Kupffer Cell Suppression of CD8+ T Cells in Human Hepatocellular Carcinoma Is Mediated by B7-H1/Programmed Death-1 Interactions

Ke Wu, Ilona Kryczek, Lieping Chen, Weiping Zou, and Theodore H. Welling

1Department of Surgery, University of Michigan, Ann Arbor, Michigan and 2Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland

Abstract

B7-H1 is a recently identified B7 family member that, along with one of its receptors, programmed death-1 (PD-1), has been involved in multiple immunopathologic scenarios. However, the nature of B7-H1 and PD-1 in human hepatocellular carcinoma (HCC) remains poorly defined. We investigated the expression and functional relevance of this pathway in patients with HCC. We showed that B7-H1 expression on Kupffer cells (KC) was increased in tumor tissues compared with surrounding nontumor liver tissues in patients with HCC and this correlated with poorer survival. Coculture of HCC cells with monocytes showed that tumor-associated interleukin-10 contributed to the induction of B7-H1 in the HCC environment. We further observed that the levels of PD-1+CD8+ T cells were higher in tumor tissues than in nontumor tissues. B7-H1+ KCs and PD-1+ T cells were colocalized in the HCC stroma. PD-1+CD8+ T cells had decreased proliferative ability and effector function as shown by reduced granule and cytokine expression compared with PD-1− T cells. Importantly, blocking KC B7-H1 interaction with PD-1+CD8+ cells using neutralizing antibodies recovered effector T-cell function. Our data indicate that the B7-H1/PD-1 axis contributes to immune suppression in human HCC, with blockade of this pathway carrying important therapeutic implications. [Cancer Res 2009;69(20):8067–75]

Introduction

Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy and is the second most common cause of cancer-related deaths in the world. Although resection and transplantation are possible therapeutic options, 5-year recurrence rates following resection can exceed 50% (1). Several variables affect the risk of recurrence following resection, including tumor size, tumor number, and vascular invasion. However, the role of tumor immunity is increasingly being recognized as being important to controlling tumor progression or recurrence in cases of breast, ovarian, and pancreatic cancers along with many others (2). Recently, HCC recurrence and stage is independently predicted by the degree of CD8+ tumor-infiltrating T cells (3). CD8+ CTLs are the major effectors against tumor cells (4). However, the progression of HCC and other tumors despite the presence of infiltrating CD8+ T cells stresses the pathologic significance of the regulatory mechanisms within the tumor microenvironment.

Recent evidence suggests that CD8+ T cells may become dysfunctional or functionally exhausted within the tumor microenvironment (5).

Programmed death-1 (PD-1; CD279) may have an important role in the exhaustion of CD8+ T cells in infectious diseases (6, 7). Functionally exhausted CD8+ T cells express high levels of PD-1. PD-1 has two ligands with distinct expression patterns: B7-H1 [programmed death ligand 1 (PD-L1); CD274] and B7-DC (PD-L2; CD273). B7-H1 is expressed on resting T cells, B cells, dendritic cells, and macrophages and is further up-regulated on activation (8). B7-H1, which acts as an antiapoptotic receptor, is also expressed on some tumor cells (9). In contrast, B7-DC is expressed only on DC and macrophages following induction (10). Ligation of PD-1 by B7-H1 transduces a negative signal when transmitted simultaneously with T-cell receptor (TCR) signaling. This negative regulatory function is accomplished through the cytoplasmic domain of the molecule, which recruits intracellular phosphatases SHP-1 and SHP-2 (6). The recruitment of these phosphatases to the membrane leads to the dephosphorylation of several key signaling intermediates and thus the attenuation of TCR-mediated signals and T-cell activation. It has been shown that B7-H1/PD-1 interactions contribute to the suppression of antiviral immunity in liver or antitumor immunity (11–16). However, little is known about the functional relevance and mechanism of B7-H1 and PD-1 in human HCC.

The liver is an immunologically privileged site as studied in oral tolerance and transplantation models (17). Tolerogenic or suppressive antigen-presenting cells (APC), numerous in liver tissue, are thought to control tolerogenic phenotypes. Recently, B7-H1 was shown to be expressed on hepatocytes and liver resident APCs, contributing to deletion of intrahepatic T cells, preventing hepatic autoimmunity, and suppressing antiviral immune responses in animal models (18, 19). Given the relative paucity of data on the HCC microenvironment, we studied tumor tissues and surrounding nontumor liver tissues in HCC patients undergoing surgical resection and investigated the expression and functional relevance of B7-H1 and PD-1 in the human HCC microenvironment. Evidence is provided that Kupffer cells (KC) primarily express B7-H1 in human HCC and mediate decreased effector function via interaction with PD-1 on effector T cells. Furthermore, this suppression seems to be reversible following disruption of these interactions, carrying potential immunotherapeutic implications.

