Functional Analysis of 11q13.5 Amplicon Identifies Rsf-1 (HBXAP) as a Gene Involved in Paclitaxel Resistance in Ovarian Cancer

Jung Hye Choi,1,2 Jim Jinn-Chyuan Sheu,3 Bin Guan,1 Natini Jinawath,1 Paul Markowski,1 Tian-Li Wang,1 and Ie-Ming Shih1

1Departments of Pathology, Oncology, and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland; 2Department of Oriental Pharmacy, Kyung Hee University, Seoul, Korea; and 3Human Genetic Center, China Medical University Hospital and Graduate Institute of Chinese Medical Science, China Medical University, Taichung City, Taiwan

Abstract

The chromosome 11q13.5 locus is frequently amplified in several types of human cancer. We have previously shown that 11q13.5 amplification was associated with significantly shorter overall survival in ovarian cancer patients, but the molecular mechanisms of how amplification of this locus contributes to disease aggressiveness remain unclear. Because ovarian cancer mortality is primarily related to resistance of chemotherapeutic agents, we screened the top six candidate genes within this amplicon for their contribution to drug resistance. Rsf-1 (also known as HBXAP) was found to be the only gene in which gene knockdown sensitized tumor cells to paclitaxel resistance. Rsf-1 has been known to interact with hSNF2H to form an ISWI chromatin remodeling complex. We found that Rsf-1 was up-regulated in paclitaxel-resistant ovarian cancer cell lines, and Rsf-1 immunoreactivity in primary ovarian carcinoma tissues correlated with in vitro paclitaxel resistance. Ectopic expression of Rsf-1 significantly enhanced paclitaxel resistance in ovarian cancer cells. Down-regulation of hSNF2H or disruption of hSNF2H and Rsf-1 interaction further characterized the molecular mechanism of how Rsf-1 contributes to paclitaxel resistance, and the formation of the Rsf-1/hSNF2H complex is required for inducing this phenotype. [Cancer Res 2009;69(4):1407–15]

Introduction

Gene amplification is a common mechanism underlying oncogenic activation in human cancer (1, 2). Amplification of MYC family genes, EGFR, ERBB2 (Her2/neu), CCND1 (cyclin D1), CCNE (cyclin E), and FGFR, has been reported in a variety of human neoplastic diseases. Amplifications in several of the oncogenes are associated with worse clinical outcome and are amenable to specific targeted therapy (3). In an effort to identify amplified chromosomal regions that may harbor novel cancer-associated genes, we have applied both digital karyotyping (4) and single nucleotide polymorphism arrays (5) to analyze DNA copy number alterations in purified high-grade ovarian serous carcinoma

ma, one of the most aggressive type of neoplastic diseases in women. Based on previous studies (6, 7), we found that the most common amplicons in high-grade ovarian serous carcinomas were those harboring CCNE (cyclin E1), Notch3, AKT2, and a discrete chromosomal region at 11q13.5 that contained several cancer-associated genes including p21/cdc42/Rad-activated kinase (PAK1; refs. 8, 9), Gab2 (10), and Rsf-1 (HBXAP; ref. 6). Fluorescence in situ hybridization analysis showed 11q13.5 amplification in 13% to 15% of high-grade ovarian serous carcinomas (6, 7). 11q13.5 amplification was significantly associated with worse clinical outcome in patients with high-grade serous carcinomas in independent retrospective cohorts (6, 11). Besides ovarian cancer, this amplicon is frequently detected in several human malignancies including breast, oral, esophageal, and head and neck carcinomas (12). These findings suggest that gene(s) within this amplicon may contribute to clinical aggressiveness in the neoplasms with 11q13.5 amplification.

The clinical outcome in ovarian cancer patients depends on several factors, and the development of drug resistance is one of the main causes that account for the poor prognosis in patients who suffer from this disease. To identify the potential gene(s) within the 11q13.5 amplicon that may play a mechanistic role in developing drug resistance in high-grade ovarian serous carcinomas, we first selected the top six genes within this amplicon that showed the most significant correlation between DNA and RNA copy number from a total of 14 genes within the amplicon. After knockdown of each gene using RNA interference, we determined their sensitivity to paclitaxel and carboplatin, which are routinely used in treating ovarian cancer patients after cytoreduction surgery. We found that Rsf-1 knockdown significantly decreased the IC50 of paclitaxel in ovarian cancer cells. In this study, we further characterized the molecular mechanism of how Rsf-1 expression contributed to the development of drug resistance.

