Ubiquitination and Downregulation of BRCA1 by Ubiquitin-Conjugating Enzyme E2T Overexpression in Human Breast Cancer Cells

Tomomi Ueki,1,2 Jae-Hyun Park,1 Toshihiko Nishidate,1,2 Kyoko Kijima,1 Koichi Hirata,2 Yusuke Nakamura,1 and Toyomasa Katagiri1,3

1Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; 21Department of Surgery, Sapporo Medical University, Sapporo, Japan; and 3Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, Tokushima, Japan

Abstract

Breast cancer is generated through a multistep genetic and epigenetic process including activations of oncogenes and inactivations of tumor suppressor genes. Here, we report a critical role of ubiquitin-conjugating enzyme E2T (UBE2T), an E2 ubiquitin-conjugating enzyme, in mammary carcinogenesis. Immunocytochemical staining and in vitro binding assay revealed that UBE2T interacted and colocalized with the BRCA1/BRCA1-associated RING domain protein (BARD1) complex. Knocking down of UBE2T expression with small interfering RNA drastically suppressed the growth of breast cancer cells. Interestingly, in vivo ubiquitination assay indicated BRCA1 to be polyubiquitinated by incubation with wild-type UBE2T protein, but not with C86A-UBE2T protein, an E2 activity–dead mutant, in which the 86th residue of cysteine was replaced with alanine. Furthermore, knocking down of UBE2T protein induced upregulation of BRCA1 protein in breast cancer cells, whereas its overexpression caused the decrease of the BRCA1 protein. Our data imply a critical role of UBE2T in development and/or progression of breast cancer through the interaction with and the regulation of the BRCA1/BARD1 complex. [Cancer Res 2009;69(22):8752–60]

Introduction

Breast cancer is the most common cancer among women worldwide; 1.15 million new cases and 410,000 deaths due to breast cancer in 2002 (1). Incidence of breast cancer is increasing in most countries and the increasing rate is much higher in countries where its incidence was previously low (1). Like other types of cancer, a multistep genetic and epigenetic process is critical for the efficient DNA damage–induced monoubiquitination of FANCD2, one of Fanconi anemia core complex subunits (13, 14). However, any roles of UBE2T in breast carcinogenesis have not been implicated. In this study, we report characterization of UBE2T that was highly overexpressed in the great majority of breast cancer cells.

Materials and Methods

Cell lines and clinical materials. HCC1937, MCF-7, MDA-MB-231, MDA-MB-435S, SK-BR-3, T47D, YMB-1, BT-20, ZR-75-1, BT549, HeLa, HEK293T, and COS7 cell lines were obtained from American Type Culture Collection (ATCC). No abnormalities were observed on the cellular morphology of these cell lines both at low and high densities of culture. HeLa, HEK293T, and COS7 cell lines were obtained from American Type Culture Collection (ATCC). No abnormalities were observed on the cellular morphology of these cell lines both at low and high densities of cultures by microscopy according to the guideline from ATCC (15). HBC4 and HBC5 were kind gifts from Dr. Takao Yamori (Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan) with Materials transfer agreement. We monitored the cell morphology of these cell lines by microscopy, and confirmed to maintain their morphologic images in comparison with the original morphologic images from the above affiliation. Human mammary epithelial cells and MCF10A were purchased from Cambrex BioScience, and were used in this study for the first time after purchase. All cells were cultured according to previous (7, 11). No Mycoplasma contamination was detected in cultures of all of these cell lines by using Mycoplasma Detection kit (Roche). Tissue samples from surgically resected breast cancers and their corresponding clinical information were obtained from Department of Breast Surgery, Cancer Institute Hospital, Tokyo, Japan and Division of Breast and Endocrine Surgery, Department of Surgery, St Marianna University School of Medicine, Kanagawa, Japan after obtaining informed consent and approval from institutional review boards. All patients were subjected to complete biochemical and histopathologic examination of the biopsy specimen.

