Telomere Length in Peripheral Blood Predicts Survival in Clear Cell Renal Cell Carcinoma

Ulrika Svenson,1 Börje Ljungberg,2 and Göran Roos3

Departments of 1Medical Biosciences, Pathology and 2Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden

Abstract

Telomeres are repetitive structures located at chromosome ends. Previous studies have indicated that blood cell telomeres may serve as a biomarker for cancer risk. In addition, we recently reported that blood telomere length predicted survival in patients with breast cancer. In the present study, we examined whether blood telomere length may act as a predictor for survival in newly diagnosed patients with clear cell renal cell carcinoma. Furthermore, we analyzed telomere length in tumor samples and corresponding kidney cortex. Relative telomere length (RTL) was measured on extracted DNA using real-time PCR. Interestingly, and in line with our previous findings in breast cancer, patients with the longest blood telomeres (fourth quartile) had a significantly worse prognosis compared with patients with shorter blood RTL (P = 0.005). A highly significant association was found between long blood telomeres and a poor outcome in patients with nonmetastatic disease (P < 0.001), whereas patients with distant metastases had a poor survival regardless of blood RTL (P = 0.432). No correlations were found between blood RTL and various clinical variables, such as erythrocyte sedimentation rate, hemoglobin, and thrombocyte count. Multivariate Cox regression analysis verified long blood RTL as an independent negative prognostic marker. In contrast, telomere length in kidney cortex and tumor tissue did not predict survival. In conclusion, our results indicate that blood RTL may predict kidney cancer survival, with implications for future treatment strategies. [Cancer Res 2009;69(7):2896–901]

Introduction

Telomeres, the protective structures capping our chromosome ends, normally shorten with each cell division due to the end-replication problem (1). Because telomere erosion below a critical length triggers senescence, telomeres have been described as a molecular clock, regulating the replicative life span of eukaryotic cells (2). Critically short telomeres are associated with genetic instability and an increased cancer risk (3). Tumor cells often have shorter telomeres compared with the normal tissue despite the fact that most tumors express telomerase, the enzyme catalyzing the addition of telomeric repeats (4). In recent years, several studies have reported significant differences in blood telomere length between cancer patients and controls (5–13). Short blood telomere length has been suggested as a predisposition factor for, e.g., human bladder (5, 6), head and neck (5), lung (5, 7), and renal cancer (5, 8). In a recent study on skin cancer, long blood telomere length was associated with an increased melanoma risk but a decreased risk of basal-cell carcinoma (9). Barwell and colleagues (10) found no differences in blood telomere length between breast cancer patients and controls, whereas another study in sister sets reported a nonsignificant association between short telomere length and increased cancer risk (11). In contrast, we recently reported longer blood telomeres in newly diagnosed breast cancer patients with spontaneous tumors (12). Furthermore, we found that breast cancer patients with long blood telomere length (more than the median) had a significantly worse prognosis compared with patients with shorter telomeres, indicating a role for blood telomere length as a prognostic biomarker in breast cancer.

Renal cell carcinoma (RCC) accounts for ~3% of adult cancers. The disease is associated with a poor prognosis and nearly one third of the patients have metastasis present at diagnosis (14). To date, there are no ideal biomarkers for detection and/or prognostication of RCC, although a number of potential molecular markers have been investigated (15).

In the present study, we investigated whether blood telomere length may serve as a prognostic indicator in patients with newly diagnosed clear cell RCC (ccRCC), the most common RCC type (16). We also analyzed tumor and corresponding nonmalignant kidney cortex tissue to evaluate if telomere length in any of these compartments could predict survival. In addition, correlation analysis was performed between telomere length values of the three tissue compartments and various clinical variables. Relative telomere length (RTL) was measured by real-time PCR in peripheral blood, tumor tissue, and kidney cortex tissue of 105 patients with ccRCC. Interestingly, in the group without distant metastasis, patients with long blood RTL (fourth quartile) had a significantly worse outcome compared with patients with shorter blood RTL. In contrast, RTL in tumor or nonmalignant kidney cortex did not predict survival.

