Comment re: Preclinical Model of Spontaneous Melanoma Metastasis

To the Editor:

Cruz-Munoz and colleagues (1) state that their findings represent the first report of spontaneous central nervous system metastases generated from primary tumors of any human cancer in mice, which heritably maintain this phenotype. It should be noted, however, that with the use of imaging based on green fluorescent protein (GFP) expression in tumor cells (2), we have observed spontaneous metastasis to the brain in three orthotopic nude mouse model systems of human cancer: the PC-3 human prostate cancer cell line (3); the LOX human melanoma cell line (Fig. 1; ref. 4); and spinal cord glioma model using the U87 human glioma cell line (5).

Our observations increase the importance of the work of Cruz-Munoz and colleagues (1) because our data suggest that stable cell lines with predilection for metastasis to the brain could be readily identified with the use of GFP.

Robert M. Hoffman
AntiCancer, Inc., and Department of Surgery,
University of California,
San Diego, California

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References


Figure 1. Brain metastasis of LOX cells visualized by GFP. A to C, micrometastases (arrows) are visualized in the brain of nude mice by GFP expression. Imaging was done with a Nikon microscope equipped with a Xenon lamp power supply with a GFP filter set (Chroma Technology). Bar, 80 μm.
Comment re: Preclinical Model of Spontaneous Melanoma Metastasis

Robert M. Hoffman


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/69/2/719

Cited articles
This article cites 4 articles, 3 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/2/719.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/69/2/719.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.