Note: Supplementary data for this article are available at Cancer Research Online.
written informed consent. This study as well as the use of all clinical materials described above was approved by individual institutional Ethical Committees.

Semiquantitative reverse transcription-PCR analysis. Extraction of total RNA and subsequent cDNA synthesis were performed as described previously (6). The PCR primer sequences were 5′-CAATATATTGTT-GAGCCAAC-3′ and 5′-TAGTACCTCTGCAAGAAGAC-3′ for UBE2T; 5′-CGTGGTATGATCTTGGCTCA-3′ for BRCA1; 5′-CGACACCTTCTGACCTA-3′ and 5′-GTTGTGAGCC-AGGGTTACTTT-3′ for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a quantitative internal control.

Northern blot analysis. Northern blot membrane for breast cancer cell lines was prepared as described previously (7). The breast cancer blot and triplicate multiple tissue blots (Takara Clontech) were hybridized with 32P-labeled PCR products of UBE2T (541 bp) prepared by reverse transcription-PCR (RT-PCR) using a primer set as described in semiquantitative RT-PCR section or with 32P-labeled β-actin, respectively. Prehybridization, hybridization, and washing were performed as described previously (16). The blots were autoradiographed with intensifying screens at −80°C for 14 d.

Construction of expression vectors. To construct UBE2T expression vectors, the entire coding sequence of UBE2T cDNA was amplified by PCR using KOD-Plus DNA polymerase (Toyobo) with two primers, UBE2T forward (5′-CCGGAGATCTAGGAGACGCTTGCAGTGC-3′) and UBE2T reverse (5′-CCGCTGAGAACATCAGGATGAAATTTCTTT-3′; the italics indicate restriction enzyme sites). The PCR products were inserted into the EcoRI and XhoI sites of pCAGGSnHA expression vector in frame with COOH-terminal HA-tag (pCAGGSn-UBE2T-HA). The constructed to express enzyme-dead mutant in which the 86th cysteine was substituted to alanine (C86A) was generated with the Quick-Change II XL Site-Directed Mutagenesis kit (Stratagene) using the following primers: 5′-CTGGCTGAGAGGAATCGTTGATGTT-3′, 5′-AATCATCAGGACATCTTCCAGC-3′ [the italics indicate the sequence difference from that of wild-type (WT)]. The expression plasmids for full-length BRCA1 (4×Flag-BRCA1) and BRCA1/BRCA1-associated RING domain protein (BARD1; 3×Myc-BARD1) are kind gifts from Dr. Richard Bar (Institute for Cancer Genetics, Columbia University Medical Center, New York, NY; ref. 17). The HA-tagged ubiquitin expression plasmid is a kind gift from Dr. Kohei Miyazono (Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; ref. 18).

Generation of anti-UBE2T–specific polyclonal antibody. Plasmid designed to express a fragment of UBE2T (codons 128–197) with His-tag at its COOH terminus was prepared by pET21a (+) vector (Merck). The recombinant UBE2T peptide was expressed in Escherichia coli, BL21 Codon-Plus (Stratagene), and purified using Ni-NTA resin agarose according to the supplier’s protocol (Qiagen). The purified recombinant UBE2T peptide was inoculated into rabbits (Medical and Biological Laboratories). The immune sera were subsequently purified on affinity affinity columns using Affigel 10 gel, according to supplier’s instructions (Bio-Rad).