Materials and Methods

Patients. The patients were nephrectomized with histologically verified RCC at the Department of Urology, Umeå University Hospital, Umeå, Sweden. In total, 105 patients diagnosed between 2001 and 2007 were included in the study. There were 61 men (age range, 35–87; median age, 65) and 44 women (age range, 32–84; median age, 65). Routine staging procedures included physical examination and computerized tomography of the abdomen and chest. Additional investigations were made when indicated. Staging was performed according to the 2002 tumor-node-metastasis (TNM) classification system (17). Nuclear grading was performed according to Fuhrman and colleagues (18). RCC type was defined according to the Heidelberg consensus conference (16). Tumor size was measured on the surgical specimens and/or by computerized tomography. The tumors varied in size from 1.6 to 19 cm (median, 7.5 cm). Patients were followed-up with clinical and radiological examinations. Survival data were available for 103 patients. Of these, 28
had died of the disease, 4 of other causes, and 71 patients were alive with a median survival of 24 mo (range, 5–78 mo). The study was approved by the regional ethical review board in Umeå (Dnr 07-071M), and each patient participated after providing informed and signed consent.

Tissue samples. Samples from tumors and kidney cortex, excised furthest away from the tumor mass, were obtained immediately after extirpation, snap-frozen in liquid nitrogen, and stored in −80°C until analysis. One part of each sample was also used for conventional histopathologic examination. Blood samples were collected prior to any therapy and buffy coats were frozen in −80°C until further analysis.

Real-time PCR for telomere length measurements. DNA was extracted from buffy coats (n = 105) and from freshly frozen tumor (n = 103) and kidney cortex samples (n = 92) using the BioRobot M48 Workstation with MagAttract technology as described elsewhere (Qiagen). Telomere length was assessed by real-time PCR as previously described (19, 20). Tumor and kidney cortex samples were tested mixed within the same plates. Blood telomere length was measured separately but with the same reagents. Telomere and β-globin primer sequences written 5’ to 3’ were CGGTTTGTTTGGTTTGGGT-TTGGGTTTGGGTTTGGGTT (Tel 1b), GGCTTGCCTTACCCTTACCCTTACCC-TTACCCTTACCCT (Tel 2b), TGTGCTGGCCCATCACTTTG (HBG3), and ACCAGCCA-CACTTCTGTAAG (HBG4). T/S values were determined using the formula T/S = 2\(^{-\Delta Ct}\), where \(\Delta Ct = \text{average Ct}_{\text{telomere}} / \text{average Ct}_{\beta-\text{globin}}\). RTL values were obtained by dividing sample T/S values with the T/S value of a reference sample (CCRF-CEM DNA), which was included in each run and loaded in the same amount as the unknown samples (17.5 ng). The reference DNA was also used to produce a standard curve for each plate (range, 3.7–50 ng) to monitor the PCR efficiency. All samples were loaded as triplicates. As a measurement of the intra-assay variability, the T/S value of the 17.7 ng standard curve point was compared with the T/S value of the reference sample. The mean intra-assay CV for 18 assays was 3.38%. The mean RTL value (±SD) for the 17.7 ng standard curve point was 1.01 ± 0.06, giving an inter-assay CV of 6.42%.

In addition, 24 patient samples were run at two occasions with a 3 mo interval. Plotting the RTL values of the two runs against each other generated an \(R^2\) value of 94%. The mean CV for these samples was 7.05%.

Statistical analysis. SPSS version 15.0 was used for statistical analysis. Logarithmic transformations were applied to variables with slightly skewed distributions, so that tests requiring normality could be correctly performed. RTL means were compared by two-tailed unpaired and paired \(t\) tests or by analysis of covariance with age adjustments when appropriate. Pearson’s correlation coefficient was used to calculate the correlation between telomere length and various continuous variables. Survival analysis was performed using Kaplan-Meier with the log-rank test and restricted to

![Figure 1. RTL in blood, kidney cortex, and tumor tissues of patients with clear cell renal cell carcinoma (ccRCC). A, box plots showing the minimum, lower quartile, median, upper quartile, and maximum RTL values. Mean values were compared by independent samples \(t\) test. B, correlation between RTL and age investigated using Pearson’s correlation coefficient.](image)

Table 1. Correlation estimates between continuous clinical variables and RTL in blood, tumors and kidney cortex, investigated by Pearson’s correlation analysis

