Structural Basis for the Binding of the Anticancer Compound 6-(7-Nitro-2,1,3-Benzoxadiazol-4-Ylthio)Hexanol to Human Glutathione S-Transferases

Luca Federici, Carlo Lo Sterzo, Silvia Pezzola, Adele Di Matteo, Flavio Scaloni, Giorgio Federici, and Anna Maria Caccuri

Abstract

Glutathione S-transferases (GST) constitute a superfamily of enzymes with diversified functions including detoxification from xenobiotics. In many human cancers, Pi class GST (GSTP1-1) is overexpressed and contributes to multidrug resistance by conjugating chemotherapeutics. In addition, GSTP1-1 displays antiapoptotic activity by interacting with c-Jun NH2-terminal kinase, a key regulator of apoptosis. Therefore, GSTP1-1 is considered a promising target for pharmaceutical treatment. Recently, a potent inhibitor of GSTs, 6-(7-nitro-2,1,3-benzoxadiazol-4-ythio)hexanol (NBDHEX), was identified and tested on several tumor cell lines demonstrating high antiproliferative activity. To establish the structural basis of NBDHEX activity, we determined the crystal structure of NBDHEX bound to GSTP1-1, which allows the identification of the binding site for this compound. Indeed, the compound is covalently attached to the enzyme (18, 19).

Introduction

Multidrug resistance in cancer treatment is commonly defined as the capacity of a cancer cell to develop simultaneous resistance to several chemotherapeutic agents. One common mechanism through which cancer cells may achieve multidrug resistance is the overexpression of glutathione S-transferases (GST; refs. 1, 2). GSTs constitute a superfamily of enzymes with diversified functions (3, 4). These enzymes are known to decrease the pharmacologic activity of a wide range of structurally unrelated drugs through their conjugation with glutathione (GSH). Furthermore, the GS-conjugated compounds may be actively extruded from the cell through specialized pumps; principally, the multidrug resistance proteins MRP-1 and MRP-2 (ABCC1, ABCC2; ref. 1).

In humans, several GST isoforms are differentially expressed and are subdivided into different classes (5). The Pi class GSTP1-1 is overexpressed in a variety of different human malignancies including lung (6), colon (7), stomach (8), kidney (9), ovary (10), mouth (11), and testis (12) cancers. Furthermore, in some cases, GSTP1-1 overexpression has been linked to acquired multidrug resistance to chemotherapeutic agents including cisplatin, adriamycin, etoposide, thiopeta, chlorambucil, and ethacrynic acid (1, 13). This phenotype may arise from the conjugating activity of the enzyme but also because GSTP1-1 displays a “nonenzymatic” antiapoptotic activity through its interaction with the c-Jun NH2-terminal kinase (JNK), a key enzyme in the apoptotic cascade (14, 15). Because GSTP1-1 binds JNK through its COOH-terminal region, which contributes to shaping the hydrophobic substrate binding site (H-site), inhibitors that target this site, together with inactivating the enzyme, might also dissociate its complex with JNK and activate the JNK apoptotic pathway (16, 17). Therefore, GSTP1-1 is considered as a promising target for inactivation in cancer treatment and numerous groups have spent considerable effort finding potent inhibitors of this enzyme (18, 19).

Recently, a new class of nonpeptidomimetic inhibitors of human GSTs has been identified based on 7-nitro-2,1,3-benzoxadiazole ring derivatives (20). Among these, the compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ythio)hexanol (NBDHEX) has been shown to inhibit GST isozymes at micromolar or submicromolar amounts and to induce apoptosis in several tumor cell lines by dissociating the GSTP1-1/JNK complex (20, 21). Moreover NBDHEX is able to overcome the P-glycoprotein and MRP1 associated resistance in leukemia (22, 23) and small cell lung cancers (24) and also to overcome the GSTP1-1–related cisplatin resistance in osteosarcoma (25), suggesting that it might be used to treat a number of cancers in combination with other drugs.

A detailed functional analysis of the mode of action of NBDHEX indicated that this compound behaves like a suicide substrate of GSTs through the formation of a α-complex with GST-bound GSH. In this complex, the GSH sulfur is thought to conjugate the NBDHEX benzoxadiazole ring at its C4, which assumes a tetrahedral conformation by retaining the hexanol

References for reprints: Luca Federici, CeS.I. Center of Excellence on Aging, University of Chieti “G. D’Annunzio”, Via Colle dell’Ara, 66100 Chieti, Italy. Phone: 39-87154-1414; Fax: 39-87154-1598; E-mail: lfederici@unicht.it.