Western blot analysis. Cells were lysed with lysis buffer [50mmol/L Tris-HCl (pH 8.0), 0.1% SDS, 150 mmol/L NaCl, 0.5% deoxycholate, 1% NP40, 1 mmol/L Na3VO4, and 50 mmol/L NaF] including 0.1% protease inhibitor cocktail III (Calbiochem). The amount of total protein was estimated by a protein assay kit (Bio-Rad), and then proteins were mixed with SDS sample buffer and boiled before loading at 7.5% to 12% polyacrylamide gel. After electrophoresis, the proteins were blotted onto polyvinylidene difluoride membrane (GE Healthcare), and blocked 4% BlockAce solution (Dainippon Pharmaceutical). The membranes were incubated with anti-BRCA1 (C-20; Santa Cruz), anti-BARD1 (H-300; Santa Cruz), or anti-UBE2T polyclonal antibodies for detection of endogenous BRCA1, BARD1, or UBE2T proteins. The exogenously expressed proteins were detected using anti-Flag (Sigma Aldrich) or anti-Myc polyclonal antibodies (A-14, Santa Cruz), or an anti-HA monoclonal antibody (3F10, Roche). As a nuclear fraction-specific marker, proliferating cell nuclear antigen (PCNA) protein was detected with anti-PCNA monoclonal antibody (PC-10, Santa Cruz). Finally, the membrane was incubated with horseradish peroxidase (HRP)–conjugated secondary antibody for 1 h and protein bands were visualized by enhanced chemiluminescence detection reagents (GE Healthcare).

Immunohistochemical staining analysis. Slides of paraffin-embedded breast cancer tissues and other normal human tissues (lung, heart, liver, and kidney; Biochain) were processed for antigen retrieval by the antigen retrieval solution pH 9 (DAKO Cytomation), and treated with peroxidase blocking regent (DAKO Cytomation) and protein blocking regent (DAKO Cytomation). Tissue sections were incubated with anti-UBE2T polyclonal antibody as a primary antibody (1:300 dilution) followed by HRP-conjugated secondary antibody (DAKO Cytomation). Specific immunostaining was visualized with peroxidase substrate (3, 3′-diaminobenzidine tetrahydrochloride; DAKO liquid DAB chromogen, DAKO Cytomation). Finally, tissue specimens were stained with hematoxylin to discriminate nucleus from cytoplasm.

Immunocytochemical staining and imaging analysis. T47D cells were seeded at the density of 5 × 104 cells in a 35-mm dish with a Col-I-coated glass (Iwaki). To examine expression of endogenous UBE2T and BRCA1 proteins, T47D cells were fixed with PBS (−) containing 4% parafomaldehyde for 15 min, and rendered with a hypotonic lysis solution at 4°C for 15 min, as described previously (19). Subsequently, the cells were covered with 3% BSA in PBS (−) for 1 h at room temperature to block nonspecific hybridization, followed by incubation with affinity-purified rabbit anti-UBE2T antibody and mouse anti-BRCA1 antibody (Ab-1; Calbiochem) at 1:500 and 1:5 dilutions, respectively. After washing with PBS (−), the cells were stained by an Alexa488 and Alexa594-conjugated anti-rabbit and anti-mouse secondary antibodies (Molecular Probe). To detect the HA-tagged UBE2T protein, the cells were incubated with anti-anti-HA (Roche) antibody at 1:1,500 and Alexa488 conjugated anti-rat secondary antibody (Molecular Probe). Nuclei were counter-stained with 4′, 6′-diamidino-2′-phenylindole dihydrochloride (DAPI). Fluorescent images and nuclear intensity of BRCA1 were obtained under a TCS SP2 AOS microscope (Leica). The nuclear signal intensities of BRCA1 were measured from UBE2T-expressing cells (WT and C86A) as well as nontransfected cells.

Extraction of nuclear protein. Cells were harvested and washed twice with cold PBS (−) followed by resuspending with a cytoplasmic lysis buffer [20 mmol/L HEPES (pH 6.7), 20% glycerol, 10 mmol/L NaCl, 1.5 mmol/L MgCl2, 0.2 mmol/L EDTA, 1 mmol/L DTT, 0.1% NP40, 0.1% protease inhibitor cocktail III] on ice for 10 min. After centrifugation at 2,000 rpm for 5 min at 4°C, the nuclei pellets were separated from the supernatant, and incubated with a nuclear lysis buffer (the cytoplasmic lysis buffer including 500 mmol/L of NaCl) on ice for 30 min. The supernatant containing nuclear proteins were collected by centrifugation at 14,000 rpm for 15 min at 4°C.