Materials and Methods

Cell lines and culture conditions. Ovarian cancer cells including OVCAR3, SKOV3, and A2780 cells were purchased from American Type Culture Collection, and MPSC1 was previously established by us (13). Paclitaxel- and carboplatin-resistant cell lines were generated by selecting the viable MPSC1, A2780, OVCAR3, and SKOV3 cells 3 mo after exposure to paclitaxel (0.25–0.5 μmol/L) or carboplatin (0.5–2.0 μg/mL). The resistant cell clones from each cell line were maintained in culture medium containing paclitaxel (0.25 μmol/L for SKOV3 and 0.5 μmol/L for A2780, OVCAR3, and MPSC1) or carboplatin (2.0 μg/mL for SKOV3 and MPSC1, 1.0 μg/mL for A2780, and 0.5 μg/mL for OVCAR3). All the cell lines used in this study were cultured in RPMI 1640 containing 5% fetal bovine serum.

Selection of genes within the 11q13.5 amplicon for functional studies. As reported in our previous study (6), 10 high-grade ovarian serous carcinomas with 11q13.5 amplification and 53 control specimens without...
such amplification were analyzed to assess mRNA levels in all the genes within the minimal amplicon using quantitative real-time PCR. The control group included 1 freshly brushed ovarian surface epithelium (kind gift from Dr. M. Birrer, Harvard University, Cambridge, MA), 6 benign cystadenomas, 10 serous borderline tumors, and 36 high-grade serous carcinomas that did not harbor 11q13.5 amplification. In our previous report (6), we performed quantitative real-time PCR for all the genes except NARS2 because this gene has only recently been updated to the genome assembly database. Thus, the NARS2 expression level was not used in this study using the same method as used for other genes (6). The Mann-Whitney (rank sum) test was used to determine the significance in individual gene expression between 11q13.5-amplified and nonamplified specimens.

Rsf-1 inducible cell clones. The full-length Rsf-1 gene tagged with a V5 epitope tag at the COOH-terminal was cloned into the Tet-off expression vector, pTRE-hygro (Clontech). Parental SKOV3 cells were first transfected with a tetracycline-controlled transactivator (tTA) expression vector, and the tTA stable clones were selected by G418 (300 μg/mL). The inducible Rsf-1 vector was then introduced into the SKOV3-tTA cells, and the stable transfectants were selected by 150 μg/mL hygromycin and maintained in the culture medium containing 300 μg/mL G418, 150 μg/mL hygromycin, and 2 μg/mL doxycycline. In this study, we selected two clones of Rsf-1 inducible cells and the pooled control cells with the tTA-vector only construct. To determine the efficiency of Rsf-1 induction in the Tet-off system, we performed Western blots to analyze Rsf-1 protein expression at different time points after the gene was turned on using doxycycline-free medium.

Immunohistochemistry. A mouse monoclonal anti–Rsf-1 antibody (clone 5H2/E4) was purchased from Upstate and was used in immunohistochemistry at a dilution of 1:20,000. The specificity of the antibody has been validated in previous reports (6, 14). An EnVision+ System peroxidase kit (DAKO) was used for staining following the manufacturer’s instruction. Immunohistochemical staining was carried out on tissue microarrays containing 99 high-grade ovarian serous carcinoma tissues for which their drug resistance status was available. Immunointensity for Rsf-1 was scored as low (<2) or high (>2). This criterion was used because of a significant correlation between immunointensity (score >2) and Rsf-1 amplification (6).