Materials and Methods

Human tissues. For functional analysis, fresh HCC tissues and surrounding nontumor liver tissues were obtained from HCC patients undergoing surgical resection. The surrounding liver tissues from benign liver tumors served as normal liver controls. For survival analysis, 71 patients with HCC following surgical resection at the Sun Yat-Sen University Cancer Center (Guang Zhou, China) from July 2000 to December
2002 were studied. These tissues were analyzed for tumor tissue B7-H1 expression by immunohistochemistry. The clinical characteristics of all patients are summarized in Table 1. All patients gave written informed consent. The study was approved by the local institutional review boards.

Cell isolation. Cells were obtained from fresh HCC or surrounding liver tissues. The tissues were minced and digested with 50 ml HBSS (Life Technologies) containing 40 mg collagenase, 4 mg DNase I, and 100 units hyaluronidase (Sigma) for 2 h at room temperature. Tumor infiltrating leukocytes (TIL) or non-TILs were isolated by Ficoll gradient centrifugation and analyzed by LSRII (BD Biosciences). CD8+ T cells and CD14+ tumor-associated KCs were isolated and purified with paramagnetic beads (StemCell Technology). Lin-CD45-CD14+ HCC tumor cells were sorted with FACS Aria using DiVa software (Becton Dickinson Immunocytometry Systems).

Cell culture. CD8+ T cells (5 × 10^6/ml) were added to 96-well round-bottomed cluster plates and stimulated with anti-human CD3 (2.5 µg/ml, clone UCHT1; BD Biosciences) and anti-human CD28 (1.2 µg/ml, clone CD28.2; BD Biosciences) in the presence of HCC-associated KCs (1 × 10^7/ml) from the same tissue or CD14+ cells from the blood of healthy donors for 5 d. Neutralizing monoclonal antibody against human PD-1 (clone M5, 5 µg/ml) and B7-H1 (clone 5H1, 5 µg/ml; ref. 17) or isotype controls were used in coculture as indicated. After coculture, cells were subjected to fluorescence-activated cell sorting (FACS) analysis or proliferation assay.

Flow cytometry. Anti-human CD3, CD4, CD8, CD11c, CD45, CD45, CD123, HLA-DR, B7-H1, PD-1, Foxp3, granzyme B, perforin, IFNγ, and tumor necrosis factor α (TNFα) antibodies (BD Biosciences) were used in FACS and compared with isotype antibody controls as appropriate. Anti-human Ki67 (BD Biosciences) staining was used to identify proliferating cells. For intracellular cytokine staining, cells were exposed for 4 h with phorbol 12-myristate 13-acetate (PMA; 50 ng/ml; Sigma), ionomycin (500 ng/ml; Sigma), GolgiStop (1 µl/1.5 ml; BD Biosciences), and GolgiPlug (1 µl/ml; BD Biosciences) as previously described (20) followed by surface and intracellular staining of various cytokines according to the manufacturer's instructions (BD Biosciences).

Immunohistochemistry. Fluorescence immunohistochemistry was performed on 8-µm sections of tissues. Briefly, tissues were stained as indicated with primary antibodies, including mouse anti-human B7-H1 (clone MIH1, IgG1, 1:100; BD Biosciences), mouse anti-human CD68 (clone Y1/82A, IgG2b, 1:100; BD Biosciences), mouse anti-human PD-1 (clone NAT, IgG1, 1:200; Abcam), goat anti-human PD-1 (IgG, 1:100; R&D Systems, Inc.), and rat anti-human CD3 (clone YTC18220, IgG2b, 1:200; Abcam). Secondary antibodies were Alexa Fluor 568 (clone 5H1, 5 × 10^5/100 µl/well) or Alexa Fluor 488 (clone 5H1, 5 × 10^5/100 µl/well). Neutralizing monoclonal antibody against human IFNγ (clone 1H10, 5 µg/ml; R&D Systems) and monoclonal antibody against human IL-10 (500 ng/ml; R&D Systems) were added to select wells in the upper chamber. After 48 h, CD14+ cells were harvested and B7-H1 expression was determined by FACS. Where indicated, supernatants from Transwell experiments and cultured cells were checked by human IL-10 ELISA kit (R&D Systems).