Gene-silencing effect by small interfering RNA. We had established a vector-based RNA interference expression system using psiU6BFX3.0 siRNA expression vector as described previously (20). The target sequence of synthetic oligonucleotides for siRNA (sense) were as follows; #1i, 5′-CCTCTTCAAGATCGATTTC-3′; #2i, 5′-TGCCAGACGTTGCAACAG-3′; and #iEGFP, 5′-GAAGCAGACGACTTCC-3′. DNA sequences of all constructs were confirmed by DNA sequencing. Human breast cancer cell lines, T47D or BT-20, were plated onto 10-cm dishes (2 × 105 or 1 × 106 cells/dish) and transected with 8 μg each of psiU6BFX3.0-EFEGP (siEGFP) and psiU6RX3.0-UBE2T (#1i and #2i) using FuGENE6 reagent (Roche). Forty-eight hours after transfection, cells were reseeded for RT-PCR (1 × 104 or 5 × 104 cells/10-cm dish), Western blot (1 × 105 or 5 × 105 cells/10-cm dish), colony formation assay (1 × 105 or 5 × 105 cells/10-cm dish), and MITT assay (2 × 105 or 1 × 105 cells per well). We selected the psiU6RX3.0-introduced T47D or BT-20 cells, with medium containing 0.7 or 0.6 mg/mL of neomycin (geneticin, Invitrogen). We changed culture medium twice a week. To evaluate an effect of siRNAs by semiquantitative RT-PCR, total RNAs were extracted from the transfected cells after 7-d incubation with geneticin (Invitrogen). The specific primer sets for semiquantitative RT-PCR were used as described in semiquantitative RT-PCR analysis section.
T47D or BT-20 cells expressing siRNA were grown for 28 d in selective medium containing 0.7 or 0.6 mg/mL of neomycin, and then fixed with 100% methanol for 10 min at room temperature before staining with Giemsa’s solution (Merck) to assess colony formation. To quantify cell viability, MTT assay was performed using the cell counting kit-8 at 7 d after transfection according to the manufacturer’s recommendation (Wako). Absorbance at 570 nm wavelength was measured with a Microplate Reader Bio-Rad. These experiments were performed in triplicate.

We also used siRNA oligonucleotides (Sigma Aldrich Japan) to achieve the high transfection efficiency for further verification of the knockdown effects of \textit{UBE2T}. The sequences targeting each gene were as follows: si\textit{UBE2T}, 5′-AGAGAUGCUUGAUAAUCUA-3′; si\textit{UBE2T}-2, 5′-GAAGGCCAGUCAGCUAGTA-3′; and si\textit{EGFP} (control), 5′-GCAGCACGACUUCUCAAG-3′. HEK293T, T47D, and BT-20 cells (2.5 × 10⁵ cells in 6-cm dish for Western blotting analysis) were transfected with either of the siRNAs using Lipofectamin RNAiMAX in Optimem medium (Invitrogen) according to the instructions of the manufacturer. Forty-eight hours after the transfection, we examined the knockdown effect by Western blot and semi-quantitative RT-PCR analyses.

Generation of \textit{UBE2T} recombinant protein. The entire coding sequence of \textit{UBE2T} was subcloned into the pGEX-6P-1 vector (GE Healthcare). The glutathione S-transferase (GST)-\textit{UBE2T} recombinant protein was expressed in \textit{E. coli} strain BL21 codon-plus RIL competent cells (Stratagene). Purification of the recombinant proteins was performed using Glutathione Sepharose 4B beads (GE Healthcare) under the native condition according to the supplier’s instructions.