©2009 American Association for Cancer Research.

doi:10.1158/0008-5472.CAN-09-1314
Figure 1. A, proposed mechanism of \(\omega \)-complex formation between NBDHEX and the GST-bound GSH on the basis of kinetics data (20). B, crystal structure of the GSTP1-1/GSH/NBDHEX complex. Stereoview of the GSTP1-1 active site (chain A). GSH and NBDHEX (sticks); the \(\omega \)-weighted 2Fo-Fc map, contoured at 1.0 \(\sigma \) (blue mesh). No continuous electron density was observed between the NBDHEX molecule and the GSH sulfur atom. Furthermore, electron density accounts for a double conformation of the GSH sulfur atom. C, detailed view of the active site architecture. NBDHEX and GSH (sticks with green carbons). The GSH sulfur atom is represented only in its main conformation (75% of occupancy) for clarity. Residues in the proximity of NBDHEX (sticks with white carbons). The water molecule bridging Arg\(^{13} \) with the benzoimidazole nitro group (red sphere).
moiety (Fig. 1A; ref. 20). This intermediate is stable into the GSTP1-1, but also into the mu class GSTM2-2 active sites and thus inactivates both enzymes (20).

One of the issues raised by the use of GST inhibitors is their specificity (18). In principle, because the major role in cancer is played by GSTP1-1, a specific inhibitor for this particular isozyme would be desirable. Unfortunately, NBDHEX seems to be less specific for GSTP1-1 (IC50 = 0.80 μmol/L) than for GSTM2-2 (IC50 < 0.01 μmol/L; 20). In this work, we investigated how NBDHEX binds to both GSTP1-1 and GSTM2-2, and we present the crystal structures of the GSTP1-1/GSH/NBDHEX and GSTM2-2/GSH/NBDHEX complexes.

NBDHEX binds tightly to the enzymes’ H-sites, but occupies different positions due to the molecular architecture of the H-site in the two isozymes. Furthermore, whereas a α-complex was observed in the GSTM2-2 isozyme, a preconjugation state was observed with GSTP1-1. Finally, we investigated the role played in GSTP1-1 by the common Ile104Val polymorphism (26) and by the Ile104Ala mutation, that mimics the residue occupying this position in GSTM2-2. We determined the structure of the GSTP1-1/Ile104Ala variant in complex with NBDHEX and we show that this mutation is sufficient to cause a considerable shift of the NBDHEX position within the H-site. Our data provides a rational basis for explaining the differential affinity of NBDHEX towards GST isoforms and paves the way for the rational design of new derivatives with increased affinity and specificity for GSTP1-1.

Materials and Methods

Site-directed mutagenesis, expression, and purification. The GSTP1-1/Val104 and GSTP1-1/Ala104 variants were obtained using the QuickChange kit (Stratagene) and plasmid pGST1 (27). The following forward primers were used:

1104Fw 5′-CCTCCCGGCTGCAAATACGTCTCCCTCATCTACAC-3′
1104Aw 5′-GACCTCCTGCTGCAAATACGTCTCCCTCATCTACACCCAC-3′

Human GSTM2-2, GSTP1-1/Ile104, GSTP1-1/Val104, and GSTP1-1/Ala104 were expressed in Escherichia coli and purified as previously described (28).

Crystallization. GSTP1-1 and GSTM2-2 were concentrated to 10 mg/mL in 10 mmol/L of Heps (pH 7.0). Experiments were performed after pretreating the protein solution with 5 mmol/L of GSH (Sigma), alone or in combination with NBDHEX (100–500 μmol/L). GSTM2-2/GSH/NBDHEX cocrystals were obtained by vapor diffusion using the following mother liquor: PEG8000 16% w/v, 100 mmol/L of MES (pH 6.0), and 200 mmol/L of NaCl. Crystals were cryoprotected by transferring into a mother liquor containing the appropriate amounts of GSH and NBDHEX plus 20% ethylene glycol.

GSTP1-1/GSH/NBDHEX cocrystals, grown using PEG8000 as a precipitating agent, were of poor quality and did not diffract satisfactorily. Therefore, GSTP1-1/GSH crystals were grown and then soaked with NBDHEX. GSTP1-1/GSH/NBDHEX crystals were grown at 4 °C using 1.8 mol/L of ammonium sulfate as a precipitating agent in 100 mmol/L of MES buffer (pH 6.0). Crystals were then soaked with NBDHEX (100–500 μmol/L). A mother liquor solution containing the appropriate amounts of GSH and NBDHEX plus 20% glycerol was used for cryoprotection. GSTP1-1/Ala104 crystals were grown, soaked, and cryoprotected using the same protocols as the wild-type protein.

Data collection and processing. GSTM2-2 complete data were collected to 2.5 Å resolution at the BL14-1 beamline of the BeSSY Synchrotron (Berlin, Germany). The crystals belong to the orthorhombic space group P212121 and contain two GSTM2-2 dimers in the asymmetric unit.

GSTP1-1 data were collected to 1.55 Å resolution at the ID14-1 beamline of the European Synchrotron Research Facility (ESRF, Grenoble, France). Crystal belongs to the space group C2 and contains one GSTP1-1 dimer in the asymmetric unit. GSTP1-1/Ala104 data were collected to 1.8 Å resolution at the ID14-2 beamline of the ESRF Synchrotron. Crystals were isomorphous to wild-type protein crystals. Data were processed with Denzo and scaled with Scalepack (29). Statistics about data collection and processing are reported in Table 1.