Western blot analysis and real-time reverse transcription-PCR. Single-cell suspensions from HCC tumor tissues and surrounding liver tissues were used for Western blot analysis and real-time reverse transcription-PCR (RT-PCR). Briefly, for Western blot analysis, whole-cell lysates were prepared by incubating cells in ice-cold lysis buffer [20 mMol/L Tris (pH 7.8), 2 mMol/L EDTA, 50 mMol/L NaF, 1% Triton X-100, 5 µg/ml leupeptin, 5 µg/ml pepstatin, 0.5 mMol/L phenylmethylsulfonyl fluoride]. The lysates were then centrifuged at 14,000 × g for 15 min at 4°C and assayed for protein with the Bio-Rad protein assay reagent. Equal amounts of protein were resolved by SDS-PAGE and transferred to nitrocellulose membranes. The following antibodies for Western blots were used: mouse anti-human IL-10 (clone 252909, IgG2b, 1:1,000; R&D Systems) and mouse anti-human β-actin (clone AC-15, IgG1, 1:2,000; Sigma). Images were visualized with an enhanced chemiluminescence detection system (Amer sham Biosciences; ref. 21). For RT-PCR, total RNA from tumor tissues and liver tissue as indicated was isolated using RNeasy kits (Qiagen). cDNA synthesis was performed using SuperScript One-Cycle cDNA kit (Invitrogen). The cDNA served as a template in real-time PCR using Fast SYB Green Master kit (Applied Biosystems). The following primers for RT-PCR were used: human IL-10 primers, 5’-CATTCTCTACGTCCGAT-3’ (sense) and 5’-AACCTGTCACTACAGTCTG-3’ (antisense; ref. 22); human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primers, 5’-CTGCCCTCTCTGCTATG-3’ (sense) and 5’-TCCAGATCAACAGTGTTCTACATG-3’ (antisense; ref. 23). All reactions were performed in triplicate. IL-10 mRNA expression of different group specimens was normalized to GAPDH. Relative IL-10 mRNA levels are presented as unit values of 2^−ΔΔCt (GAPDH− Ct (IL-10)), where Ct is the threshold cycle value defined as the fractional cycle number at which the target fluorescent signal passes a fixed threshold above baseline.

Proliferation assay. After 5 d of coculture, T cells were pulsed with [3H]thymidine for the final 16 h of incubation. Incorporation of [3H]thymidine was measured with a microbeta liquid scintillation counter (Perkin-Elmer).

IFNγ enzyme-linked immunospot assay. MultiScreen filtration plates (96-wells per plate; Millipore) were coated with 100 µl/well of 4 µg/ml purified anti-human IFNγ antibody (clone NIB42; BD Pharmingen) overnight at 4°C and then incubated for 90 min at room temperature with 100 µl/well of 1% PMA-conjugated anti-human CD8+ effector cells (5 × 10^5/100 µl/well) and CD14+ cells (5 × 10^5/100 µl/well) from tumor tissues were placed into 96-well round-bottomed cluster plates in the presence of anti-human CD28 (1.2 µg/ml, clone CD28.2; BD Biosciences) for 5 d at 37°C, 5% CO2 in presence or absence of anti-human B7-H1 (clone 5H1, 5 µg/ml) or anti-human PD-1 (clone M3, 5 µg/ml) antibody. Then, all the cells were transferred to MultiScreen filtration plates and incubated for 48 h in the presence of HCC tumor cells lysate (from 1 × 10^6 per well) at 37°C, 5% CO2. PMA (1 ng/ml)–treated and ionomycin (0.5 µg/ml)–treated CD8+ effector cells served as a positive control (−100 spots per well; data not shown). Plates were washed and incubated overnight at 4°C with 100 µl/well of 4 µg/ml of biotinylated rat anti-human IFNγ antibody (clone 4S.B3; BD Pharmingen) followed by a 90-min incubation with 100 µl/well anti-biotin alkaline phosphatase (Vector Laboratories, Inc.) diluted 1:1,000. Spots were visualized with 5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium alkaline phosphatase substrate and counted using the Immunospot analyzer (Cellular Technology Ltd.).