<table>
<thead>
<tr>
<th></th>
<th>Blood RTL</th>
<th>Non-tumor RTL</th>
<th>Tumor RTL</th>
<th>Age</th>
<th>Tumor ø</th>
<th>ESR</th>
<th>Hemoglobin</th>
<th>TPC</th>
<th>Albumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood RTL</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-tumor RTL</td>
<td>0.440*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor RTL</td>
<td>0.270*</td>
<td>0.449*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>−0.389*</td>
<td>−0.267</td>
<td>−0.393*</td>
<td>1</td>
<td>−0.009</td>
<td>1</td>
<td>−0.095</td>
<td>0.372*</td>
<td></td>
</tr>
<tr>
<td>Tumor ø</td>
<td>−0.091</td>
<td>−0.079</td>
<td>0.238</td>
<td>−0.009</td>
<td>1</td>
<td></td>
<td>0.095</td>
<td>0.372*</td>
<td>1</td>
</tr>
<tr>
<td>ESR</td>
<td>−0.107</td>
<td>−0.159</td>
<td>−0.033</td>
<td>0.028</td>
<td>−0.314*</td>
<td>−0.754*</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>−0.042</td>
<td>0.002</td>
<td>−0.061</td>
<td>−0.028</td>
<td>−0.287*</td>
<td>0.582*</td>
<td>−0.541*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TPC</td>
<td>0.124</td>
<td>0.125</td>
<td>0.160</td>
<td>−0.142</td>
<td>0.287*</td>
<td>0.582*</td>
<td>−0.541*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>0.099</td>
<td>0.075</td>
<td>−0.026</td>
<td>−0.178</td>
<td>−0.203*</td>
<td>−0.595*</td>
<td>0.586*</td>
<td>−0.453*</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviation: TPC, thromocyte particle count.

*Correlation is significant at the 0.01 level (two-tailed).

†Correlation is significant at the 0.05 level (two-tailed).
patients diagnosed before 2007 (83 valid cases), to achieve adequate follow-up times. Survival was defined as the time (in months) between the date of diagnosis to ccRCC specific death or to the date of last follow-up (March 2008). Hazard ratios were calculated by multivariate Cox regression analysis. Statistical significance refers to $P < 0.05$ (two-tailed).

Results

Telomere length in blood, normal kidney, and tumor tissue. There was no difference in blood telomere length between men and women [age-adjusted mean RTL with 95% confidence interval (CI); 0.65 (0.62–0.69) and 0.65 (0.61–0.69), respectively; $P = 0.970$]. The mean RTL in nonmalignant kidney cortex was shorter in men (0.82; 95% CI, 0.78–0.86) compared with women (0.89; 95% CI, 0.84–0.94; $P = 0.04$), whereas no difference was seen in the tumors (men, 0.48; 95% CI, 0.44–0.52; women, 0.50; 95% CI, 0.45–0.55; $P = 0.610$; not shown in figures).

As Fig. 1 illustrates, tumors had significantly shorter telomeres compared with kidney cortex [i.e., a tumor/non-tumor (T/N) RTL ratio < 1.0], whereas 6 patients (7%) had longer telomeres in the tumor. Four (67%) of the latter six patients had metastatic disease, whereas 21 (25%) of the 84 patients with a T/N RTL ratio of < 1.0 had metastasis.

Correlation investigations. Telomere length was inversely correlated with age in all tissue compartments analyzed (Fig. 1B). A summary of correlation investigations between RTL values and various continuous clinical variables can be viewed in Table 1, showing Pearson’s correlation coefficients. Blood RTL, tumor RTL, and RTL in normal kidney were positively correlated with each other, but no correlations were found between RTL values and any of the clinical variables included [erythrocyte sedimentation rate (ESR), hemoglobin, thrombocyte particle count, and albumin]. There was, however, a positive correlation between tumor RTL and tumor size. A similar result was obtained when investigating the correlation between T/N RTL ratio and tumor size ($r = 0.360$, $P < 0.001$; not shown in figure).

Survival analysis. Table 2 shows survival analysis data for established prognostic variables. High TNM stage/distant metastasis (M1), high nuclear grade, renal capsule invasion, anemia, elevated ESR, hypercalcemia, and thrombocytosis were all significantly associated with poor survival. There were no
significant differences in survival comparing patients ages ≤65 versus >65 years (median age; \(P = 0.197 \)) or gender (\(P = 0.085 \), with a trend to longer survival in women; not shown in table).

To investigate whether blood telomere length carried any prognostic information, patients were divided into quartiles based on the RTL distribution. Patients with the longest blood telomeres (fourth quartile) had a significantly worse prognosis compared with patients with shorter telomeres (Fig. 2A and B). Analysis restricted to patients ages ≤65 and >65 years, respectively, showed that patients in the fourth quartile had a poorer prognosis in both age groups (\(P = 0.034 \) and \(P = 0.048 \), respectively; not shown in figure).