Structure determination and refinement. The GSTM2-2/GSH/NBDHEX complex structure was determined by molecular replacement using the program MOLREP (30) and the GSTM2-2 dimer (in the absence of GSH; pdb code1HNC; ref. 31) as a search model. After initial refinement using the program REFMAC (32), electron density maps were examined using the program COOT (33). Positive electron density in the Fo-Fc map was found in all four subunits, accounting for the presence of GSH. Additional positive electron density was found in the H-site of subunits A and C. This electron density was continuous between the GSH sulfur and the H-site suggesting the presence of a α-complex between NBDHEX and GSH, which was modeled in chain C with full occupancy and in chain A with half occupancy. The model was refined to 2.5 Å resolution by several stages of restrained refinement in REFMAC, maps inspection, and model adjustments. The final model has an R factor of 21.3% and an Rfree of 27.3%.

The GSTP1-1/GSH/NBDHEX-soaked crystal was isomorphous with the native GSTP1-1 crystal (pdb code: 6GSS; ref. 34). Therefore, the native GSTP1-1 dimer was used for refinement using REFMAC in the absence of any ligand. Inspection of the Fo-Fc positive difference map indicated the presence of GSH and NBDHEX in both subunits, which were not covalently bound. The structure was refined to 1.55 Å resolution iteratively by using REFMAC and COOT. The final model is refined with an R factor of 16.9% and an Rfree of 19.5%. The GSTP1-1/Ala104 structure in complex with NBDHEX and GSH was obtained using the same procedure as the wild-type protein and refined to a final R factor of 17.9% and an Rfree of 20.9%.

The quality of all models was assessed using COOT and Procheck (35). Table 1 reports statistics on refinement and model quality. Model coordinates and structure factors have been deposited in the PDB with accession codes: 3GUR (for the GSTM2-2 structure), 3GUS (for GSTP1-1), and 3IE3 (for GSTP1-1/Ala104).

Binding of NBDHEX to GSTs. GST activity was assayed at 25 °C as previously reported (36). The affinities of NBDHEX for GSTP1-1/Ile104 (wild-type), GSTP1-1/Val104, and GSTP1-1/Ala104 were determined in the presence of 1 mmol/L of GSH. The quenching of the intrinsic fluorescence of the protein (excitation at 295 nm and emission at 340 nm) was measured in a single photon counting spectrophotometer (Perkin-Elmer LS50B) at 25 °C after the addition of variable amounts of NBDHEX to 4 μmol/L GST in 0.1 mol/L of potassium phosphate buffer (pH 6.5), containing 1 mmol/L of GSH. Fluorescence data were corrected for inner filter effects and fitted to Eq. A, which yields the apparent dissociation constant (Kd) for the NBDHEX bound to GST.

\[\Delta F = \Delta F_{\text{max}} / (1 + K_d / [\text{NBDHEX}]) \]

where \(\Delta F \) is the protein fluorescence change observed in the presence of a given amount of NBDHEX, \(\Delta F_{\text{max}} \) is the maximum fluorescence change observed at saturating NBDHEX concentration, and nH is the Hill coefficient.

Spectrophotometric analysis. The interaction of NBDHEX with GSTs and GSH was analyzed as previously reported (20). The UV-Visible spectrum of NBDHEX (50 μmol/L) in 0.1 mol/L of potassium phosphate buffer (pH 6.5), containing 1 mmol/L of GSH was recorded at 25 °C before and after the addition of GSTP1-1/Ile104, GSTP1-1/Val104, or GSTP1-1/Ala104 (100 μmol/L).

Results

Structure of the GSTP1-1/GSH/NBDHEX complex. We obtained the crystal structure of the GSTP1-1/GSH/NBDHEX...
complex at 1.55 Å resolution from a crystal that was grown in the presence of protein and GSH only, and subsequently soaked with NBDHEX, because cocrystallization experiments with both NBDHEX and GSH did not lead to well-diffracting crystals. Figure 1B shows NBDHEX bound to the protein H-site in proximity to the bound GSH. The crystal asymmetric unit contains a physiologic GSTP1-1 dimer and clear density for NBDHEX was observed in both monomers. The NBDHEX molecule was clearly visible in the electron density, including most of the 6-mercaptohexanol moiety atoms (Fig. 1B). The two NBDHEX benzoxadiazole rings occupy the same position in the H-sites of both chains with rms deviations between equivalent atoms of <0.15 Å, whereas the hexanol moiety atoms have a rms deviation of 0.62 Å.

NBDHEX is oriented in the H-site with the nitro group placed deep inside the interior of the protein and the hexanol moiety facing the active site opening to the solvent (Fig. 1B). Several hydrophobic interactions were found involving residues shaping the H-site including Tyr7, Phe8, Val35, Trp38, Gln39, Ile104, and above all, Tyr108, which engages an aromatic ring stacking interaction with the NBDHEX benzoxadiazole ring (Table 2; Fig. 1C). The main contribution to the molecule stabilization and orientation in the H-site is likely provided by interaction of the benzoxadiazole ring NO2 group with Arg13. This interaction was not direct but was mediated by a water molecule (red sphere, Fig. 1C). This water molecule is found in exactly the same position in both monomers and its structural role is confirmed by an average B-factor of 13.05 Å², a value in the range of main chain protein atoms’ B-factors. The water molecule is hydrogen-bonded both to Arg13 N¢, being at a distance of 2.9 Å, and to the benzoxadiazole NO2 group, being at a distance of 2.6 Å from the closest oxygen.