Real-time reverse transcription-PCR. Relative gene expression was measured by quantitative real-time PCR using an iCycler (Bio-Rad), and threshold cycle numbers (Ct) were obtained using the iCycler Optical system software. PCR primers were designed using the Primer 3 program. The primers for NARS2 real-time PCR were 5′-GACTCTGGAGG-GAGCTG GAGAAC-3′ (forward) and 5′-AAGTGCCAAACGAAT-GAAC-3′ (reverse). The primers for cysteine-rich protein 61 (hSNF2H) were 5′-CTCCTGTTTGGGATGGA-3′ (forward) and 5′-GACCA CAGAGT-3′ (reverse). The primers for osteopontin were 5′-TGGAGATTTTG AAAAGGTA-3′ (forward) and 5′-ATG GTGCATATGCAGATGTTGC-3′ (reverse). The other primers including those for Rsf-1, hSNF2H, and β-amyloid precursor protein (APP) genes were shown in previous reports (6, 15). The mean Ct of the gene of interest was calculated from replicate measurements and normalized with the mean Ct of a control gene, APP, for which expression is relatively constant among the SAGE libraries analyzed (16).

Gene knockdown using small interfering RNA and small hairpin RNA. For functional screening of the top six genes, we purchased two small hairpin RNAs (shRNA) for each gene from Sigma, hSNF2H-specific small interfering RNAs (siRNA; UUAUAAGUGGCCACACA and UUAUAAUCC-CAGUAAUCCA) and control siRNA that targeted the Luciferase gene (GAUUAACUUUGCUUAGGCUACUUCGC) were synthesized by the Integrated DNA Technologies. Cells were transfected with shRNA or siRNA at a final concentration of 2 μg or 200 nmol/L, respectively, using Lipofectamine (Invitrogen). Six hours after transfection, the cells were washed and harvested the next day for cell growth and drug resistance assays. To enhance the silencing effect of Rsf-1 transcripts in the follow-up experiments, we used lentivirus carrying the Rsf-1 shRNA sequence templates (CGGGCGAATTCGAAACGGCCGAATTCCAGTAACGCCAAGCG) and (CGGGCGAATTCGAAACGGCCGAATTCCAGTAACGCCAAGCG), which were inserted into the lentiviral plasmid (pLK0.1-puro).

Cell growth and drug resistance assay. Cells were grown in 96-well plates at a density of 3,000 per well. Cell number was measured by the incorporation of SYBR green I nuclear acid gel stain (Molecular Probes) using a fluorescence microplate reader (Fluostar from BMG). Data were determined from four replicates and were expressed as the fold increase of the control group. IC50 was defined as the concentration that results in a 50% decreased in the number of cells as compared with that of the control cultures in the absence of the drug.

GeneChip analysis for transcript expression. RNA was prepared using a Quagen RNAeasy kit from Rsf-1 inducible SKOV3 cells (15) in different experimental conditions. Affymetrix U133 Plus 2 arrays were used to analyze gene expression from Rsf-1–induced SKOV3 cells (48 h after induction), mock-induced SKOV3 cells (48 h after mock induction), and vector-only control SKOV3 cells. Probe labeling, hybridization, and scanning for the arrays were done using the standard protocols at the Johns Hopkins Microarray Core. The dChip program was used to analyze the array data to select the differentially expressed genes that were overexpressed in the Rsf-1–induced group as compared with the mean of control groups including mock-induced and vector-only control SKOV3 cells. The top up-regulated and down-regulated genes with corresponding expression values that were >2.5-fold of increase or decrease as compared with the control were input into the Ingenuity Pathways Analysis System. These genes, called focus genes, were overlaid onto a global molecular network developed from information updated in the Ingenuity Pathways Knowledge Base. Networks of these focus genes were then algorithmically generated based on their connectivity.

Drug resistance clinical assay. The assay was done in Oncotech, Inc., using published protocol. Briefly, a small piece of fresh tumor tissue was cultured in agar-based cell culture system, and radioactive thymidine incorporation was used for measuring cell growth in the presence of different chemotherapeutic drugs. The level of drug resistance was quantified and was classified into three groups: (a) low if tumor cells were inhibited by the tested agent and showed less than median growth; (b) intermediate if there was moderate tumor growth; and (c) extreme if tumor cell growth was virtually unaffected by the chemotherapeutic agent. As defined in previous reports, extreme drug resistance was interpreted as drug resistant and intermediate and low drug resistance were interpreted as drug sensitive (1, 11).