In vitro binding assay. HEK293T cells (3 × 10⁵ cells in a 15-cm dish) were transfected with plasmid constructs encoding Flag-tagged BRCA1 and Myc-tagged BARD1. After treatment with 10 μmol/L of MG132 for 12 h, the cell lysates were immunoprecipitated using anti-Flag monoclonal antibody (Sigma-Aldrich) and rec-Protein G Sepharose 4B (Invitrogen), as described previously (21). Finally, the protein complex of BRCA1/BARD1 was isolated by incubation with 300 μL of elution buffer [50 mmol/L Tris-HCl (pH 8.0), 150 mmol/L NaCl, and 0.1 mol/L DTT] including 3% of Flag peptide (Sigma Aldrich) at 4°C for overnight. The eluted BRCA1/BARD1 complex was incubated with 8 nmol of the GST-fused UBE2T proteins (∼400 μg) at 4°C for 3 h. After washing by 0.5% NP40 buffer [50 mmol/L Tris-HCl (pH 8.0), 150 mmol/L NaCl, 0.5% NP40, 0.05% Triton X-100] thrice, the beads were boiled in 30 μL of Laemmli sample buffer for 5 min.

In vivo ubiquitination of BRCA1. HEK293T cells were transiently co-transfected with four plasmid constructs, each encoding Flag-tagged BRCA1, Myc-tagged BARD1, HA-tagged \textit{UBE2T}, or HA-tagged ubiquitin. After treatment with 10 μmol/L of MG132 for 12 h, the cell lysates were immunoprecipitated using anti-Flag monoclonal antibody to isolate exogenously expressed BRCA1 protein, as described above. After SDS-PAGE, the membrane was incubated with anti-HA (Roche) or anti-ubiquitin (P4D1; Santa Cruz) monoclonal antibodies.
Statistical analysis. Statistical significance was calculated by Student’s t test, using Statview 5.0 software (SAS Institute). A difference of \(P < 0.05 \) was considered to be statistically significant.

Results

Upregulation of UBE2T in breast cancers. We verified the elevated UBE2T expression in 7 of 12 microdissected breast cancer cases compared with normal ductal cells by semiquantitative RT-PCR analysis (Fig. 1A). Subsequent Northern blot analysis using a UBE2T cDNA fragment as a probe detected an \(\sim 1.3 \)-kb UBE2T transcript at a very high level in all of 11 breast cancer cell lines examined, whereas its expression was hardly detectable in the normal breast, lung, heart, liver, and kidney (Fig. 1B). Additionally, multiple tissue Northern blot analysis revealed the hardly detectable level of UBE2T expression in any of normal human tissues examined except skeletal muscle and testis with a very low level of expression (Fig. 1C), indicating a minimum risk of adverse reactions by targeting this molecule. We subsequently developed a polyclonal antibody against residues 128-197 of UBE2T, a segment that bears no homology to other human proteins (see Materials and Methods). Western blot analysis using this antibody detected \(\sim 32 \) kDa and 25 kDa of the endogenous UBE2T proteins in all of eight breast cancer cell lines examined, but its expression was hardly detectable in human mammalian epithelial cells (Fig. 1D, left). To clarify a possible modification of the UBE2T protein, we performed an immunoprecipitation experiment using anti-UBE2T antibody, and subsequent Western blot analyses revealed that the upper band of \(\sim 32 \) kDa was a monoubiquitin conjugated form of UBE2T protein (Fig. 1D, right). Furthermore, immunohistochemical staining with anti-UBE2T antibody detected the protein in the nucleus of three different histologic subtypes of breast cancer, papillotubular, solid-tubular, and scirrhus carcinomas. On the other hand, no staining of UBE2T was observed in any of normal mammary ductal cells (Fig. 2A) or in any of lung, heart, liver, or kidney tissues in concordance with the results of Northern blot analyses (Fig. 2B).

