Inhibition of Ataxia Telangiectasia Mutated Kinase Activity Enhances TRAIL-Mediated Apoptosis in Human Melanoma Cells

Vladimir N. Ivanov, Hongning Zhou, Michael A. Partridge, and Tom K. Hei

Abstract

The aim of the present study was to elucidate the effects of ataxia telangiectasia mutated (ATM) kinase on the regulation of the extrinsic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2/DR5-mediated death pathway in human melanoma cells. We revealed that total ATM protein levels were high in some human melanoma lines compared with normal cells. The basal levels of active form ATM phospho-Ser1981 were also detectable in many melanoma lines and could be further up-regulated by γ-irradiation. Pre-treatment of several melanoma lines just before γ-irradiation with the inhibitor of ATM kinase KU-55933 suppressed p53 and nuclear factor-κB (NF-κB) activation but notably increased radiation-induced DR5 surface expression, down-regulated cFLIP (caspase-8 inhibitor) levels, and substantially enhanced exogenous TRAIL-induced apoptosis. Furthermore, γ-irradiation in the presence of KU-55933 rendered TRAIL-resistant HHMSX melanoma cells susceptible to TRAIL-mediated apoptosis. In addition, suppression of ATM expression by the specific short hairpin RNA also resulted in down-regulation of cFLIP levels, up-regulation of surface DR5 expression, and TRAIL-mediated apoptosis in melanoma cells. Besides p53 and NF-κB, crucial regulators of DR5 expression, transcription factor STAT3 is known to negatively regulate DR5 expression. Suppression of Ser277 and Tyr705 phosphorylation of STAT3 by KU-55933 reduced STAT3 transacting activity accompanied by elevation in DR5 expression. Dominant-negative STAT3 also efficiently up-regulated the DR5 surface expression and down-regulated cFLIP levels in melanoma cells in culture and in vivo. Taken together, our data show the existence of an ATM-dependent STAT3-mediated antiapoptotic pathway, which on suppression sensitizes human melanoma cells to TRAIL-mediated apoptosis.

Introduction

The nuclear protein kinase ataxia telangiectasia mutated (ATM) plays an important role in signaling the presence of DNA double-strand breaks to the cell cycle checkpoint machinery and to the DNA repair system (1). Furthermore, ATM deficiency results in neurodegeneration, immunodeficiency, and enhanced radiosensitivity, suggesting a crucial role for this gene in the regulation of cell proliferation and cell death (2). ATM, together with ATR, controls extensive protein networks encompassing >700 proteins that are responsive to DNA damage (3). The important targets of the ATM signaling pathways are transcription factors p53, nuclear factor-κB (NF-κB), ATF2, and STAT3, which are ultimately linked to regulation of the cell cycle and apoptosis (1, 4–6). Ionizing radiation and chemotherapy are the two main modalities for cancer treatment. The cytotoxic effects of many anticancer drugs and ionizing radiation are mediated through DNA damage resulting in the activation of DNA damage-induced cell signaling pathways, including activation of the ATM networks. In this scenario, ATM kinase plays a crucial role by balancing cell cycle arrest versus cell death (1).

The incidence of melanoma has substantially increased worldwide over the last 40 years. Most advanced melanomas respond poorly to radiotherapy and chemotherapy and no effective therapy exists to inhibit the metastatic spread of this cancer (7). Alternative therapies that have been suggested for inducing apoptosis in cancer cells are based on the direct activation of the extrinsic death signaling pathways using recombinant death ligands of the tumor necrosis factor superfamily, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), or agonistic monoclonal antibodies to TRAIL receptor (TRAIL-R) 2/DR5 and TRAIL-R1/DR4. TRAIL-R2 could often be found on the surface of different types of cancer cells, including melanoma cells, at higher expression levels compared with TRAIL-R1 (8). In contrast to normal cells, the expression of the decoy receptors TRAIL-R3 and TRAIL-R4 rarely occurred in human melanomas. Targeting TRAIL-R-mediated signaling pathways for induction of apoptosis is currently being evaluated in multiple clinical trials for several cancer types (9, 10). Finally, combined modality treatments, which may include γ-irradiation and stimulation of the TRAIL-R-mediated pathways, appear to be promising potential treatments to suppress cancer development (11–13). Because ATM activity is strongly up-regulated by γ-irradiation, we address the role of ATM in the regulation of apoptosis in human melanomas. The main aim of the present study was to resolve the question of how inhibition of ATM activity affected TRAIL-mediated extrinsic death pathway in human melanoma cells.

