A Role for BRCA1 in Uterine Leiomyosarcoma

Deyin Xing,1,2 George Scangas,1,2 Mai Nitta,1,2 Lei He,1,2 Xuan Xu,4 Yevgeniya J.M. Ioffe,4 Paul-Joseph Aspuria,4 Cyrus Y. Hedvat,5 Matthew L. Anderson,6 Esther Oliva,2,3 Beth Y. Karlan,4 Gayatri Mohapatra,1,2,3 and Sandra Orsulic1,2,3,4

1Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts; 2Department of Pathology, Massachusetts General Hospital and 3Department of Pathology, Harvard Medical School, Boston, Massachusetts; 4Women’s Cancer Research Institute, Cedars-Sinai Medical Center, Los Angeles, California; 5Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York; and 6Division of Gynecologic Oncology, Baylor College of Medicine, Houston, Texas

Abstract

Uterine leiomyosarcoma (ULMS) is a rare gynecologic malignancy with a low survival rate. Currently, there is no effective treatment for ULMS. Infrequent occurrences of human ULMS hamper the understanding of the initiation and progression of the disease, thereby limiting the ability to develop effective therapies. To elucidate the roles of the p53 and BRCA1 tumor suppressor genes in gynecologic malignancies, we generated mice in which p53 and/or BRCA1 can be conditionally deleted using anti-Müllerian hormone type II receptor (Amhr2)–driven Cre recombinase. We showed that conditional deletion of p53 in mice results in the development of uterine tumors that resemble human ULMS and that concurrent deletion of p53 and BRCA1 significantly accelerates the progression of these tumors. This finding led to our hypothesis that BRCA1 may play a role in human ULMS development. Consistent with this hypothesis, we showed that the BRCA1 protein is absent in 29% of human ULMS and that BRCA1 promoter methylation is the likely mechanism of BRCA1 downregulation. These data indicate that the loss of BRCA1 function may be an important step in the progression of ULMS. Our findings provide a rationale for investigating therapies that target BRCA1 deficiency in ULMS. [Cancer Res 2009;69(21):8231–5]

Introduction

Although uterine leiomyosarcoma (ULMS) is a rare tumor that accounts for <1% of all uterine malignancies, >80% of patients with ULMS that has spread beyond the uterus experience tumor recurrence after initial chemotherapy (1). The etiology associated with the carcinogenesis of ULMS is largely unknown. Frequently observed mutations and overexpression of p53 in ULMS suggest that the loss of p53 function may play a critical role in the development of this cancer (2–4). Mice without a functional p53 tumor suppressor gene or with mutant p53 gain-of-function develop a spectrum of tumors. However, leiomyosarcomas that reproduce corresponding human malignancies with the same cellular origin rarely occur.

Several transgenic mouse models have been reported to give rise to leiomyosarcoma. In one mouse model, Cre-dependent activation and expression of an actin-cassette transgene encoding the T antigen of the SV40 early region resulted in the development of massive ULMS in all female mice at ∼3 months of age (5). The second model was based on mouse mammary tumor virus (MMTV) promoter overexpression of Cripto-1. In addition to the development of mammary tumors, ULMS developed in ∼20% of aged mice (6). Similarly, mammary tumors and ULMS arose in v-Ha-ras transgenic mice driven by the MMTV promoter (7). Disruption of Pten in the smooth muscle lineage with Tagln-Cre caused the formation of widespread smooth muscle cell hyperplasia and abdominal leiomyosarcoma but not ULMS (8).

Materials and Methods

Mouse strains. Amhr2cre/+/mice (9) were crossed with Brca1lox/lox (10) or p53lox/lox (11) mice. Triple transgenic Amhr2cre/+/p53lox/lox/Brca1lox/lox mice were generated by crossing Amhr2cre/+ and Brca1lox/lox mice. The resulting transgenic mice were maintained on a mixed background. All mice were genotyped by PCR using tail or ear DNA. Kaplan-Meier survival curves were drawn using GraphPad PRISM software. Mean survival time was calculated using the Log-rank test.