In our maps, we did not find any trace of continuous electron density connecting the GSH sulfur and NBDHEX. This finding prompted us to exclude the presence of a GSH/NBDHEX complex in this crystal (Fig. 1B). Therefore, in our structure, we observe a bound but not conjugated NBDHEX. This was quite surprising because the formation of a GSH/NBDHEX complex in the GSTP1-1 active site can be easily monitored in solution by absorption spectra (20). However, it was previously suggested by kinetic studies that, in the reaction between GSH and either CDNB (37) or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl; ref. 38), a physical event, i.e., a conformational change in GSTP1-1 structure, follows the binding of the substrates and is crucial for the

Table 1. Data collection and refinement statistics

<table>
<thead>
<tr>
<th></th>
<th>GSTM2-2</th>
<th>GSTP1-1</th>
<th>GSTP1-1/Ala104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamline</td>
<td>BeSSY BL14-1</td>
<td>ESRF ID14-1</td>
<td>ESRF ID14-2</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.9184</td>
<td>0.9340</td>
<td>0.9330</td>
</tr>
<tr>
<td>Resolution (Å)*</td>
<td>29.43–2.5 (2.59–2.5)</td>
<td>30.0–1.55 (1.61–1.55)</td>
<td>29.21–1.80 (1.86–1.80)</td>
</tr>
<tr>
<td>Space group</td>
<td>P212121</td>
<td>C2</td>
<td>C2</td>
</tr>
<tr>
<td>Unit cell dimensions (Å)</td>
<td>a = 56.75</td>
<td>a = 78.59</td>
<td>a = 77.87</td>
</tr>
<tr>
<td></td>
<td>b = 78.02</td>
<td>b = 89.35</td>
<td>b = 89.53</td>
</tr>
<tr>
<td></td>
<td>c = 219.36</td>
<td>c = 69.26</td>
<td>c = 68.92</td>
</tr>
<tr>
<td></td>
<td>β = 98.36 degrees</td>
<td>β = 98.04 degrees</td>
<td></td>
</tr>
<tr>
<td>Unique reflections</td>
<td>32,108</td>
<td>67,852</td>
<td>42,435</td>
</tr>
<tr>
<td>Redundancy</td>
<td>4.8</td>
<td>2.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Completeness (%)*</td>
<td>93.2 (83.1)</td>
<td>96.8 (96.5)</td>
<td>99.1 (99.0)</td>
</tr>
<tr>
<td>Average (I/i)*</td>
<td>18.32 (7.01)</td>
<td>9.47 (5.06)</td>
<td>17.38 (8.05)</td>
</tr>
<tr>
<td>Rmerge (%)*</td>
<td>8.6 (10.0)</td>
<td>5.3 (26.0)</td>
<td>5.8 (17.8)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>29.43–2.5</td>
<td>30.0–1.55</td>
<td>29.21–1.80</td>
</tr>
<tr>
<td>Rcryst (%)</td>
<td>21.3</td>
<td>16.9</td>
<td>17.9</td>
</tr>
<tr>
<td>Rfree (%)</td>
<td>27.3</td>
<td>19.5</td>
<td>20.9</td>
</tr>
<tr>
<td>Mean B factors (Å)²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein main chain</td>
<td>26.0</td>
<td>12.1</td>
<td>13.0</td>
</tr>
<tr>
<td>Protein side chain</td>
<td>26.4</td>
<td>13.5</td>
<td>14.0</td>
</tr>
<tr>
<td>Waters</td>
<td>20.6</td>
<td>26.7</td>
<td>22.5</td>
</tr>
<tr>
<td>GSH</td>
<td>25.1 (chains B and D)</td>
<td>13.3</td>
<td>13.4</td>
</tr>
<tr>
<td>NBDHEX</td>
<td>34.6</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>NBDHEX-GS α-complex</td>
<td>34.1 (chains A and C)</td>
<td>93.0</td>
<td>93.0</td>
</tr>
<tr>
<td>Rms deviation length (Å)</td>
<td>0.009</td>
<td>0.008</td>
<td>0.007</td>
</tr>
<tr>
<td>Rms deviation angle (degrees)</td>
<td>1.45</td>
<td>1.49</td>
<td>1.37</td>
</tr>
<tr>
<td>Ramachandran statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residues in favored regions (%)</td>
<td>91.5</td>
<td>93.3</td>
<td>93.0</td>
</tr>
<tr>
<td>Residues in allowed regions (%)</td>
<td>8.5</td>
<td>6.7</td>
<td>7.0</td>
</tr>
<tr>
<td>Residues in disallowed regions (%)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

*Numbers in parentheses refer to the last resolution shell.
† Rmerge = ∑hkl[Ihkl – <I>]/<I>, with Ihkl being the intensity for the ith measurement of an equivalent reflection with indices h,k,l.
‡ Rfree was calculated on 5% of data excluded before refinement.