Results

Selection of genes within the 11q13.5 amplicon for functional characterization. Using digital karyotyping to detect genome-wide DNA copy number alterations in high-grade ovarian serous carcinomas, we identified a minimal amplicon in the 11q13.5 chromosomal region (6). According to the UCSC Human Genome Browser Gateway in March 2006, there were a total of 14

6. http://genome.ucsc.edu/cgi-bin/hgGateway
genes in which their complete coding sequences were located within this minimal amplicon. To identify the candidate cancer-driving genes from the 14 genes, we applied an approach based on the rationale that a tumor-driving gene, if amplified, is almost always overexpressed whereas the coamplified “passenger” genes that are not involved in tumor development may or may not be so (17). Based on the Mann-Whitney (rank sum) test, we selected six genes showing the highest correlation between DNA and transcript copy number ($P < 0.001$). They included Rsf-1 (HBXAP; $P < 0.0001$), INTS4 ($P = 0.0001$), CLNS1A ($P = 0.0001$), ALG8 ($P = 0.0001$), GAB2 ($P = 0.0001$), and PAK1 ($P = 0.0002$). The P values for NDUFC2, C11orf67, and USP35 were 0.0015, 0.012, and 0.022, respectively.

There was no statistical significance for the remaining genes including GPPD4, AQP11, KCTD14, THRSP, and NARS2. Therefore, we selected Rsf-1 (HBXAP), INTS4, CLNS1A, ALG8, GAB2, and PAK1 for functional characterization.

Biological effects of gene knockdown of the six candidate genes. To determine the biological roles of those six genes in sustaining cell growth and in conferring drug resistance, we transfected OVCAR3 ovarian cancer cells, known to harbor a high level of 11q13.5 amplification, with shRNAs to knockdown each of the six genes. Two independent shRNAs with satisfied knockdown efficiency were used for each gene. Cell number of OVCAR3 cells was determined 1 day and 4 days after shRNA transfection.
Supplementary Fig. S1 showed that cell number was most remarkably reduced in the cells transfected with Rsf-1 shRNAs as compared with PAK1, Gab2, ALG8, INTS4, and CLNS1A shRNAs. To determine if these six genes are potentially involved in drug resistance, we measured the IC₅₀ of paclitaxel and carboplatin in OVCAR3 cells after shRNA transfection. Of note, the cell numbers in drug sensitivity assays were normalized to those in shRNA-treated OVCAR3 cells without drug treatment. For paclitaxel, we found that a significant decrease in the IC₅₀ occurred only in Rsf-1 gene knockdown but not in other genes (Fig. 1A). For carboplatin, none of the shRNAs that target these six genes affected the IC₅₀ (Fig. 1B). Therefore, we selected Rsf-1 to further study its role in enhancing paclitaxel resistance in ovarian cancer cells.

Correlation of Rsf-1 protein expression and drug resistance in vitro and in vivo. To determine whether Rsf-1 gene up-regulation was correlated with paclitaxel resistance, we performed Western blot on the ovarian cancer cell lines including MPSC1, A2780, and SKOV3, and performed immunohistochemistry on clinical tumor specimens. First, we established three paclitaxel-resistant ovarian cancer cell lines, SKOV3TR, A2780TR, and MPSC1TR, and three carboplatin-resistant ovarian cancer cell lines, SKOV3CR, A2780CR, and MPSC1CR, by treating the parental cells with increasing concentrations of paclitaxel and carboplatin. We then compared Rsf-1 expression between drug-resistant and parental cells. As shown in Fig. 2, Rsf-1 protein levels were significantly higher in paclitaxel-resistant cells than their parental controls in all three cell lines. Like in OVCAR3 cells, the cell number was decreased in SKOV3TR cells after treatment with Rsf-1 shRNAs (P < 0.01; Supplementary Fig. S2). Next, we determined whether Rsf-1 expression correlated with paclitaxel resistance in ovarian cancer cells isolated from the primary tumors in patients with stage III or IV ovarian cancer. Based on immunohistochemistry, we were able to show that Rsf-1 immunointensity was significantly associated with increased paclitaxel resistance (Table 1). In contrast, there was no statistically significant correlation between Rsf-1 expression level and resistance to carboplatin. Rsf-1 immunoreactivity in representative specimens was shown in Supplementary Fig. S3.