Confirmation of gene recombination. Genomic DNA extracted from tumors or normal tissues of the female reproductive tract was used to detect Cre-mediated recombination of the p53 and Brca1 genes. Cre-mediated deletion of p53 displayed a 612-bp PCR product amplified with primers p53-a (5′-CAC AAA AAC AGG TTA AAC CCA-3′) and p53-c (5′-GAA GAC AGT TTG TAA GCA TCC-3′). PCR amplification of the recombined Brca1 gene resulted in a 621-bp product using the primers Brca1-d (5′-CTG GGT AGT TTG TAA GCA TCC-3′) and Brca1-g (5′-CTG CGA GCA GTC TTC AGA AAG-3′). PCR amplification of the recombinated Brca1 gene in a 621-bp product using the primers Brca1-d (5′-CTG GGT AGT TTG TAA GCA TCC-3′) and Brca1-g (5′-CTG CGA GCA GTC TTC AGA AAG-3′), which flanked Brca1 exon 11. The presence of wild-type Brca1 was determined by PCR using primers within exon 11 (Brca1-e: 5′-ATC AGT AGT AAA GAG AGA GAC ACA-3′) and Brca1-f: 5′-GCA GCC CAC GAG AGG GAC-3′)

Human specimens. Formalin-fixed paraffin-embedded archival human specimens were obtained from the following institutions: Massachusetts General Hospital, Boston, MA; Baylor College of Medicine, Houston, TX; Memorial Sloan-Kettering Cancer Center, New York, NY; Cedars-Sinai Medical Center, Los Angeles, CA; Olive View Medical Center, Los Angeles, CA; Inova Fairfax Hospital, Falls Church, VA; Universita Cattolica, Rome, Italy; and Istituto di Anatomia e Istologia Patologica, Ancona, Italy.

H&E staining and immunohistochemistry. Tissues were fixed in 10% buffered formalin and embedded in paraffin. Tissue sections were deparaffinized in a graded xylene/ethanol series and used for H&E staining or immunohistochemistry (IHC) with an ABC antibody staining kit (Vector Laboratories) according to the manufacturer’s instructions. After color development, the slides were counterstained with hematoxylin and mounted with mounting medium (Permount, Fisher Sciences). To determine the proliferative index of the tumors, mice were i.p. injected with 100 mg/kg bromodeoxyuridine (BrdUrd; Zymed Laboratories). Tissues and tumors were collected after 2 h and fixed in 10% formalin overnight. Paraffin-embedded sections were deparaffinized, followed by hydrogen chloride

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Requests for reprints: Sandra Orsulic, Women’s Cancer Research Institute, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 200W, Los Angeles, CA 90048. Phone: 310-423-9346; Fax: 310-423-9337; E-mail: orsulisc@csb.org.

©2009 American Association for Cancer Research.

doi:10.1158/0008-5472.CAN-09-2543
(2N HCl) digestion, trypsinization (0.1% Trypsin), and IHC with an ABC antibody staining kit. The following primary antibodies were used: α-smooth muscle actin (1:200 dilution, Sigma), β-catenin (H-102; 1:100 dilution, Santa Cruz), BRCA1 (Ab-1; 1:100 dilution, Calbiochem); BrdUrd (1:100 dilution, Vector Laboratories), p16 (M-156; 1:100 dilution, Santa Cruz), p53 (Ab-1; 1:100 dilution, Calbiochem), phospho-estrogen receptor α (Ser167; 1:100 dilution, Cell Signaling), and TROMA-1 (keratin 8; 1:25 dilution, Developmental Studies Hybridoma Bank at the University of Iowa). H&E and immuno-stained uterine tumor sections were reviewed by two independent observers (D.X. and E.O.).