In the patient group without distant metastasis (M0), a highly significant association (\(P < 0.001 \)) was found between long blood RTL and poor outcome (Fig. 2C). A similar pattern (not shown in figure) was observed when restricting the analysis to patients without capsule involvement (\(P = 0.001 \)) and patients having tumors with a nuclear grade of 1 to 3 (\(P = 0.006 \)). In contrast, in patients with distant metastasis, the prognosis was poor regardless of the blood RTL (Fig. 2D). The same was true for patients with grade 4 tumors (\(P = 0.525 \)) and for patients with renal capsule invasion (\(P = 0.372 \); not shown in figures). Multivariate Cox regression analysis, including age, blood RTL, and TNM stage, verified long blood RTL (RTL > 0.73) as an independent negative prognostic factor (Table 3). A similar result (not shown in table) was obtained when including hemoglobin (anemic versus non-anemic) as a variable instead of TNM stage (blood RTL, >0.73; hazard ratio, 2.8; 95% CI, 1.3–6.0).

Table 3. Multivariate Cox regression survival analysis, including age, blood telomere length, and TNM stage

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hazard ratio (95% CI)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (continuous)</td>
<td>0.9 (0.9–1.0)</td>
<td>0.021</td>
</tr>
<tr>
<td>Blood RTL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RTL \leq 0.73)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>(RTL > 0.73)</td>
<td>3.0 (1.3–6.8)</td>
<td>0.008</td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I–III</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>17.0 (6.1–47.0)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

NOTE: Eighty-three patients and 27 events were included.
In contrast to blood RTL, RTL in kidney cortex tissue or ccRCC did not predict survival time when comparing patients in different RTL quartiles (Fig. 3A and B). A similarly nonsignificant pattern in kidney cortex or tumor tissue was observed for M0 patients as for M1 patients (not shown in figure). When the patients were subdivided into two groups based on the median T/N RTL ratio (0.55), a nonsignificant (P = 0.086) trend to shorter survival was noted in patients with a high T/N RTL ratio (not shown in figure).

Discussion

The present study is the first to investigate RTL in three different compartments of patients with ccRCC: peripheral blood, nonmalignant kidney cortex, and ccRCC. As expected, the shortest telomeres were found in the tumors. Furthermore, telomeres in the kidney cortex were significantly longer compared with peripheral blood, suggesting differences in the replicative history of the cells and/or differences in telomere length regulation. Previous studies have shown a correlation between telomere length in different organs in both humans and monkeys (21, 22), which was supported by our data on blood and nonmalignant kidney tissue. In addition, we found a surprising correlation between RTL in these compartments and tumor tissue. Tumors, besides having the shortest telomeres overall, also exhibited an age-associated decline in RTL similar to blood and kidney cortex tissue. Hence, ccRCCs in younger patients displayed longer telomeres compared with tumors in older patients. These data might suggest that telomere length per se is not part of the etiology of ccRCC, i.e., transformation does not occur at a certain critically short telomere length.

The most striking finding in our study is that blood RTL could predict survival for patients with ccRCC. This finding is in line with our previous observation in breast cancer (12), and further substantiates blood RTL as a significant biological marker. The fact that RTL in blood, but not in normal kidney or in tumor tissue, was associated with prognosis suggests a systemic effect on the hematopoietic system. In our previous study, in which patients with breast cancer with long blood RTL had a worse prognosis, we speculated that this feature might reflect a combined effect of telomere length, epigenetic regulation, cytokines, and hormones. The response of the immune system in cancer is very complex. There is evidence that RCC can be recognized by immune cells, and a small subset of patients with RCC respond well to immunotherapy (23). Tumors, however, can evolve mechanisms to escape the immune attack and several tumor-associated suppressive mechanisms have been described in RCC, e.g., alterations in lymphocyte reactivity and modulation of immune cell infiltration and activity (23). Regulatory T cells (Treg cells), a subpopulation of CD4+ T cells, also seem capable of inhibiting antitumor immune responses (23, 24). Increased levels of Treg cells have been detected in blood and at the tumor site of patients with cancer (25–29). Down-regulation of the immune response in a subset of cancer patients, caused by Treg cells and/or other immunomodulators, could theoretically lead to less telomere attrition due to fewer cell divisions and to a reduced antitumoral activity. Such a theory might explain our observations that long blood telomeres in ccRCC, as well as in patients with breast cancer, were associated with a worse outcome. In addition, as discussed previously (12), it cannot be excluded that a subset of patients with long telomeres had elevated levels of various telomerase-stimulating factors with effects on the hematopoietic system. More detailed analyses of blood constituents and tumors are needed in the future, in order to identify possible immune-related differences between patients with long versus short blood RTL. Examples of such theoretically relevant differential factors are serum cytokines with the potential to regulate telomerase and immunomodulating Treg cells. The overall cell subset composition in the blood may also differ and further analyses of the telomere biology of specific blood cell subsets in tumor patients are warranted. Tumor-directed analyses are also of interest because individual differences in the expression and release of proteins with secondary effects on blood RTL cannot be excluded.