Rsf-1 expression enhances paclitaxel resistance in ovarian cancer cells. To show the causal role of Rsf-1 in developing drug resistance, we used Tet-off Rsf-1 inducible SKOV3 ovarian cancer cells, which expressed a very low level of Rsf-1 in the parental and noninduced cells (15). Western blot analysis showed that Rsf-1 protein was detected 6 and 12 hours after induction in two independent clones (Fig. 3A). Rsf-1 expression did not have a significant effect on cellular proliferation (Supplementary Fig. S4); however, both clone 1 and clone 2 after Rsf-1 induction became more resistant to paclitaxel than the control clones without Rsf-1 induction (Fig. 3B). The IC₅₀ of paclitaxel in noninduced (doxycycline on) clone 1 and clone 2 were 0.15 and 0.11 µmol/L, respectively, whereas the IC₅₀ of paclitaxel in clone 1 and clone 2 after Rsf-1 induction (doxycycline off) were 2.8 and 7.2 µmol/L, respectively. In contrast, the control cells had a similar IC₅₀ in both doxycycline-on and doxycycline-off conditions. Rsf-1 induction did not confer carboplatin resistance as reflected by similar IC₅₀ curves between Rsf-1–induced and noninduced cells (Fig. 3C).

The role of hSNF2H in Rsf-1–dependent paclitaxel resistance. It has been known that Rsf-1 interacts with hSNF2H to form an ISWI chromatin remodeling complex in which Rsf-1 serves as a histone chaperone and hSNF2H as an ATPase (18–21). Here, we determined if hSNF2H was required for Rsf-1 to confer paclitaxel resistance. As shown in Fig. 4A, gene knockdown of hSNF2H reduced its expression at both mRNA and protein levels in SKOV3 cells. Reducing hSNF2H expression had only a minimal effect on cell proliferation in the control SKOV3 cell line (Supplementary Fig. S5). Next, we measured the IC₅₀ of paclitaxel in Rsf-1–inducible SKOV3 cells after transfection with hSNF2H siRNA in both Rsf-1–induced and noninduced conditions. We found that hSNF2H siRNA significantly decreased the IC₅₀ of paclitaxel in Rsf-1–expressing SKOV3 cells. In contrast, hSNF2H siRNA had only a modest effect on the IC₅₀ in cells without Rsf-1 induction (Fig. 4B). Next, we further tested if hSNF2H knockdown or expression of an Rsf-1 dominant

<table>
<thead>
<tr>
<th>Staining score ≤2</th>
<th>Staining score >2</th>
<th>χ² test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbolatin sensitive</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>Carbolatin resistant</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>Paclitaxel sensitive</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Paclitaxel resistant</td>
<td>20</td>
<td>26</td>
</tr>
</tbody>
</table>

Figure 2. Enhanced expression of Rsf-1 protein in paclitaxel-resistant ovarian cancer cells. Western blot analysis shows that Rsf-1 protein levels are significantly higher in the paclitaxel-resistant ovarian cancer cell lines as compared with the parental and carboplatin-resistant cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control.
negative protein, Rsf-D4 (15), could sensitize OVCAR3 cells with abundant endogenous Rsf-1 expression to paclitaxel. We found that either hSNF2H siRNA or Rsf-D4 reduced the cell proliferation to 81% and 70% of the controls, respectively. Interestingly, both approaches also enhanced the paclitaxel sensitivity in OVCAR3 cells (Fig. 4C).

The above results indicated an important role of hSNF2H in Rsf-1–mediated paclitaxel resistance.