Knockdown effects of UBE2T on breast cancer cell growth. To assess whether UBE2T is essential for growth or survival of breast cancer cells, we knocked down the expression of the endogenous UBE2T in breast cancer cell lines, T47D and BT-20 that abundantly expressed UBE2T, by means of the mammalian vector-based RNA interference (RNAi) technique. Semiquantitative RT-PCR and Western blot analyses showed that introduction of UBE2T-specific siRNA (si#2) significantly reduced its expression at both transcriptional and protein levels, compared with psi6BX-EGFP (siEGFP) construct as a control, whereas another one (si#1) achieved a moderate knockdown effect (Fig. 3A and C). As concordant to the knockdown effects, colony formation and MTT assays (Fig. 3B and D) revealed that treatment with si#2 significantly suppressed growth of T47D and BT-20 cells (MTT assay; \(P < 0.0001 \), unpaired t test); si#1 revealed a moderate effect on the growth suppression. Taken together, these findings suggested that UBE2T was likely to play an important role of breast cancer cell growth.

UBE2T interacts with an E3 ubiquitin ligase, BRCA1. To further understand the biological function of UBE2T as an E2-ubiquitin conjugating enzyme, we attempted to find a potential E3 ubiquitin ligase interacting with UBE2T. Because BRCA1, an E3 ubiquitin ligase, is known to attribute to mammary carcinogenesis (21–23), we examined a possible interaction of UBE2T with BRCA1 by in vitro binding assay. We cotransfected Flag-tagged full-length BRCA1 and Myc-tagged BARD1 constructs into HEK293T cells, and the eluted protein complex was incubated with GST-tagged recombinant UBE2T protein (GST-UBE2T) in vitro. As shown in Fig. 4A, the BRCA1/BARD1 complex was pulled down with GST-UBE2T. Furthermore, we showed that the endogenous...
BRCA1 protein was colocalized with endogenous UBE2T protein in the nucleus of T47D cells (Fig. 4B). BRCA1 protein was clearly observed in the nucleus under the treatment with MG132 (Fig. 4B). These findings suggest a possibility that UBE2T might interact with the BRCA1/BARD1 complex in breast cancer cells and cause the degradation of BRCA1 through a proteasome-dependent proteolysis pathway.

It has been reported that the BRCA1/BARD1 complex catalyzes the polyubiquitination of nucleophosmin/B23 protein (24) and monoubiquitination of estrogen receptor (25). However, the degradation of BRCA1 protein by its autopolyubiquitination has not yet been elucidated. Therefore, we hypothesized that BRCA1 in the BRCA1/BARD1 complex might be polyubiquitinated through the interaction with UBE2T protein. To examine whether UBE2T enhances ubiquitination of BRCA1 in vivo, we cotransfected plasmids encoding full-length of Flag-tagged BRCA1, Myc-tagged BARD1, HA-tagged UBE2T, and HA-tagged ubiquitin proteins into HEK293T cells. After immunoprecipitation with anti-Flag antibody, the polyubiquitination of BRCA1/BARD1 complex was assessed by immunoblotting with anti-HA or anti-ubiquitin antibodies. Consequently, we found that the BRCA1 protein was ubiquitinated under the presence of UBE2T, but BARD1 was not (Fig. 5A). Additionally, a plasmid encoding UBE2T mutant (UBE2T-C86A), which was reported to lack E2 ubiquitin–conjugating enzyme activity (13), was also transfected and compared with WT of UBE2T (Fig. 5B). The results showed that the UBE2T-C86A abolished ubiquitination of BRCA1 protein, implying the crucial role of UBE2T as an E2 enzyme for polyubiquitination of BRCA1 protein (Fig. 5C).