Blood RTL was found to be a significant prognostic indicator in patients with nonmetastatic disease. The outcome for RCC patients with metastasis is, in general, poor, and blood RTL could not predict survival in these patients. The statistics regarding this subgroup should, however, be taken with caution due to the rather small number of individuals. Of special interest is the finding that RTL was unrelated to other well-established prognostic indicators such as hemoglobin, ESR, thrombocyte count, and albumin. All these factors are coupled to more advanced disease whereas blood RTL might be helpful in identifying patients with local disease, but with a high risk for relapse and a poor outcome. This patient subgroup might benefit from new therapy strategies. Hence, prospective treatment programs taking blood RTL into account could be an interesting option. Identifying patients with less aggressive disease is also important because overtreatment with unnecessary side effects might then be avoided. Our finding that
the M0 subgroup with shorter telomeres had a long-term survival is therefore of interest. Based on our previously published data, the same arguments arevalid for breast cancer, and future studies will show if blood RTL is a more general prognostic indicator for additional tumor types. Therefore, extended studies on patients with other cancer forms are needed. In order to investigate the importance of blood RTL in different patient subgroups, studies encompassing a larger sample size, including a larger number of patients with metastatic disease, are warranted. In contrast, RTL in tumor and kidney cortex tissue did not predict survival. It might seem inconsistent that only blood RTL predicted survival, when at the same time, a positive RTL correlation was found between blood, tumor, and kidney cortex tissues. However, although statistically significant, the correlations between the different tissues were not very strong. As an example, the correlation coefficient between blood and nonmalignant kidney cortex was $r = 0.440$, giving an r-squared value of 0.194, or $r^2 = 0.19$. Hence, although the tissues correlated positively with each other regarding RTL, the correlation was far from 100% and different factors are likely to influence telomere length maintenance in different tissue compartments. As has been speculated above, it might be that the cancer disease itself causes a systemic/immunorelated effect on the telomere length of peripheral blood.

We did find a positive correlation between tumor size and tumor RTL and between tumor size and T/N RTL ratio. In addition, there was a nonsignificant trend of worse survival in patients with a high T/N RTL ratio. Also, four of the six patients with a T/N RTL ratio of >1.0 had distant metastasis, as compared with one fourth of the patients with smaller ratios. Several studies have reported longer telomeres in tumors of more advanced stages, e.g., in Barrett carcinoma (30), hepatocellular carcinoma (31), and colorectal carcinoma (32, 33). In these studies, a high T/N RTL ratio was associated with a worse prognosis. Oh and colleagues (31) reported that advanced hepatocellular carcinomas with poor outcome showed high telomerase activity and long telomeres. In colorectal cancer, patients with telomerase-positive tumors and a high T/N RTL ratio had a significantly shorter disease-free survival compared with patients with lower RTL ratios (33). We did not have data on telomerase activity in the present study, but our finding of a trend to shorter survival in patients with a high T/N RTL ratio supports the previous studies. It may well be that long tumor telomere length reflects telomere stabilization important for tumor progression.

In conclusion, the data presented here show that blood RTL was a significant independent prognostic indicator in ccRCC. In contrast, RTL quartiles in tumor and nonmalignant kidney cortex did not predict survival. Importantly, blood RTL was independent of established prognostic indicators and could predict survival in ccRCC patients with limited disease. This may be of importance for future treatment strategies.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 9/9/08; revised 1/9/09; accepted 1/23/09; published OnlineFirst 3/24/09.

Grant support: Swedish Cancer Society (G. Roos and B. Ljungberg), The Swedish Research Council (G. Roos), Lions Cancer Research Foundation in Umeå (G. Roos), Umeå University (G. Roos), The Kempe Foundation (G. Roos), and by LSHC-CT-2004-502943 “Mel Cancer Med” and Health-F2-2007-200905 “Telomarker” from the European Union (G. Roos).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

Telomere Length in Peripheral Blood Predicts Survival in Clear Cell Renal Cell Carcinoma

Ulrika Svenson, Börje Ljungberg and Göran Roos

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-08-3513

Cited articles
This article cites 31 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/69/7/2896.full.html#ref-list-1

Citing articles
This article has been cited by 13 HighWire-hosted articles. Access the articles at:
/content/69/7/2896.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.