\(\sigma \)-complex formation. This conformational transition is strongly
dependent on diffusion-controlled motion of active site regions.
Because NBDHEX retains the same benzoxadiazole ring as NBD-Cl,
a similar conformational change might also be necessary in this
case to enable the \(\sigma \)-complex formation, and this might be
prevented by a lack of structural flexibility in the crystalline
environment.

Nonetheless, the position of NBDHEX with respect to GSH is very
interesting. In fact, it has been hypothesized, on the basis of
kinetics data, that the formation of the \(\sigma \)-complex, in which the
GSH sulfur is bound to the benzoxadiazole C4 (the same carbon
that binds the 6-mercaptop-hexanol moiety sulfur) is the rate-
limiting step of a reaction that first involves the nucleophilic
addition of the GSH sulfur to the C6 atom of the benzoxadiazole
ring; this covalent complex then evolves to the more stable \(\sigma \)-
complex (Fig. 1A; ref. 20). Indeed, in our structure, we observe that
the GSH sulfur adopts two distinct conformations (Fig. 1B). In the
main one, which accounts for 75% of total occupancy, the GSH
sulfur is at 3.1 Å distance from the NBDHEX C6, whereas it is at 4.9
Å distance from the C4. In the second conformation, which
accounts for the remaining 25% of occupancy, the GSH
sulfur is closer to the NBDHEX C4 (3.1 Å). Therefore, we can conclude that
(a) our electron density maps seem to be consistent with the
hypothesized mechanism and depict the position of a preconju-
gation state and (b) the formation of the stable \(\sigma \)-complex may be
described without invoking major movements of the NBDHEX
benzoxadiazole ring from its current position. In fact, a simple
rotation of the GSH sulfur is consistent with its nucleophilic attack
to the benzoxadiazole C4.

Structure of the GSTM2-2/GSH/NBDHEX complex. The structure of the
GSTM2-2/GSH/NBDHEX complex was determined at 2.50 Å resolution. In this case, additional electron density
accountable for the presence of the compound was visible only in
one monomer for each asymmetric unit dimer (chains A and C). As
expected, NBDHEX binds to the H-site. Electron density maps
clearly indicate the position of the benzoxadiazole ring, whereas
the hexanol moiety is only partially visible (Fig. 2A). The two
NBDHEX benzoxadiazole rings modeled in chains A and C occupy
exactly the same position with rms deviations among equivalent
atoms <0.20 Å. NBDHEX is oriented in the same way as in the
complex with GSTP1-1, with the benzoxadiazole NO2 facing the
interior of the protein and the hexanol moiety facing the H-site
opening. A stacking interaction between the benzoxadiazole ring and
Tyr115 strongly contributes to the NBDHEX orientation and
stabilization (Fig. 2B). Several other hydrophobic interactions
involve residues shaping the H-site, including Tyr6, Trp7, Gly11, and
Leu12 (Table 2). As in the GSTP1-1 cocrystal, the main contribution
to NBDHEX stabilization is provided by interactions involving the
benzoxadiazole NO2 group. In this structure in fact, the NO2 group
is at close distance from two arginines, Arg107 and Arg165 (Fig. 2B).
In particular, the Arg165 NH1 atom is at 3.0 Å distance from the
closest NO2 oxygen, establishing a direct H-bond interaction,
whereas the same NO2 oxygen atom is at 3.4 Å distance from the
Arg107 NH1 atom. Therefore, both residues cooperate to stabilize the
NO2 group that is negatively charged when the \(\sigma \)-complex is
formed.

Importantly, in this crystal, we could see continuous electron
density spanning from the GSH sulfur to the C4 carbon of the
benzoxadiazole ring (Fig. 2A), indicating the presence of a \(\sigma \)-
complex and thus providing an independent experimental clue to
the proposed mechanism of inhibition (20).

Comparison between the two complexes. The electrostatic
potential surfaces of GSTP1-1 and GSTM2-2 are shown in Fig. 3A and
B, respectively. The NBDHEX molecule perfectly adapts to the
GSTP1-1 H-site profile, with its benzoxadiazole ring being parallel
to the active site “ceiling” that is made by Tyr108. The hexanol
moiety also follows the active site shape because of its hydrophobic
interactions with Phe6 and Trp38 and of a weak hydrogen bond (3.3
Å distance) between Gln39 and the hexanol oxyl group (Fig. 1C).
The H-site in the GSTM2-2 structure appears differently shaped
from that of GSTP1-1, with a deeper cavity toward the core of the
protein, which is occupied by the NBDHEX nitro group (Fig. 3B).
This different H-site shape mainly results from the presence of residues Ile104 and Arg13 in the GSTP1-1 H-site, that face the
NBDHEX nitro group in the complex (Fig. 1C). GSTP1-1 Ile104 and
Arg13 are topologically replaced by an alanine (Ala111) and a