UBE2T downregulates BRCA1 in breast cancer cells. Although downregulation of BRCA1 protein in sporadic breast cancers was known to be caused by its genetic mutation, epigenetic silencing, or haploinsufficiency causes (26, 27), other mechanisms to cause it are also suspected. Therefore, we assumed that BRCA1 protein might be downregulated through its polyubiquitination under the overexpression of UBE2T in breast cancer cells. Hence, we first examined the expression levels of endogenous BRCA1 and UBE2T proteins in various kinds of cell line, and found that a human mammary epithelial cell line (MCF10A) had high expression of the BRCA1 protein in the absence of UBE2T (Fig. 6A). On the other hand, the BRCA1 protein was hardly detectable in the breast cancer cells, BT20 and T47D, which had high expression of UBE2T protein (Fig. 6A). Then, we examined the expression level of BRCA1 protein when the UBE2T expression was knocked down by siRNA. Upregulation of BRCA1 protein, but not the BRCA1 transcript (Supplementary Fig. S1), was clearly observed by knocking down of UBE2T protein in breast cancer cells, T47D and BT-20, as well as HEK293T cells (Fig. 6B). These results were reproducible when we used another siRNA duplex against UBE2T transcript (Supplementary Fig. S2). Additionally, we transfected HA-tagged WT-UBE2T or C86A-UBE2T constructs into MCF10A cells to assess their effect on the amount of the endogenous BRCA1 protein. Forty-eight hours after the transfection with either of the HA-UBE2T plasmids, we analyzed by immunocytochemistry using anti-HA and anti-BRCA1 antibodies, and found that introduction of HA-WT-UBE2T protein diminished the nuclear staining of BRCA1 (yellow arrows), whereas HA-UBE2T-C86A mutant did not (white arrows; Fig. 6C). These findings suggested that overexpression of UBE2T protein resulted in the downregulation of BRCA1 protein. Additional imaging analysis revealed that the nuclear intensities of BRCA1 protein was significantly decreased in the

![Figure 3](image_url)
cells transfected with WT-UBE2T, compared with those with UBE2T-C86A or nontransfected parental cells (Supplementary Fig. S3; Fig. 6D). Taken together, these results suggest a possibility that overexpression of UBE2T might enhance polyubiquitination and degradation of BRCA1 protein in breast cancer cells.

Discussion
Cumulative evidences have suggested that the ubiquitin-proteasome system, which consists of ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin-ligase (E3), and the 26S proteasome, play critical roles in controlling the function of various cellular proteins including critical regulators of signal transduction, cell proliferation, and apoptosis for tumorigenesis (28–32). Therefore, several cancer-therapeutic inhibitors targeting the ubiquitin-proteasome system have been developed: PYR-41 (a cell permeable inhibitor of the ubiquitin E1, UBE1), HLI98 (a small compound inhibitor which block Hdm2-mediated p33 ubiquitination), and bortezomib (a dipeptide boronate inhibitor of 26S proteasome; ref. 33). However, because PYR-41 or bortezomib are distinct from target-specific inhibition, these inhibitors are thought to block whole cellular system mediated by ubiquitin pathways (33, 34). In addition, the development of E3 ligase inhibitors such as HLI98 has been challenged by structural similarities among E3 enzymes that are present in >600 proteins in human cells, consequently resulting in off target effect (33).

In mammalian cells, >40 putative E2 enzymes are estimated to work with many different E3 ligases to promote ubiquitination of target proteins (33). It has been reported that some E2 ubiquitin–conjugating enzymes are also associated with the tumorigenesis (35–37). Moreover, the cycline-selective ubiquitin conjugase murine E2-C was reported to be upregulated in the NIH3T3 cells transformed by EWS/FLI1 fusion gene, which acts as an oncogene in Ewing’s sarcoma (32). These facts imply that E2 ubiquitin–conjugating enzymes are alternative targets for cancer therapy. In this study, our data also provide significant evidences that an E2 ubiquitin–conjugating enzyme, UBE2T is exclusively upregulated in breast cancers (Figs. 1 and 2), and plays indispensable roles in breast cancer cell proliferation (Fig. 3). In addition, we have reported upregulation of UBE2T

![Figure 4.](image-url) UBE2T interacts with BRCA1. A, in vitro binding assay. After incubation with the GST-fused proteins (8 nmol), the protein complex pulled down with GST-UBE2T was examined by Western blot analysis. B, colocalization of UBE2T (green) and BRCA1 proteins (red). The nuclei were counter-stained with DAPI (blue). To block the proteasomal protein degradation, the cells were treated with 10 μmol/L of MG132 for 12 h before staining (bottom).
in other types of cancer including bladder, lung, and prostate cancers (38–40). Hence, these findings suggest UBE2T as an ideal therapeutic target and may enable us to develop an anticancer agent with fewer adverse effects.