Statistical analysis. Data are presented as the mean ± SE. Significant differences between groups were analyzed using Wilcoxon matched-pairs rank test for nonparametric data or one-way ANOVA test, where appropriate. P values of <0.05 were considered statistically significant. For survival analysis, survival curves were compared by the Kaplan-Meier method and the log-rank test, and survival was measured in months from resection to the last review. All analyses were done using Statistical Package for the Social Sciences v12.0 software.
Using immune fluorescence staining, we confirmed that CD68+ APC subsets in different compartments (Supplementary Fig. S1). Tumor-associated KCs were significantly higher than that on other (MFI) when compared with antibody isotype controls (Fig. 1). 0.05, both by percentage of cells and mean fluorescence intensity (mDC), and Lin₁ were found in both tumor tissues and surrounding nontumor liver tissues. The proportion of pDCs, which are markers of effector T cells, including cytokine profile and cytotoxic function (19, 20). We further examined the functional characteristics of tumor-associated PD-1⁺CD8⁺ T cells in human HCC. We initially reported receptor for B7-H1 (24), was not detected on CD8+ cells nor was B7-DC, another ligand for PD-1 (10), detected on KC or DC (data not shown). These results indicate that most of CD8⁺ T cells within human HCC are effector phenotype, with a greater percentage of these expressing PD-1 in the tumor microenvironment.

PD-1 expression on T-cell subsets in human HCC. We further analyzed the prevalence and phenotype of T-cell subsets within paired tumor tissues and surrounding liver tissues in patients with HCC (n = 20). We observed significant and comparable CD4⁺ and CD8⁺ T-cell infiltration in tumor tissues and surrounding liver tissues (Fig. 3A, top). Because PD-1 is a co-inhibitory signal receptor for B7-H1 and CD8⁺ cytotoxic T cells are the main effector in antitumor immune responses (4), we examined the phenotype of PD-1⁺CD8⁺ T cells. Both in HCC tumor tissues and surrounding liver tissue, <5% of CD8⁺ T cells are CD45RA⁺ or CD62L⁺ (Fig. 3A, bottom). The percentage of PD-1⁺CD8⁺ T cells was higher (63.0 ± 20.3%) in tumor tissues than that in surrounding tissues (11.5 ± 6.0%, P < 0.05; Fig. 3B and C). The expression of PD-1 on CD8⁺ T cells in HCC tumor tissue (Fig. 3D, a) was confirmed by immunohistochemistry and was much higher than in surrounding nontumor (Fig. 3D, b) and normal liver tissues (Fig. 3D, c). Cells were negative for staining with isotype control antibodies (Fig. 3D, d). PD-1⁺ cells were also found to be localized primarily to the HCC stroma (Supplementary Fig. S2). CD80, another reported receptor for B7-H1 (24), was not detected on CD8⁺ cells nor was B7-DC, another ligand for PD-1 (10), detected on KC or DC (data not shown). These results indicate that most of CD8⁺ T cells within human HCC are effector phenotype, with a greater percentage of these expressing PD-1 in the tumor microenvironment.

Functional characteristics of tumor-associated PD-1⁺CD8⁺ T cells in human HCC. Given the high levels of PD-1 expression on CD8⁺ T cells in HCC, effector T cells might be functionally exhausted. We examined the functional characteristics of tumor-associated PD-1⁺CD8⁺ T cells in human HCC. We initially compared the in vivo proliferation status of CD8⁺ T cells in tumor tissues versus surrounding liver tissues and of PD-1⁺CD8⁺ T cells versus PD-1⁺CD8⁺ T cells in human HCC using Ki67, a proliferative marker for cells in mitosis. The levels of Ki67⁺ CD8⁺ T cells were lower in tumor tissues than surrounding tissues (Fig. 4A). Furthermore, PD-1⁺CD8⁺ T cells were less proliferative than PD-1⁺CD8⁺ T cells in patients with HCC (Fig. 4B). PD-1 has previously been shown in animal models to negatively regulate CD8⁺ T-cell effector function (19, 20). We further examined the functional markers of effector T cells, including cytokine profile and cytotoxic