Table 2. Residues within 4.5 Å from NBDHEX

<table>
<thead>
<tr>
<th>Residue</th>
<th>Distance*</th>
<th>Interaction type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTM-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr6</td>
<td>2.5</td>
<td>Arom</td>
</tr>
<tr>
<td>Trp7</td>
<td>4.3</td>
<td>Arom</td>
</tr>
<tr>
<td>Ile9</td>
<td>4.4</td>
<td>Phob</td>
</tr>
<tr>
<td>Gly11</td>
<td>3.4</td>
<td>—</td>
</tr>
<tr>
<td>Leu17</td>
<td>3.5</td>
<td>H-Phob</td>
</tr>
<tr>
<td>Met14</td>
<td>3.9</td>
<td>Phob</td>
</tr>
<tr>
<td>Arg107</td>
<td>3.4</td>
<td>HB</td>
</tr>
<tr>
<td>Ala111</td>
<td>3.6</td>
<td>H-Phob</td>
</tr>
<tr>
<td>Tyr115</td>
<td>3.6</td>
<td>Arom</td>
</tr>
<tr>
<td>Arg165</td>
<td>3.0</td>
<td>HB</td>
</tr>
<tr>
<td>Phe108</td>
<td>3.4</td>
<td>Arom</td>
</tr>
<tr>
<td>Thr209</td>
<td>3.1</td>
<td>Phob</td>
</tr>
<tr>
<td>Met211</td>
<td>4.4</td>
<td>Phob</td>
</tr>
<tr>
<td>GSTP1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr2</td>
<td>3.9</td>
<td>Arom</td>
</tr>
<tr>
<td>Phe6</td>
<td>3.6</td>
<td>Arom</td>
</tr>
<tr>
<td>Arg13</td>
<td>4.4</td>
<td>HB (water-mediated)</td>
</tr>
<tr>
<td>Val55</td>
<td>4.0</td>
<td>Phob</td>
</tr>
<tr>
<td>Trp38</td>
<td>3.6</td>
<td>Phob</td>
</tr>
<tr>
<td>Gln39</td>
<td>3.3</td>
<td>HB</td>
</tr>
<tr>
<td>Ile104</td>
<td>3.4</td>
<td>H-Phob</td>
</tr>
<tr>
<td>Tyr108</td>
<td>3.3</td>
<td>Arom</td>
</tr>
<tr>
<td>GSTP1-1/Ala111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr2</td>
<td>4.1</td>
<td>Arom</td>
</tr>
<tr>
<td>Phe6</td>
<td>3.7</td>
<td>Phob</td>
</tr>
<tr>
<td>Arg13</td>
<td>2.9</td>
<td>HB (direct)</td>
</tr>
<tr>
<td>Val55</td>
<td>4.4</td>
<td>Phob</td>
</tr>
<tr>
<td>Trp38</td>
<td>4.3</td>
<td>Phob</td>
</tr>
<tr>
<td>Gln39</td>
<td>3.7</td>
<td>HB</td>
</tr>
<tr>
<td>Ala111</td>
<td>3.5</td>
<td>—</td>
</tr>
<tr>
<td>Tyr108</td>
<td>3.2</td>
<td>Arom</td>
</tr>
<tr>
<td>Gly305</td>
<td>3.9</td>
<td>H-Phob</td>
</tr>
</tbody>
</table>

NOTE: Interaction types: HB, hydrophilic-hydrophilic (H-bond); Arom, aromatic-aromatic; Phob, hydrophobic-hydrophobic; H-Phob, hydrophilic-hydrophobic.

*Distances are the average of those relative to the different monomers in the same structure and were calculated using the program LPC/CSU (http://ligin.weizmann.ac.il/cgi-bin/lpccsu/LpcCsu.cgi).
leucine (Leu12), respectively, in the GSTM2-2 structure (Fig. 3C), and the presence here of these less cumbersome residues allows the NBDHEX molecule to move further and for its nitro group to interact directly with the positively charged Arg107 and Arg165 (Figs. 2B and 3C). Arg107 is conserved in GSTP1-1 (Arg100) but its access to the H-site is hindered by Ile104, whereas the GSTM2-2 Arg165 is topologically replaced by an isoleucine (Ile161) in GSTP1-1 (Fig. 3C).

The superposition between the two structures also highlights that the NBDHEX molecules do not occupy the same position in the two H-sites (Fig. 3C). The rms deviation among equivalent atoms of the two NBDHEX benzoxadiazole rings is 4.25 Å in the superimposed structures, and a major shift plus a rotation are required to superpose the free NBDHEX of GSTP1-1 to the one covalently bound to GSH in the GSTM2-2 crystal structure (Fig. 3C). This movement, however, is unrealistic because the hydrophobic side chain of Ile104 is only 3.4 Å apart from the benzoxadiazole nitro group (Fig. 1B and 3C). Taken together, our data suggest that the GST/1/Val104 mutant enzymes were 58 ± 2 and 47 ± 3 μmol/min/mg, respectively. These values are approximately twice lower than those obtained with wild-type GSTP1-1/Val104 (100 ± 2 μmol/min/mg; ref. 39). Binding of NBDHEX, in the presence of 1 mmol/L of GSH, followed a hyperbolic behavior (Hill coefficient nH 1.0) with GSTP1-1/Ala104 and a slight cooperative trend (Hill coefficient nH 0.8) with GSTP1-1/Val104.

