness in target discovery. We identified and validated Src activity as a potential target in pediatric brain tumors for therapeutic intervention.

The tyrosine kinase activity profiles of different pediatric brain tumor types showed considerable overlap. Using the minimal kinome approach, a set of 30 of 144 substrates proved to be phosphorylated in >90% of all brain tumor lysates. Eleven substrates showed tumor-specific activity in a comparison of various tumor tissues, such as pediatric brain tumors, Wilms’ tumors, and colon carcinomas, with normal tissue types. Within these 11 tumor-specific substrates, CDK2, c-Met, and epidermal growth factor receptor-derived peptides were present.

The importance of CDK2 related to malignant progression has already been recognized. CDK2 is the major cell cycle kinase, which activation represents an increase in mitotic index (23–27). c-Met is the tyrosine kinase receptor of scatter factor/hepatocyte growth factor and has been shown to promote migration, invasion, and angiogenesis in gliomas followed by a decrease in prognosis (28–31). Interestingly, the scatter factor/hepatocyte growth factor/c-Met pathway has been shown to require CDK2 activation to induce cell cycle progression in medulloblastoma (32). The presented results suggest a more common role for c-Met-induced tumor progression involving CDK2 activation.

In all tumor types, substantial phosphorylation of several peptide motifs related to epidermal growth factor receptor family members was observed. Epidermal growth factor receptor signaling has been linked to various malignancies including childhood medulloblastoma (33, 34).

Summarizing, the observed tumor-specific kinase activity profile overlaps with previously published tyrosine kinase activation, proving the validity of the peptide array results. Moreover, this kinase activity profile is able to give us a view into the complexity and the subtlety of the cellular signaling networks that drive tumor cell proliferation in favor of tumor cell death.

On the peptide array, 20 potential Src substrates are present, of which 10 showed a significantly higher level of phosphorylation in...
pediatric brain tumor tissues compared with normal tissues. With the aid of Phos-Tag SDS-PAGE, we were able to confirm an activatory phosphorylation status of Src in pediatric brain tumor lysates, whereas this was not the case in control cell types. The increased sensitivity of pediatric brain tumor cell lines, compared with several tumor control cell lines on increasing dosages of a Src family kinase inhibitor, points to a potentially important role of Src signaling in pediatric brain tumors. The successful application of Phos-Tag SDS-PAGE shows its potential in studying protein phosphorylation.

Src family kinases are controlled by various classes of receptor pathways including protein tyrosine kinases, integrin receptors, and G protein-coupled receptors. Src signals to a variety of downstream effectors including cytoskeletal proteins (FAK and paxillin) and pathways involving Stat, phosphatidylinositol 3-kinase, and extracellular signal-regulated kinase, thus exerting effects on cell survival, proliferation, and differentiation (35). We showed a decreased pediatric brain tumor cell viability and proliferation rate on Src inhibition. The LC_{50} concentrations of dasatinib were within nanomolar range. Dasatinib has been shown to decrease tumor cell survival and proliferation in breast cancer, non-small cell lung cancer, and neuroblastoma (36–39). Within the brain, Src family kinases are known to play a critical role in cerebellar cell migration and histogenesis during embryonic development (40–42). Recent publications have shown that Src signaling is also involved in brain tumor cell invasion. By preventing Src family kinase recruitment to epidermal growth factor receptor or CD95, a decrease in glioblastoma cell invasiveness could be established (43, 44). Furthermore, protein phosphatase activity of PTEN has been shown to control glioma cell migration by inhibition of Src family kinases (45). PTEN is mutated in one third of all glioblastomas. Our data provide the first evidence that Src signaling is an interesting potential target for pediatric brain tumor treatment. Preliminary data already showed that detectable concentrations of dasatinib can be reached in the cerebrospinal fluid (46).

Current mass spectrometry techniques and novel proteomics approaches such as antibody microarrays determine protein phosphorylation levels rather than the enzymatic activity resulting from it. Measurement of kinase activity using the peptide microarray provides a direct view on the extent of enzymatic activity leading to specific signal transduction. The validity of the PamGene tyrosine kinase array data has been studied previously by Lemeer and colleagues (47). They were able to confirm the peptide array phosphorylation data with anti-phosphotyrosine immunoprecipitation followed by mass spectrometry-based proteomics.

A potential drawback is the variation in the number of potential upstream kinases for the various substrates as determined using the Phospho-ELM database. In our view, the decreased kinase specificity of a peptide can be compensated by taking into account all substrates potentially sensitive to a kinase of interest, thereby enhancing the interpretability of the results.

Figure 5. Decreased tumor cell survival in response to Src inhibition with PP1. Cell survival percentage has been plotted against the concentration of PP1 (μmol/L) for all medulloblastoma (A), astrocytoma (B), ependymoma (C), and control (D) cell lines. Bars, SD of six replicate measurements. All pediatric brain tumor cell lines show decreased cell survival.
specific peptide substrates has gained reliability over the last years, as the Phospho-ELM database has expanded dramatically. Still, determining the sensitivity of a substrate for specific kinases will prove to be of tremendous value in future application of the peptide array. Most likely, future application of recombinant and/or purified kinases will tell us more about the specificity of individual peptides, thus making it easier to pinpoint specific kinases based on the obtained peptide array results. Therefore, generating hypotheses is the limit of what is possible at the current developmental stage of peptide microarray technology.

Overall, we successfully employed a peptide microarray-based tyrosine kinase activity screening technique, identifying new potential targets for pediatric brain tumor treatment. The obtained kinase activity profiles suggest the existence of a more tumor-specific kinase activity profile including CDK2 and c-Met, confirming earlier reports showing activation of these kinases. In the era of a rapidly increasing number of small-molecule inhibitors, this tyrosine kinase activity profiling method will be of tremendous value by enabling us to rapidly screen for potential druggable targets in a broad range of malignancies.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 9/19/08; revised 3/17/09; accepted 5/15/09; published OnlineFirst 6/30/09.

Grant support: Foundation of Pediatric Oncology Groningen grant SKOG-05-001 (A.H. Sikkema).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. Michael S. Bobola (Seattle Children’s Hospital Research Institute) for making the pediatric brain tumor cell lines available.

References

Kinome Profiling in Pediatric Brain Tumors

Kinome Profiling in Pediatric Brain Tumors as a New Approach for Target Discovery

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-08-3660

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2009/06/18/0008-5472.CAN-08-3660.DC1

Cited articles
This article cites 46 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/14/5987.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/69/14/5987.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link:
http://cancerres.aacrjournals.org/content/69/14/5987. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.