Table 1. Clinical characteristics of HCC patients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. patients</td>
<td>71</td>
</tr>
<tr>
<td>Age, y (median, range)</td>
<td>48, 23–75</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>65/6 (92/8)</td>
</tr>
<tr>
<td>HBsAg (negative/positive)</td>
<td>8/63 (11/89)</td>
</tr>
<tr>
<td>Cirrhosis (absent/present)</td>
<td>16/55 (23/77)</td>
</tr>
<tr>
<td>ALT, units/L (median, range)</td>
<td>40–119</td>
</tr>
<tr>
<td>AFP, ng/mL (≤25/25)</td>
<td>27/44 (38/62)</td>
</tr>
<tr>
<td>Tumor size, cm (≤5/5)</td>
<td>36/35 (51/49)</td>
</tr>
<tr>
<td>Tumor multiplicity (solitary/multiple)</td>
<td>63/8 (89/11)</td>
</tr>
<tr>
<td>Vascular invasion (absent/present)</td>
<td>69/2 (91/9)</td>
</tr>
<tr>
<td>Intrahepatic metastasis (no/yes)</td>
<td>68/3 (96/4)</td>
</tr>
<tr>
<td>TNM stage (I + II/III + IV)</td>
<td>57/14 (80/20)</td>
</tr>
<tr>
<td>Tumor differentiation (I + II/III + IV)</td>
<td>58/13 (82/18)</td>
</tr>
<tr>
<td>Fibrous capsule (absent/present)</td>
<td>13/58 (18/82)</td>
</tr>
<tr>
<td>B7-H1<sup>+</sup> cells (median, range)</td>
<td>94, 16–227</td>
</tr>
</tbody>
</table>

NOTE: Data in parentheses are percentages. Abbreviations: HBsAg, hepatitis B surface antigen; AFP, α-fetoprotein; ALT, alanine aminotransferase; TNM, tumor-node-metastasis.
enzymes. PD-1+CD8+ T cells in tumors exhibited markedly diminished expression of perforin and granzyme B (Fig. 4C and D). Furthermore, the percentage of TNFα+ and IFNγ+ T cells was significantly reduced in PD-1+CD8+ T cells than in PD-1−CD8+ T cells (Fig. 4C and D). These results indicate that PD-1+CD8+ T cells in the HCC microenvironment have impaired effector function when compared with PD-1−CD8+ T cells.

B7-H1/PD-1 interactions mediate impaired effector T-cell function in human HCC. To identify whether B7-H1+ KCs interact with PD-1+CD8+ T cells in HCC, human HCC tumor specimens were further analyzed by immunohistochemistry to determine their physical localization. A significant infiltration of B7-H1+ and PD-1+ cells was detected in the peritumor stroma when compared with the tumor nests (Supplementary Fig. S2). In addition, B7-H1+ and PD-1+ cells seemed to be in close contact with each other, providing the possibility for direct interactions between these cells (Fig. 5A). To evaluate whether disruption of the B7-H1/PD-1 interaction would restore effector function to CD8+ T cells, CD8+ T cells and KCs were sorted from HCC tumor tissues and placed into coculture. Tumor-derived KC caused no increase in CD8+ proliferation or cytokine proliferation (data not shown). However, blockade of B7-H1 or PD-1 with specific monoclonal antibodies resulted in enhanced T-cell proliferation as shown by [3H]thymidine incorporation (Fig. 5B) and Ki67 expression (Fig. 5C). T-cell effector cytokine expression, granzyme B expression, and perforin expression compared with no treatment isotype control group (Fig. 5C). To evaluate whether B7-H1/PD-1 interactions affect tumor antigen-specific responses, we further performed HCC-specific IFNγ enzyme-linked immunospot (ELISPOT) analysis using HCC-derived KCs loaded with HCC lysates to stimulate autologous HCC CD8+ T cells. Blocking B7-H1 or PD-1 using monoclonal antibodies increased the antigen-specific IFNγ-secreting spots (Fig. 5D), suggesting that B7-H1+ KCs interact with PD-1+CD8+ T cells and contribute to dysfunction of effector T cells in HCC.