Materials and Methods

Materials. Human KILLER-TRAIL was purchased from Alexis. c-Jun NH2-terminal kinase inhibitor SP600125 was obtained from Biomol. MEK inhibitor U0126, phosphatidylinositol 3-kinase inhibitor LY294002, IKK inhibitor BMS-345541, JAK2 inhibitor AG490, and ATM kinase inhibitor KU-55933 were purchased from Calbiochem.

Cell lines. Human melanoma cell lines Lu1205 (also known as 1205Lu), WM9, WM35 (14), and HHMSX and normal human fibroblasts TIG3 were maintained in DMEM supplemented with 10% fetal bovine serum, L-glutamine, and antibiotics. Normal human lung fibroblasts (MRC5) and human ATM-deficient fibroblasts (GM02052) were obtained from Coriell Cell Repository. These cells were maintained in Eagle's MEM supplemented with 15% fetal bovine serum, vitamins, amino acids, and antibiotics.
Irradiation procedures. To determine sensitivity to γ-rays, the plates with melanoma cells were exposed to radiation from a Gammacell 40 137Cs irradiator.

Fluorescence-activated cell sorting analysis of DR5 and FAS levels. Surface levels of DR5 and FAS were determined by staining with the phycoerythrin-labeled monoclonal antibodies from ebioscience and BD Biosciences. A FACSCalibur flow cytometer (Becton Dickinson) combined with the CellQuest program was used to perform flow cytometric analysis.

Transfection and luciferase assay. The NF-κB luciferase reporter containing two NF-κB-binding sites, Jun2-Luc reporter (15), and the STAT-Luc reporter containing three repeats of GAS sites were used to determine NF-κB, AP-1, and STAT transactivation, respectively. Additional reporter constructs used included DR5/TRAIL-R2/full-Luc, which contained 1.6 kb upstream of the ATG site through intron 2 in the DR5 genomic locus (16), a 1 kb cFLIP-promoter-Luc (17, 18), and p53RE-Luc (19). Transient transfection of reporter constructs (1 μg) together with pCMV-β-galactosidase (0.25 μg) into 5 × 10^5 melanoma cells was done using Lipofectamine (Life Technologies). Luciferase activity was determined using the luciferase assay system (Promega) and was normalized based on β-galactosidase levels.

Mutational analysis of DR5 promoter. Mutations within the STAT-binding site of the human TRAIL-R2/DR5 promoter and within the NF-κB site of the intron 2 were generated using DR5/TRAIL-R2-full-Luc construct (16) and the QuikChange kit (Stratagene).

Suppression of ATM expression with short hairpin RNA. ATM expression in melanoma cells was stably knocked down using pBabeSuper constructs with short hairpin RNA (shRNA) sequences corresponding to positions 912 (ATM1) and 8,538 (ATM3) of the ATM transcript. Green fluorescent protein (GFP) shRNA served as a mock control. These constructs have been kindly provided by Dr. Y. Shiloh (20). LU1205 melanoma cells were transected by shRNA constructs using Lipofectamine and selected with 0.5 μg/ml puromycin.

Apoptosis studies. Cells were exposed to soluble TRAIL (50 ng/mL) alone or in combination with cycloheximide (2 μg/mL). Different variants of combined treatment were used, including γ-irradiation (5 Gy), in the presence or absence of specific inhibitors of signaling pathways followed by TRAIL treatment. Apoptosis was then assessed by quantifying the percentage of hypodiploid nuclei using fluorescence-activated cell sorting analysis.