Genes regulated by Rsf-1 expression. To further identify the Rsf-1–regulated genes and pathways that were potentially involved in drug resistance, we performed global transcript profiling to compare gene expression in Rsf-1–induced and control SKOV3 cells (mock induced and vector only controls) using the Affymetrix U133-Plus 2 microarrays. As compared with the Rsf-1 turn-off (mock induced) group and the vector-only control, Rsf-1–induced cells showed up-regulation and down-regulation in 62 genes with at least 2.5-fold increase or decrease as compared with the controls (Supplementary Table S1). To identify the hidden connections among the regulated genes, we performed a network analysis of the top 25 up-regulated and 37 down-regulated genes using the Ingenuity Pathways Analysis Systems. Applying this Ingenuity Network filter, four functional networks could be constituted with significant Ingenuity scores. The network with the highest score was related to the Tissue Morphology, Cellular Assembly and Organization System (Fig. 5A). To identify the hidden connections among the regulated genes, we performed a network analysis of the top 25 up-regulated and 37 down-regulated genes using the Ingenuity Pathways Analysis Systems. Applying this Ingenuity Network filter, four functional networks could be constituted with significant Ingenuity scores. The network with the highest score was related to the Tissue Morphology, Cellular Assembly and Organization System (Fig. 5A). To identify the hidden connections among the regulated genes, we performed a network analysis of the top 25 up-regulated and 37 down-regulated genes using the Ingenuity Pathways Analysis Systems. Applying this Ingenuity Network filter, four functional networks could be constituted with significant Ingenuity scores. The network with the highest score was related to the Tissue Morphology, Cellular Assembly and Organization System (Fig. 5A). To identify the hidden connections among the regulated genes, we performed a network analysis of the top 25 up-regulated and 37 down-regulated genes using the Ingenuity Pathways Analysis Systems. Applying this Ingenuity Network filter, four functional networks could be constituted with significant Ingenuity scores. The network with the highest score was related to the Tissue Morphology, Cellular Assembly and Organization System (Fig. 5A). To identify the hidden connections among the regulated genes, we performed a network analysis of the top 25 up-regulated and 37 down-regulated genes using the Ingenuity Pathways Analysis Systems. Applying this Ingenuity Network filter, four functional networks could be constituted with significant Ingenuity scores. The network with the highest score was related to the Tissue Morphology, Cellular Assembly and Organization System (Fig. 5A). To identify the hidden connections among the regulated genes, we performed a network analysis of the top 25 up-regulated and 37 down-regulated genes using the Ingenuity Pathways Analysis Systems. Applying this Ingenuity Network filter, four functional networks could be constituted with significant Ingenuity scores. The network with the highest score was related to the Tissue Morphology, Cellular Assembly and Organization System (Fig. 5A). To identify the hidden connections among the regulated genes, we performed a network analysis of the top 25 up-regulated and 37 down-regulated genes using the Ingenuity Pathways Analysis Systems. Applying this Ingenuity Network filter, four functional networks could be constituted with significant Ingenuity scores. The network with the highest score was related to the Tissue Morphology, Cellular Assembly and Organization System (Fig. 5A).

Several molecular hubs including nuclear factor κB (NFκB), extracellular signal-regulated kinase (ERK), Akt, and EGR1 to which many pathways converge were identified in the network. Among the candidate genes, three representative genes including osteopontin, cysteine-rich protein 61 (CYR61), and connective tissue growth factor (CTGF) were selected for validation by quantitative real-time PCR because these three genes have been implied in the pathogenesis of human cancer (22–24). As shown in Fig. 5B and C, all three genes showed statistically significant up-regulation in SKOV3 cells after Rsf-1 induction and showed down-regulation in OVCAR3 cells after Rsf-1 shRNA transfection, indicating that Rsf-1 proteins were required and sufficient to up-regulate the expression of CYR61, CTGF, and osteopontin.