Remarkably, NBDHEX bound to GSTP1-1/Val104 with a dissociation constant of 0.26 ± 0.07 μmol/L, a value comparable to that of GSTP1-1/Ala104.
GSTP1-1/Ala104 (0.21 ± 0.06 μmol/L) and approximately four times lower than that of GSTP1-1/Ile104 (K_D = 0.90 ± 0.08 μmol/L; ref. 20; Fig. 4A). This indicates that replacement of Ile104 with a less bulky residue increases the affinity of the enzyme towards NBDHEX.

As previously shown with GSTP1-1/Ile104 (20), a remarkable change in the NBDHEX spectrum was observed in the presence of both Val and Ala GSTP1-1 variants. When NBDHEX was incubated with two equivalents of GSTP1-1/Val104 or GSTP1-1/Ala104 in the presence of 1 mmol/L of GSH, the UV-visible spectrum of NBDHEX, centered at 432 nm, completely disappeared and a new absorption band appeared between 340 and 350 nm (Fig. 4B). No spectral changes were observed in the absence of GSH. The extinction coefficient was approximately the same for the Ala104, Val104, and Ile104 GSTP1-1 variants, suggesting that NBDHEX forms a stable η-complex with GSH in all cases. Interestingly, a blue-shift of ~6 nm was observed for the maximum absorption in the GSTP1-1/Ala104 spectrum (Fig. 4B). This led us to hypothesize that the compound might be slightly shifted in this mutant isozyme with respect to the other two natural variants. To test this hypothesis, we determined the structure of the GSTP1-Ala104/GSH/NBDHEX complex to a resolution of 1.8 Å (Fig. 4C). As for the wild-type, we observe a Michaelis complex with the compound bound but not conjugated and a single conformation is found for the GSH sulfur that corresponds to the main conformation observed in the wild-type crystal. The main aspect of this structure is that, as hypothesized, NBDHEX is shifted towards the interior of the site and its nitro group is at hydrogen bond distance (2.9 Å) from the Arg13 Nε, whereas the water molecule that bridged the NBDHEX nitro group and Arg13 in the wild-type structure, is displaced. A superposition of the GSTP1-1/Ile104 and GSTP1-1/Ala104 structures (Fig. 4D) highlights the different position occupied by the two NBDHEX-bound molecules with an average distance of 1.87 Å between the same atoms of the two benzoxadiazole rings, whereas the rms deviation among Cα in the two superimposed structures is only 0.14 Å.

Discussion

In this work, we tackled the problem of specificity in GST inhibition and focused our attention on NBDHEX, a compound that is currently being investigated for the treatment of several cancers (21–25). Our major goal was to understand the structural basis of the different affinities of NBDHEX for human GST isozymes and gain the knowledge to rationally design molecules that are specific for GSTP1-1. For this purpose, we determined the crystal structure of NBDHEX in complex with GSTP1-1 but also
with GSTM2-2, which is the human GST isozyme that displays the higher affinity for the compound (20).

In the case of GSTM2-2, we observe the presence of a ω-complex and thus provide a structural clue to the hypothesized mechanism of inhibition (see Fig. 1A; ref. 20). On the other hand, with GSTP1-1, we see a preconjugation state in which the NBDHEX molecule is bound to the enzyme but not conjugated. The reason for this difference might be due to the lack of diffusion-controlled motion of the active site region caused by the crystalline environment. However, we propose that in the GSTP1-1 structure, the ω-complex would occupy the same position of the unbound NBDHEX. This is suggested both by the shape of the H-site and by observing that a simple rotation of the GSH sulfur would be consistent with its addition to the benzoxadiazole ring C4 (see Fig. 1B).