Western blot analysis. Total cell lysates (50 μg protein) were resolved on SDS-PAGE and processed according to standard protocols. The monoclonal antibodies used for Western blotting included anti-α/β-actin (Sigma); anti-FADD (NF6; Axxora); anti-caspase-3 and -8 anti-ATM (D2E2) and anti-phospho-ATM (Ser1981); anti-phospho-p53 (Ser15; Cell Signaling); and anti-FLIP (NF6; Axxora); anti-caspase-3 and -8; anti-ATM (D2E2) and anti-caspase-3 and -8; anti-ATM (D2E2). The polyclonal antibodies used included anti-TRAIL and anti-DR5 (Axxora); anti-phospho-p53 (Ser28) and anti-total p53; anti-phospho-SAPK/C-Jun NH2-terminal kinase (JNK; Thr183/Tyr185 and anti-JNK; anti-phospho-p44/p42 mitogen-activated protein kinase (Thr202/Tyr204); and anti-p44/p42 mitogen-activated protein kinase; anti-phospho-AKT (Ser473) and anti-AKT; anti-poly(ADP-ribose) polymerase; anti-STAT3, anti-phospho-STAT3 (Tyr705) and anti-phospho-STAT3 (Ser277); and anti-Chk2 and anti-phospho-Chk2 (Thr68; Cell Signaling). The secondary antibodies were conjugated to horseradish peroxidase; signals were detected using the enhanced chemiluminescence system (Amersham).

Electrophoretic mobility shift assay. Electrophoretic mobility shift assay was done for the detection of NF-κB DNA-binding activity as described previously. Ubiquitous NF-κB DNA-binding activity was used as an internal control (21).

Human melanoma transplant in nude mice. LU1205 cells (1 × 10^6) stably transfected with control empty vector pBabe-puro or with STAT3 shRNA for stable suppression of ATM levels and GFP shRNA for a mock control (20) in MRC5 cells. ATM shRNA caused a 70% decrease in total ATM protein levels of MRC5 cells that was accompanied by modest increase in DR5 surface expression (Fig. 1D), indicating a negative role of ATM in regulation of DR5 expression.

TRAIL-R2/DR5 gene expression is a target for positive regulation by γ-irradiation in many cancer cell lines (27). Indeed, DR5 total and surface levels and activity of the DR5 promoter were further increased 6 to 16 h after irradiation of LU1205 cells, whereas, for MRC5 and GM02052 fibroblasts, up-regulation of the surface DR5 expression was not pronounced (Figs. 1C and 2B and C). Because activation of ATM kinase by DNA damage after γ-irradiation is involved in the up-regulation of the p53 and NF-κB pathways (28), a role for ATM kinase in the regulation of DR5 gene expression, levels of NF-κB-dependent antiapoptotic proteins, and TRAIL-mediated apoptosis in melanoma cells was further investigated in this study.

Statistical analysis. Data were calculated as mean and SD. Comparisons of results between treated and control groups were made by the Students' t tests. P ≤ 0.05 between groups was considered significant.

Results

ATM levels and DR5 surface expression in human melanoma cell lines. Two primary human fibroblast lines, MRC5 (ATM+/+) and GM02052 (ATM−/−), were used as positive and negative controls, respectively, for comparing the expression levels of ATM protein and its signaling pathways in human melanoma cells (Fig. 1A and B). Autophosphorylation of ATM after γ-irradiation (22), with the subsequent ATM-Chk2-dependent phosphorylation of p53-Ser20 (23) that are characteristic features of the ATM signaling pathway, are clearly deficient in ATM−/− fibroblast line (Fig. 1A). In contrast to normal fibroblasts MRC5, human melanoma lines were characterized by increased protein levels of both total ATM and its active form, ATM phospho-Ser^1981 (Fig. 1B).

Basal p53 protein levels in melanoma lines were also correlated to ATM protein levels. ATM levels in human melanocytes were similar to levels in human fibroblasts (data not shown).

Numerous human melanoma lines express TRAIL-R2/DR5 on their surface (12, 24). In contrast, surface expression of TRAIL-R1/DR4 was found at marginal levels in many melanoma lines (Supplementary Fig. 1I). The remarkable exceptions were the early melanomas WM1552C and SBe2 (25) as well as ocular melanoma OM431 (26), which exhibited the increased levels of surface DR4. Interestingly, surface expression of DR5 in WM9 and LU1205 melanoma cells was substantially higher than in HHMSX melanoma cells, showing an inverse correlation between the basal ATM levels and DR5 surface expression (Fig. 1B and C).

Both MRC5 (ATM+/+) and GM02052 (ATM−/−) fibroblasts contained two cell subpopulations with zero and moderate levels of DR5 on the cell surface, respectively. Although GM02052 cells had a modest increase in the percentage of DR5-positive cells (58%) compared with MRC5 (35%; Fig. 1C), the different genetic background of these cell lines did not allow us to make a definite conclusion concerning quantitative effects of ATM on the DR5 surface expression in fibroblasts. However, these data show that, in the case of ATM deficiency, moderate levels of the DR5 surface expression are observed in fibroblasts. Interestingly, ATM deficiency did not change the levels of surface FAS in fibroblasts (Fig. 1C).