Discussion

Chromosome 11q13.5 amplification has been detected in several types of human cancer, and the presence of the amplicon is associated with a worse clinical outcome. For example, our previous reports (6, 11) showed that 11q13.5 amplification in ovarian serous carcinomas was significantly associated with shorter overall survival. However, the mechanisms accounting for the dismal clinical outcome are not clear. In the current study, we performed a functional genomic screening on genes located in the 11q13.5 amplicon for their roles in developing drug resistance to paclitaxel and carboplatin, which are routinely used in treating patients at advanced stages of ovarian cancer. Our result showed that Rsf-1 (HBXAP) played an important role in conferring paclitaxel resistance in ovarian cancer cells.

Rsf-1/HBXAP encodes a nuclear protein containing several distinct structure motifs including a PHD domain (25). This protein was first identified as a novel cellular protein that bound to the pX nuclear protein of hepatitis B virus (26). HBXAP expression increases HBV transcription in a pX-dependent manner, suggesting its role in regulating the virus life cycle. Further studies showed that the interaction between HBXAP and pX proteins regulated...
NF-κB activation (26). Soon after HBXAP was identified, an independent research group reported the full-length HBXAP (Rsf-1) protein as a subunit in a chromatin assembly factor, called ISWI-containing remodeling and spacing factor (RSF; ref. 18). The human RSF complex is composed of two subunits: the nucleosome-dependent ATPase, hSNF2H, and the histone chaperon, Rsf-1 (18, 20, 27). The Rsf-1/hSNF2H (or RSF) complex mediates nucleosome deposition and assembly and participates in chromatin remodeling by mobilizing nucleosomes in response to a variety of growth-modifying signals and environmental cues (18–21). Such nucleosome remodeling is essential for transcriptional regulation (25, 26, 28), DNA replication (29), and cell cycle progression (30).

We have previously shown that Rsf-1 and hSNF2H were co-upregulated in ovarian cancer tissues and that expression of Rsf-1 may likely prevent hSNF2H from protein degradation (15). Ectopic expression of Rsf-1 in SKOV3 ovarian cancer cells with a very low level of endogenous Rsf-1 expression increased hSNF2H protein levels and promoted SKOV3 tumor growth in a mouse tumor xenograft model (15).

Our findings from this study could have several biological and clinical implications. First, the current results provide a possible explanation for how 11q13.5 amplification in ovarian serous carcinomas contributes to shorter overall survival as compared with those without 11q13.5 amplification (6, 11). It is likely that tumors with increased DNA copy number of Rsf-1 overexpress Rsf-1 protein, which renders the de novo paclitaxel resistance. The Rsf-1–expressing residual tumors after tumor cytoreduction surgery may survive better during chemotherapy and tend to recur earlier, and thus they are likely related to poor clinical outcome in ovarian cancer patients. Second, hSNF2H knockdown or expression of an Rsf-1 dominant negative protein containing the hSNF2H binding motif sensitized cancer cells with Rsf-1 overexpression to paclitaxel. These observations suggest that paclitaxel resistance in Rsf-1 up-regulated cells is mediated by the chromatin remodeling activity from the Rsf-1/hSNF2H complex. This finding may have translational implications for new cancer therapy because enhancing the sensitivity of chemotherap ycan be achieved by inactivating the Rsf-1/hSNF2H or by interrupting the complex formation in cancer cells. Third, our previous result showed that hSNF2H was required for cell proliferation and survival in Rsf-1–expressing OVCAR3 cells but not in SKOV3 cells with or without Rsf-1 induction. This finding is probably because OVCAR3 cells with Rsf-1 gene amplification and constitutive up-regulation have become molecularly “addicted” to Rsf-1/hSNF2H expression, whereas SKOV3 cells that have a very low level of endogenous Rsf-1 expression (15) are less sensitive to hSNF2H.
knockdown even after an acute induction of Rsf-1. However, reducing hSNF2H expression sensitized both OVCAR3 cells and Rsf-1–expressing SKOV3 cells to paclitaxel, suggesting that different mechanisms are involved in promoting cell growth and drug resistance. Fourth, Rsf-1 expression in tumor specimens can be used as a surrogate marker alone or in combination with other markers to predict treatment response to paclitaxel. To this end, future multi-institutional cohort studies are required to validate the usefulness of Rsf-1 immunoreactivity as a potential diagnostic test for ovarian cancer or other cancer types with Rsf-1 amplification and overexpression.