Figure 1. KCs express increased B7-H1 in human HCC. APC subsets in human HCC were analyzed by FACS. A, CD45+ leukocytes were analyzed and gated on Lin−HLA-DR+ cells. Representative dot plots of KCs (HLA-DR+CD14+), pDCs (Lin−HLA-DR+CD4+CD11c+CD123+), and mDCs (Lin−HLA-DR+CD4+CD11c−CD123−) from both tumor tissues or nontumor tissues. B, representative FACS histogram of B7-H1+ KCs. Filled histogram, B7-H1 expression; open histogram, antibody isotype control. C, B7-H1+ KCs in HCC tumor tissue (a), surrounding nontumor tissue (b), and normal liver tissue (c). The immunohistochemistry showed that B7-H1+ (red) staining was found on CD68+ KCs (green) in HCC tumor tissue. Blue, nuclear was stained by DAPI. Mouse IgG1 and IgG2b were used as isotype controls (d) for B7-H1 and CD68 staining, respectively. Representative sections are shown from eight patients. Magnification, ×400. D, Kaplan-Meier survival curves of HCC patients as determined by B7-H1 expression on immunohistochemistry of tumor tissue. Black line, low expression (n = 36); red line, high expression (n = 35). P = 0.014.
CD14+ cells from blood of healthy donors were used as control of tumor-associated KCs and showed similar results as the CD8+ T-cell alone cultures (data not shown) and were also similar to the mouse anti-human IgG1 isotype control (Fig. 5D).

Discussion

An immune-suppressive environment has been previously described in patients with HCC comprising decreased numbers of CD8+ T cells and increased regulatory T cells (3, 25). However, the underlying mechanisms controlling effector function remain poorly defined within human HCC. Furthermore, the nature and significance of B7-H1 and PD-1 in human HCC are likewise incompletely defined. In the current investigation, we have shown that HCC environmental factors stimulate B7-H1 expression on KCs and that the B7-H1/PD-1 pathway contributes to impaired effector T-cell function in the HCC environment.

B7-H1 has been reported to be expressed on multiple APC subsets (7, 8). It has been shown that liver-resident pDCs or mDCs express B7-H1 after transplantation or virus infection (26, 27). We found that in the HCC environment, B7-H1 expression is confined to KCs but is minimally expressed on mDCs, pDCs, or HCC tumor cells. A significant number of B7-H1+ KCs in HCC tissue were noted compared with surrounding nontumor tissue. Tumor-associated
Figure 3. HCC tumor-associated CD8+ T cells highly express PD-1. Human HCC T-cell subsets were analyzed by FACS. A, top, representative dot plots of CD4+ and CD8+ T cells from 20 HCC patients gated on CD3+ cells. The proportions of CD4+ and CD8+ T cells in both tumor tissue and nontumor tissue. Bottom, representative phenotype dot plots of CD8+ T cells showed both in HCC tumor and nontumor tissues that <5% of CD8+ T cells are CD45RA+ or CD62L+ (n = 8 patients). B, representative dot plots of PD-1+CD8+ T cells from 20 HCC patients in tumor and nontumor tissue. Top, isotype control; bottom, PD-1 expression on CD8+ cells. C, mean percentage of PD-1+CD8+ T cells in tumor tissues and nontumor tissues (n = 20 patients). *, P < 0.05. D, PD-1+CD8+ T cells in HCC tumor tissue (a), surrounding nontumor tissue (b), and normal liver tissue (c). PD-1 (red) staining was largely limited to CD8+ cells (green). Mouse IgG1 and rat IgG were used as antibody isotype controls (d) for PD-1 and CD8 staining, respectively (n = 8 patients). Blue, DAPI nuclear. Magnification, ×400.
IL-10 contributed to B7-H1 up-regulation in the coculture system, and increased IL-10 expression was observed in human HCC. IL-10 expression was elevated in supernatants of monocytes and tumor cells when cocultured. Therefore, both tumor cells and macrophages in the HCC microenvironment could be the source of IL-10 following their interaction with each other. It is also possible that B7-H1 expression could be induced by other tumor-associated cytokines, such as IFNγ and vascular endothelial growth factor (7, 15, 28). Therefore, IL-10 may not be the only factor inducing B7-H1 expression in the HCC microenvironment and is consistent with our previous findings in human ovarian carcinoma (15). However, tumor-conditioned KCs are the likely mediator of B7-H1/PD-1 interactions in human HCC.