Next, we used pBabeSuper constructs expressing ATM1 and ATM3 shRNA for stable suppression of ATM levels and GFP shRNA as a mock control (20) in MRC5 cells. ATM1 shRNA caused a 70% decrease in total ATM protein levels of MRC5 cells that was accompanied by modest increase in DR5 surface expression (Fig. 1D), indicating a negative role of ATM in regulation of DR5 expression.
Inhibition of ATM kinase in γ-irradiated melanoma cells reduced p53 and NF-κB activities and cFLIP levels. γ-Irradiation of LU1205 cells induced autophosphorylation and up-regulation of ATM kinase activity in a dose-dependent manner (Fig. 2A) that was accompanied by further activation of Chk2 and Chk2-mediated Ser20 phosphorylation of p53. On the other hand, direct ATM-mediated Ser15 phosphorylation of p53 was observed at low levels. KU-55933 (10 μmol/L), a specific inhibitor of ATM kinase activity (29), suppressed ATM autophosphorylation after irradiation and caused down-regulation of p53 phospho-Ser20 levels (Fig. 2B) and NF-κB DNA-binding activity (Fig. 2C), which was accompanied by a decrease of general p53- and NF-κB-dependent gene expression in the irradiated cells (Fig. 2C). KU-55933 was less effective for inhibition of the basal NF-κB activity compared with BMS-345541 (20 μmol/L), a specific inhibitor of IKK-NF-κB. Both inhibitors were equally effective in the suppression of the radiation-induced NF-κB activity (Fig. 2C). Luciferase assay also showed down-regulation of the cFLIP promoter activity with KU-55933 (Fig. 2C), which was accompanied by decrease in cFLIP-S and cFLIP-L protein levels detected by Western blotting 8 h after treatment with KU-55933 in both nonirradiated and γ-irradiated cells (Fig. 2B). In contrast, the DR5 promoter activity and total DR5 protein levels modestly increased 4 to 6 h after irradiation, especially in the presence of KU-55933 (Fig. 2B and C).
observed decrease in p53 and NF-κB activities following inhibition of ATM kinase activity by KU-55933 in γ-irradiated cells correlated with a substantial up-regulation of G2-M arrest of the cell cycle. This was likely due to a failure to arrest in S phase (29, 30), a characteristic feature of ATM deficiency in both LU1205 melanoma cells and TIG3 human fibroblasts. KU-55933 up-regulated levels of G2-M arrest in irradiated normal TIG3 fibroblasts were higher compared with treated cancer cells (Fig. 2D).

Inhibition of ATM activity increased the sensitivity of melanoma cells to TRAIL-mediated apoptosis. DNA repair mechanisms might permit the cells to overcome the consequences of the DNA damage. However, suppression of ATM activity after γ-irradiation in the presence of KU-55933 could exert an alternative effect on the apoptotic machinery in the cells via regulation of expression of the components of the extrinsic apoptotic pathway. KU-55933 efficiently up-regulated TRAIL-mediated apoptosis of LU1205 and WM35 cells (Fig. 3A and D), probably due to down-regulation of cFLIP levels, which was quite similar to cFLIP-RNA interference-mediated suppression of cFLIP and the subsequent up-regulation of TRAIL-induced apoptosis in melanoma cells (24). Down-regulation of basal cFLIP protein levels by KU-55933 was dependent on down-regulation of cFLIP gene expression (Fig. 2C) followed by proteasome-dependent degradation of cFLIP and could be blocked with the proteasome inhibitor, MG132 (data not shown). On the other hand, cleavage of procaspase-8 and procaspase-3 and the caspase-3-mediated cleavage of poly(ADP-ribose) polymerase and XIAP p57 were well pronounced 6 h after treatment by a combination of KU-55933 and TRAIL. XIAP p57 and cFLIP levels were also effectively down-regulated by treatment with TRAIL alone via caspase cascade (Fig. 3A). A detailed analysis of cFLIP-L levels after treatment with KU-55933 or TRAIL in the presence or absence of a universal caspase inhibitor, zVAD-fmk, and a specific inhibitor of caspase-8, Ac-IETD-CHO, was also performed (Supplementary Fig. S2). Results obtained clearly showed a caspase-independent down-regulation of cFLIP levels 2 to 4 h after treatment with KU-55933 and caspase-dependent down-regulation

![Figure 2](image-url)
6 h after treatment. Hence, the initial decrease in cFLIP-L levels after treatment with KU-55933 was not a result of apoptosis, whereas the late decrease in cFLIP-L levels was indeed a consequence of apoptosis. Levels of apoptosis determined 48 h after treatment were substantially higher for a combination of TRAIL and KU-55933 than for TRAIL alone (Fig. 3D).