Results

Conditional deletion of p53 and Brca1 in the female mouse reproductive tract. To define the roles of the p53 and Brca1 tumor suppressor genes in oncogenesis of the female mouse reproductive tract, we generated mice in which p53 and/or Brca1 can be conditionally deleted using Cre recombinase knocked into the anti-Müllerian hormone type II receptor (Amhr2) locus (Amhr2-Cre; Supplementary Fig. S1A; ref. 9). Three individual strains of mice, Amhr2Cre/+/Brca1lox/lox, Amhr2Cre/+/p53lox/lox, and Amhr2Cre/+/p53lox/lox/Brca1lox/lox mice, were generated (Supplementary Fig. S1B). p53 and/or Brca1 in these mice are expected to be inactivated by Cre recombinase in the Amhr2-expressing tissues, which include Müllerian duct mesenchymal cells, coelomic epithelium, and granulosa cells of the adult ovary (13). PCR of genomic DNA extracted from normal tissues of the female reproductive tract (ovary, oviduct, and uterus) was used to detect Cre-mediated recombination of the p53 (deleted exons 2–10) and Brca1 (deleted exon 11) genes. One 3-month-old female mouse from each genotype was selected for PCR analysis. As expected, Müllerian duct organs from Amhr2Cre/+/p53lox/lox mice harbored recombinant p53 but not recombinant Brca1, whereas Müllerian duct organs from Amhr2Cre/+/Brca1lox/lox mice harbored recombinant Brca1 but not recombinant p53 (Supplementary Fig. S1B). Recombinant products for both p53 and Brca1 were detected in the ovaries, fallopian tubes, and uteri of Amhr2Cre/+/p53lox/lox/Brca1lox/lox mice (Supplementary Fig. S1B). Primers within Brca1 exon 11 (Supplementary Fig. S1A) were used to detect the presence of conditional Brca1 in various non-Amhr2-expressing cell types in the ovary, oviduct, and uterus (Supplementary Fig. S1B).
Loss of p53 and Brca1 in the female mouse mesenchyme of the reproductive tract leads to the development of ULMS. Mice with deleted p53, Brca1, or both in the Müllerian duct tissues developed normally and histopathologic analyses did not reveal any specific anomalies in the Müllerian duct tissues or other organs of 3-month-old mice. However, uterine tumors developed in 12 of 23 (52%) of the Amhr2Cre/+/p53lox/lox female mice during the 13-month observation period. None of the 25 Amhr2Cre/+/Brca1lox/lox female mice developed uterine masses during the same time period (Supplementary Table S1; Fig. 1A). However, the loss of Brca1 synergistically accelerated the formation of tumors in mice lacking p53, with 27 of 33 (82%) of the Amhr2Cre/+/p53lox/lox/Brca1lox/lox female mice developing uterine masses within 13 months (Supplementary Table S1; Fig. 1A). The median time of tumor-free survival was 56 weeks for Amhr2Cre/+/p53lox/lox mice and 50 weeks for Amhr2Cre/+/p53lox/lox/Brca1lox/lox mice. Conditional

![Figure 2. Immunohistochemical analysis of normal uteri derived from Amhr2Cre/+/Brca1lox/lox mice and uterine tumors derived from Amhr2Cre/+/p53lox/lox and Amhr2Cre/+/p53lox/lox/Brca1lox/lox mice. Representative H&E staining (x100 and x400 magnification). Incorporation of BrdUrd indicates a high proliferation index. The IHC profile shows that the myometrium of the uterus and the uterine tumors are positive for smooth muscle actin (SMA) but negative for the epithelial marker Keratin 8 (CK8). T, tumor; E, endometrium; M, myometrium; small arrow, abundant mitoses; large arrow, marked cytologic atypia; arrowhead, prominent nucleoli; *, hyperchromatic nuclei.](image-url)
binant
ULMS may arise through similar molecular pathways. (Supplementary Table S2 and Fig. S2), indicating that mouse and human
hibitor p16 (4, 15, 16), were also present in mouse ULMS (Supple-
β
human ULMS, such as ER
epithelial marker Keratin 8 (Fig. 2). Several other characteristics of
by the expression of smooth muscle actin and the absence of the
(17, 18), we found that p53 positivity was present in 50% (30
of 60) of ULMS and 0% (0 of 28) of benign leiomyomas (data not
shown). There was no significant correlation between BRCA1 and
p53 staining in ULMS, suggesting that the loss of BRCA1 in ULMS
may collaborate with pathways other than the p53 pathway.

To identify a possible mechanism of BRCA1 protein downregu-
lation in human ULMS, we selected two BRCA1-negative and six
BRCA1-positive ULMS samples for which we had sufficient mat-
terial to determine the BRCA1 methylation status using bisulfite-
modified DNA PCR amplification (Fig. 3B). One ovarian cancer
sample in which methylation of the BRCA1 promoter was previ-
ously confirmed (12) was used as a positive control, whereas normal
male DNA was used as a negative control (Fig. 3B). BRCA1 promot-
er methylation was present in both samples that were BRCA1 neg-
ative as determined by IHC and not present in the six samples that
were BRCA1 positive as determined by IHC (Fig. 3B).

Discussion
The understanding of the molecular biology of ULMS is poor due
to rare occurrences of human ULMS and the lack of molecularly
tissue specimens organized in a tissue microarray. The slides were
stained with antibodies against BRCA1 and p53 using the avidin-
biotin immunoperoxidase method. Nuclear positivity was scored
by two independent observers and quantified as either present
or absent. Results were analyzed using a two-tailed Fisher’s exact
test. BRCA1 protein expression was absent in 29% (25 of 85) of
ULMS samples and in 4% (3 of 76) of benign leiomyoma samples.
Representative results of BRCA1 immunohistochemical detection
are shown in Fig. 3A. This difference in BRCA1 protein expres-
sion between ULMS and benign leiomyoma samples was statistically
significant with a P value of <0.0001. Consistent with previous re-
ports (17, 18), we found that p53 positivity was present in 50% (30
of 60) of ULMS and 0% (0 of 28) of benign leiomyomas (data not
shown). There was no significant correlation between BRCA1 and
p53 staining in ULMS, suggesting that the loss of BRCA1 in ULMS
may collaborate with pathways other than the p53 pathway.