CD8+ effector T cells mediate antitumor effects directly by expression of either antitumor cytokines (TNFα and IFNγ) or cytotoxic granules (granzyme B and perforin). However, there was no significant difference in the prevalence of CD8+ T-cell distribution and effector phenotype between HCC tissue and surrounding nontumor tissue. Overexpression of PD-1 is a hallmark of exhausted T cells in chronic hepatitis (12, 29). We showed in HCC tissue that higher percentages of CD8+ T cells express PD-1. These PD-1+CD8+ T cells were mainly localized in the HCC stroma as opposed to the tumor nests. Several studies reported the importance of PD-1 expression in dampening antiviral CD8+ T-cell responses in human viral hepatitis (8, 9, 26). Our results in HCC are consistent with these previous findings and are important, as chronic hepatitis or cirrhosis is a major risk factor for human HCC (1). We have shown that PD-1+CD8+ T cells in HCC also display impaired effector phenotype, indicating that the quality and function are altered in HCC.

Inhibitory B7-H1/PD-1 interaction can restrict immune responses against self-antigens. This pathway has emerged as a potential therapeutic target for treating cancer (13–16). In this study, we show that CD8+ T cells and KCs in human HCC tumor tissues expressed high levels of PD-1 and B7-H1, respectively, whereas other molecules (i.e., CD80 and B7-DC) were not detected. Exhausted CD8+ cells were able to be rescued following B7-H1 or PD-1 blockade using monoclonal antibodies, resulting in improved effector responses following TCR stimulation and stimulation with tumor-specific antigens. We have previously shown a role for B7-H1 to inhibit tumor immune responses in human ovarian carcinoma (15). Other investigators have observed that blocking B7-H1/PD-1 enhances the function of antigen-specific T cells in infectious diseases (12, 28, 30, 31).

To our knowledge, this is the first evidence that B7-H1+ APCs and PD-1+ T cells are physically localized in the same site of...
liver or within HCC and that T-cell effector function could be rescued by blocking B7-H1/PD-1 interactions, providing important therapeutic implications. By overall survival analysis, we observed that elevated B7-H1 expression in HCC is indeed associated with poorer prognosis in HCC patients as has been recently reported by other investigators (32). Altogether, our data suggest that B7-H1/PD-1 interactions mediate immune suppression in human HCC and B7-H1 expression in tumor was associated with clinical outcome. The suppressive interaction between KCs and T cells using B7-H1/PD-1 interactions in HCC

![Figure 5](image-url)

Figure 5. B7-H1+ and PD-1+ cells were colocalized in HCC and mediated T-cell immune suppression. A, PD-1+ cells (green) were colocalized with B7-H1+ cells (red) and DAPI nuclear staining (blue). Magnification, ×400. Representative data for eight patients. B and C, blocking B7-H1 or PD-1 increased T-cell effector function. CD14+ and CD8+ cells were sorted from human HCC and cocultured for 5 d with anti-CD3 and anti-CD28 antibodies. Where indicated, anti–PD-1 or anti–B7-H1 monoclonal antibodies were added and compared with control (mouse anti-human IgG1 isotype control for both anti–PD-1 and anti–B7-H1 antibodies). B, CD8+ T-cell proliferation was determined by [3H]thymidine incorporation. Columns, mean counts per minute (CPM) of five experiments; bars, SE. *, P < 0.05 versus isotype control. C, expression of Ki67, perforin, granzyme B, and cytokines was determined by FACS analysis with representative dot plots shown from five experiments. D, HCC-specific CD8+ T-cell response. CD8+ T cells were stimulated with KCs loaded with autologous HCC lysates over 5 d and HCC-specific IFNγ was determined by ELISPOT in the presence or absence of anti–B7-H1 or anti–PD-1 antibody (n = 3 experiments). Columns, mean number of IFNγ spots per 10^5 CD8+ T cells; bars, SE. *, P < 0.05 versus isotype control.
patients suggests that targeted therapies against this pathway represent a promising approach to enhance T-cell immunity to human HCC.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Acknowledgments

Received 3/11/09; revised 7/22/09; accepted 8/4/09; published OnlineFirst 10/13/09.

Grant support: Tissue Procurement Core of the University of Michigan Comprehensive Cancer Center grant CA46952.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Dr. Li Dong Wang (University of Michigan Medical Center) for the Western blot analysis.
Kupffer Cell Suppression of CD8+ T Cells in Human Hepatocellular Carcinoma Is Mediated by B7-H1/Programmed Death-1 Interactions

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-09-0901

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2011/05/18/0008-5472.CAN-09-0901.DC1

Cited articles
This article cites 32 articles, 11 of which you can access for free at: http://cancerres.aacrjournals.org/content/69/20/8067.full.html#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at: /content/69/20/8067.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.