Figure 4. Analysis of the reaction of NBDHEX with GSTP1-1/Ile104, GSTP1-1/Val104, and GSTP1-1/Ala104. A, the binding of NBDHEX was studied at 25°C and in the presence of 1 mmol/L of GSH, by following the quenching of the intrinsic fluorescence of the protein. Binding of NBDHEX to GSTP1-1/Val104 (- - -), GSTP1-1/Ala104 (---), and GSTP1-1/Ile104 (- - -). Points, mean; bars, SD ($n = 4$); lines, the best fit of experimental data to Eq. A. B, the UV-visible spectrum of NBDHEX (50 μmol/L) in 0.1 mol/L of potassium phosphate buffer (pH 6.5), containing 1 mmol/L of GSH was recorded at 25°C before (- - -) and after the addition of two equivalents of either GSTP1-1/Ile104 (---), GSTP1-1/Val104 (---), or GSTP1-1/Ala104 (---). The σ-complex absorption band formed by GSTP1-1/Ile104 was centered at 344 nm, whereas that formed by either GSTP1-1/Val104 or Ile104 (wild-type) variants showed a peak at 350 nm (a representative experiment out of three performed with similar results). C, crystal structure of the GSTP1-1/Ala104 variant in complex with GSH and NBDHEX. Stereoview of the protein active site. The α-weighted 2Fo-Fc map, contoured at 1.0 σ (blue mesh), and GSH and NBDHEX (sticks). D, overlay of the structures of GSTP1-1 (green carbons) and of GSTP1-1/Ala104 variant (orange carbons). The NBDHEX molecule in the GSTP1-1/Ala104 structure is shifted by \sim2 Å with respect to the wild-type structure and establishes a direct H-bond interaction with Arg13.
A comparative analysis of GSTP1-1 and GSTM2-2 structures indicates that NBDHEX binds the two enzymes in a similar orientation and is stabilized through stacking interactions with aromatic side chains (Tyr for GSTP1-1 and Tyr for GSTM2-2). Aromatic stacking interactions with residues in the H-site are also the main contributors to the stabilization of drugs like ethacrynic acid and chlorambucil (40-42). However, unlike what happens with ethacrynic acid and chlorambucil binding to GSTP1-1, in which their polar groups point out of the H-site, in the case of NBDHEX, the benzoazoxadione nitro group constitutes the main driving force to dictate and stabilize binding to both GSTP1-1 and GSTM2-2, and is likely responsible for the higher affinity towards this compound (20, 41, 43). In the case of GSTM2-2, NBDHEX interacts directly with two positively charged arginines located at the bottom of the H-site. These residues provide stabilization when the o-complex is formed and the nitro group acquires a net negative charge (see Fig. 2B). Conversely, in the GSTP1-1 structure, Arg only provides stabilization but indirectly via a water-mediated contact (see Fig. 1C). Of the two GSTM2-2 arginines, only one is topologically conserved in GSTP1-1 (Arg) but it is too distant from NBDHEX to help stabilize the molecule (see Fig. 3C). This is a consequence of the fact that, in GSTM2-2, is located between the NBDHEX nitro group and Arg, and impedes further NBDHEX movement towards this positively charged residue. If this does not prevent the o-complex from forming, as it is monitored by absorption spectra in solution, it certainly plays a role in diminishing the affinity of the compound for GSTP1-1 (see Fig. 3C). These considerations are confirmed by our mutagenesis data on residue Ile. We show here that replacement of the bulky isooleucine with valine (natural allelic variant) or alanine (the residue that replaces Ile in GSTM2-2) increases the affinity of GSTP1-1 for NBDHEX by 4-fold. This result may be clinically relevant because it implies that NBDHEX would be equally effective or better against those tumors in which the allelic variant GSTP1-1/Val is expressed. Moreover, when Ile is replaced by an alanine, not only does NBDHEX affinity for GSTP1-1 increase, but a blue-shift in the maximum absorption of the o-complex spectrum is also observed, suggesting that in this mutant, NBDHEX finds a way to move further to the positive charges and get higher stabilization. We confirmed this hypothesis by determining the structure of the GSTP1-1/Ala variant in complex with NBDHEX, which showed that the compound is shifted by ~2 Å towards Arg, displacing the water molecule and establishing a direct H-bond interaction between the benzoazoxadione ring nitro group and the Arg guanidine group (see Fig. 4D).

Can we infer from these data how to modify NBDHEX to inhibit GSTP1-1 with higher affinity? A possible route would be that of synthesizing molecules that retain the benzoazoxadione ring, to take advantage of the aromatic stacking interaction with Tyr and of the intrinsic stability of its o-complex within the H-site. At the same time, a newly synthesized inhibitor should interact directly or more strongly with the positively charged Arg. This might be achieved by substituting the nitro group with other functional groups. Furthermore, because we showed that the NBDHEX hexanol moiety is only weakly involved in protein binding, a concurrent strategy might be that of modifying this part of the molecule with a different leaving group that has the potential to interact strongly with H-site residues. Future work in our laboratories will be aimed at testing several hypotheses suggested by the structural framework provided here.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 4/8/09; revised 7/24/09; accepted 8/10/09; published OnlineFirst 10/6/09.

Grant support: BeSSY/ELISA grant agreement no. 226716, the Italian Ministero dell’Università e della Ricerca (MIUR), Alleanza Contro il Cancceross, and MIUR, FIBB RBL4038ECC_004 (A. Di Matteo).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank the beamline scientists at the European Synchrotron Research Facility (Grenoble, France) and at the Helmholtz Zentrum Berlin für Materialien und Energie-BeSSYII (Berlin, Germany) for beamtime allocation and support.

References

22. Tarella P, Filomeni G, Dupuis ML, et al. A strong glutathione S-transferase inhibitor overcomes the P-glycoprotein-mediated resistance in tumor cells. 6-(7-Nitro-2,1,3-benzoxadiazol-4-yl)hexanol (NBDHEX) triggers a caspase-dependent apoptosis in...
Cancer Research

Structural Basis for the Binding of the Anticancer Compound 6-(7-Nitro-2,1,3-Benzoxadiazol-4-Ylthio)Hexanol to Human Glutathione S-Transferases

Luca Federici, Carlo Lo Sterzo, Silvia Pezzola, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-1314

Cited articles
This article cites 43 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/20/8025.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/69/20/8025.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/69/20/8025.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.