To identify a possible mechanism of BRCA1 protein downregu-
lation in human ULMS, we selected two BRCA1-negative and six
BRCA1-positive ULMS samples for which we had sufficient mat-
terial to determine the BRCA1 methylation status using bisulfite-
modified DNA PCR amplification (Fig. 3B). One ovarian cancer
sample in which methylation of the BRCA1 promoter was previ-
ously confirmed (12) was used as a positive control, whereas normal
male DNA was used as a negative control (Fig. 3B). BRCA1 promot-
er methylation was present in both samples that were BRCA1 neg-
ative as determined by IHC and not present in the six samples that
were BRCA1 positive as determined by IHC (Fig. 3B).
defined animal models. Therefore, there is a great need to generate genetically engineered mouse models that resemble the development of human ULMS. We investigated the role of p53 and Brca1 in the development and tumorigenesis of the female mouse reproductive tract based on a Cre/LoxP process in which the expression of Cre recombinase is under the control of the Amhr2 locus. Mice with p53 deletion in Amhr2-Cre-expressing tissues developed ULMS, indicating that p53 may play a causative role in the formation of ULMS. In contrast, mice lacking functional Brca1 driven by Amhr2-Cre did not present any visible phenotype during the 13-month observation period. This result is consistent with the view that Brca1 plays a general role in the maintenance of genomic integrity and that a long latency is required for the activation of oncogenes and the inactivation of additional tumor suppressor genes to form Brca1-associated tumors (19, 20). Therefore, we cannot rule out the possibility that Brca1-deficient mice could develop gynecologic tumors after 13 months. Unlike human ULMS, which are highly metastatic, metastasis of mouse ULMS to other organs was not identified at the time of tumor extraction, although it is unknown whether these tumors would metastasize after 13 months.

Germline BRCA1 mutations have not been associated with a predisposition to human ULMS development, indicating that genomic alterations of BRCA1 are unlikely to play a role in the development of this disease. It is possible, however, that genetic or epigenetic somatic inactivation of BRCA1 contributes to the progression of ULMS. Our IHC results on patient samples indicate a significant difference in BRCA1 protein expression between ULMS and benign uterine leiomyoma. Consistent with the view that BRCA1 silencing may play a role in the development or progression of ULMS, we showed that the BRCA1 promoter is methylated in samples with negative BRCA1 immunohistochemical staining. Together, our findings provide a rationale for the investigation of targeted therapies that take advantage of the absence of BRCA1 expression in a subset of ULMS patients.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
Received 7/8/09; revised 9/8/09; accepted 9/14/09; published OnlineFirst 10/20/09.
Grant support: NIH (R01-CA103923), Ovarian Cancer Research Fund, Liddy Shriver Sarcoma Initiative, LMSarcoma Direct Research Foundation, and the Sarcoma Foundation of America (S. Orulic).
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
We thank Robert Soslowsky (Memorial Sloan-Kettering Cancer Center, New York, NY), Gian Franco Zannoni (Università Cattolica, Rome, Italy), Michele de Nittis (Istituto di Anatomia e Istologia Patologica, Ancona, Italy), Philip Branton (Inova Fairfax Hospital, Falls Church, VA), Christine Holschneider (Olive View Medical Center, Los Angeles, CA), and Jenny Gross (Cedars-Sinai Medical Center) for contributing human specimens; Leija Delic (Cedars-Sinai Medical Center) for help with IHC; Richard Behringer (University of Texas, M.D. Anderson Cancer Center) for the Amhr2-Cre mice; members of the Women’s Cancer Research Institute at Cedars-Sinai Medical Center for insightful suggestions; and Kristy J. Daniels for help in the preparation of the manuscript.

References
A Role for BRCA1 in Uterine Leiomyosarcoma

Deyin Xing, George Scangas, Mai Nitta, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-2543

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2009/10/16/0008-5472.CAN-09-2543.DC1

Cited articles
This article cites 20 articles, 4 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/21/8231.full.html#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
/content/69/21/8231.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.