There are at least two possible mechanisms that could explain how Rsf-1 overexpression contributes to tumor cell survival and growth in the presence of paclitaxel. First, an increased number of RSF complexes may concentrate on specific promoter and/or enhancer regions to modulate transcription activity of a set of genes which participate in drug resistance. In fact, based on comparison of gene profiles between Rsf-1–induced and non-induced SKOV3 ovarian cancer cells, we found that Rsf-1 expression was associated with changes in the expression of several genes. Among them, up-regulation of CYR61 and osteopontin is of interest because both gene products were previously reported to be involved in developing drug resistance (22, 23). Furthermore, using interaction network analysis, it seems that several major molecular hubs were identified in this network and they included NF-κB, ERK, Akt, and EGR1. Among them, NF-κB, ERK, and Akt have been suggested to participate in developing chemoresistance in cancer cells (30–37). For example, the Akt pathway has been shown to play a causal role in the development of docetaxel and paclitaxel resistance in cancer cell lines including those derived from ovarian cancer (31–33). It is of great interest that Rsf-1 has been shown to interact with NF-κB (34).

Second, Rsf-1 overexpression may alter the dynamics of interaction between hSNF2H and hSNF2H binding proteins. Besides Rsf-1, hSNF2H is known to interact with several cellular proteins to form different hSNF2H-containing protein complexes that have diverse cellular functions. In our previous study, we showed that excessive Rsf-1 molecules...
sequestered hSNF2H, leading to a loss or a decrease in the abundance of other hSNF2H-binding complexes such as hSNF2H/BAZA1 and hSNF2H/BAZ1B (15). Because several members in the SNF family have been suggested as tumor suppressors and are found to be down-regulated or inactivated in cancer tissues (35, 36), it is plausible that reduction of these hSNF2H complexes with tumor suppressor potential by excessive Rsf-1 contributes to the observed drug-resistant phenotype in cancer cells. However, in this study, we found that expressing the Rsf-D4 deletion mutant, which has the hSNF2H binding activity, enhanced the growth inhibitory effect of paclitaxel in tumor cells. This observation suggests that sequestering hSNF2H from other protein complexes by the Rsf-D4 mutant alone is not able to confer paclitaxel resistance as seen in the full-length Rsf-1. Therefore, the paclitaxel-resistant phenotype mediated by the full-length Rsf-1 is more likely due to an increase in IFSP complex formation rather than a decrease in hSNF2H-containing complexes.

Although the above represents our preferred views, alternative interpretations should be indicated. First, the shRNA screening approach used in this study suggests that Rsf-1 is the main gene within the 11q13.5 amplicon responsible for paclitaxel resistance. However, other gene(s) within the 11q13.5 amplicon might also be involved in the aggressive behavior of 11q13.5-amplified carcinomas. For example, PAK1, a member of serine/threonine kinase family, plays a critical role in controlling anchorage-independent growth and invasiveness in breast cancer cells (37) and in the full-length Rsf-1. Therefore, the paclitaxel-resistant phenotype mediated by the full-length Rsf-1 is more likely due to an increase in IFSP complex formation rather than a decrease in hSNF2H-containing complexes.

References
30. Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors

Acknowledgments
Received 9/7/2008; revised 11/12/2008; accepted 11/14/2008; published OnlineFirst 02/03/2009.
Grant support: National Cancer Institute/NIH grants RO1 CA129080 and RO1 CA103937 (I-M. Shih), American Cancer Society grant RSG-08-174-01-GMC (T-L. Wang), and Department of Defense Research Council grant OCD00060 (T-L. Wang).

No potential conflicts of interest were disclosed.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
to a cell cycle- and developmentally regulated promoter.

Functional Analysis of 11q13.5 Amplicon Identifies Rsf-1 (HBXAP) as a Gene Involved in Paclitaxel Resistance in Ovarian Cancer

Jung Hye Choi, Jim Jinn-Chyuan Sheu, Bin Guan, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-08-3602

Cited articles
This article cites 36 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/4/1407.full.html#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
/content/69/4/1407.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.