Accumulating reports indicated that the inactivation of BRCA1, breast cancer susceptibility gene, in sporadic breast cancers is due to its genetic mutation, epigenetic silencing, or haploinsufficiency (25, 26). This protein it encodes has been implicated in a number of biological processes to prevent tumor progression (41). Consequently, downregulation of BRCA1 by other mechanisms is thought to cause sporadic breast cancers (26). Our findings in this study have shown for the first time that UBE2T overexpression possibly cause degradation of BRCA1 via autoubiquitination and proapoptotic degradation such as other E3 ubiquitin ligases, Siah2, and Mdm2 (42) through its interaction with BRCA1/BARD1 (Figs. 4 and 5). This assumption was further supported by the results of UBE2T depletion in breast cancer cell lines (Fig. 6B) as well as UBE2T overexpression in normal breast epithelial cells (Fig. 6C and D). Furthermore, we found that BRCA1 expression in MCF10A cells is much higher than those in breast cancer cells, suggesting the reversed correlation between UBE2T and BRCA1 expressions (Fig. 6A). These results is well correlated with the previous findings that downregulation of BRCA1 impairs differentiation but enhances proliferation of MCF10A cells (43). This fact suggests that overexpression of UBE2T may contribute to breast carcinogenesis throughout downregulation of BRCA1. In addition, knocking down of UBE2T protein induced upregulation of BRCA1 protein in breast cancer cells, whereas its overexpression caused the decrease of the BRCA1 protein (Fig. 6C and D), suggesting that the E2 enzymatic activity of UBE2T protein is important for BRCA1 downregulation in breast cancer cells although there is a possibility that BRCA1 might be served as a substrate rather than E3 ligase. Moreover, considering the number of E3 than E2 enzymes, each E2 is likely to interact with multiple E3 ligases (33). Therefore, we are unable to exclude a possibility that knocking down of UBE2T might influence simultaneously on the other Ub-pathway, for example, the FANC pathway constituting the DNA damage repair network (13), resulting in growth suppression of breast cancer cells synergistically with BRCA1 downregulation. Collectively, we assume that the screening of compounds to inhibit the ubiquitin-conjugating enzyme activity of UBE2T may be able to develop an anticancer agent that suppresses breast cancer cell growth by prevention of BRCA1 degradation.

Although several mechanisms of BRCA1 downregulation have been reported (26, 27), the mechanism that BRCA1 can be

![Figure 5](cancerres.aacrjournals.org)
inactivated by proteasomal degradation pathway shown above was not described previously. Our data imply a critical role of UBE2T in the degradation of BRCA1 protein in breast cancer cells, and that the inhibitors for enzymatic activity of UBE2T or their UBE2T-BRCA1/BARD1 interaction would be valuable targets to develop therapeutic modalities against breast cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
9. Lin ML, Park JH, Nishidate T, Nakamura Y, Katagiri T. Involvement of maternal embryonic leucine zipper...

Ubiquitination and Downregulation of BRCA1 by Ubiquitin-Conjugating Enzyme E2T Overexpression in Human Breast Cancer Cells

Tomomi Ueki, Jae-Hyun Park, Toshihiko Nishidate, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-1809

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2009/11/03/69.22.8752.DC1
http://cancerres.aacrjournals.org/content/suppl/2009/11/03/0008-5472.CAN-09-1809.DC1

Cited articles
This article cites 42 articles, 20 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/22/8752.full#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/69/22/8752.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.