Efficacy of TRAIL-mediated apoptosis could be further increased through radiation-induced up-regulation of the total and surface DR5 expression (12), which was positively controlled by p53 and NF-κB (16, 31). As expected, BMS-345541, a specific inhibitor of the IKK-NF-κB pathway, suppressed NF-κB activation in melanoma cells (Fig. 2C) and prevented radiation-induced up-regulation of DR5 surface expression in WM35 and LU1205 cells (Fig. 3B). Given the positive role for NF-κB and p53 in regulation of DR5 transcription (16, 31, 32), it was quite unexpected, however, that instead of suppression of DR5 expression, we observed an additional up-regulation of the DR5 promoter activity (Fig. 2C) and DR5 surface expression after γ-irradiation in the presence of KU-55933 (10 μmol/L) in four melanoma lines, WM35, LU1205, WM9, and HHMSX (Fig. 3B; data not shown).

Hence, pretreatment of LU1205 and WM35 cells with γ-irradiation that up-regulated the total and surface expression of DR5 (Fig. 3B), especially in the presence of KU-55933, further increased levels of TRAIL-mediated apoptosis (Fig. 3D). On the other hand, IKK-NF-κB inhibitor BMS-345541 decreased apoptotic levels after irradiation of melanoma cells (Fig. 3D), correlating with decreased levels of NF-κB-dependent proapoptotic DR5 after irradiation in the presence of BMS-345541. In contrast to DR5, radiation-induced surface FAS expression in LU1205 cells was not further increased in the presence of KU-55933 (Fig. 3C).

KU-55933 sensitizes resistant HHMSX melanoma cells to TRAIL-mediated apoptosis. Additional experiments showed that up-regulation of DR5 surface levels and down-regulation of cFLIP protein levels after irradiation in the presence of KU-55933 (data...
not shown) was accompanied by accelerated TRAIL-mediated apoptosis in WM9 melanoma cells. In contrast, TRAIL-mediated apoptosis of TIG3 normal fibroblasts was substantially lower based probably on a protective mechanism for TRAIL-mediated apoptosis in normal cells.

We used the similar treatment for up-regulation of TRAIL-mediated apoptosis in resistant HHMSX melanoma cells (Fig. 4A). Besides low surface expression of DR5 (Fig. 1D), these cells were characterized by notably suppressed mitochondrial function (24). KU-55933 alone, but not TRAIL, caused only modest down-regulation of cFLIP-L levels in these cells (Fig. 4B). The sequential treatment of these cells initially with a combination of KU-55933 and γ-radiation that up-regulated DR5 surface levels (Fig. 4B) and then with recombinant TRAIL (50 ng/mL) in the presence of KU-55933 (10 μmol/L) that addi-

tionally decreased cFLIP levels (Fig. 4B) induced pronounced apoptosis showing a sensitization to TRAIL.

ATM suppression by shRNA. We used pRetroSuper constructs expressing ATM1 and ATM3 shRNA for stable suppression of ATM and GFP shRNA as a mock control (20) in melanoma cells. After selection in the presence of puromycin, LU1205 mass cultures expressing ATM1, ATM3, and GFP shRNA were obtained. ATM3 and especially ATM1 shRNA were effective in the suppression of total ATM levels. ATM1 shRNA caused ~75% decrease in total ATM protein levels of LU1205 cells (Fig. 4C). ATM down-regulation was accompanied by an increase in the percentage of G2-M arrested cells 48 h after irradiation (5 Gy) of the ATM-deficient culture in comparison with the percentage in the irradiated control culture (18-34%; data not shown). Furthermore, we observed in
ATM-deficient cells a partial suppression of the basal cFLIP-L, but not XIAP, protein levels and a notable up-regulation of DR5 surface expression, which did not further increase after γ-irradiation (Fig. 4D). TRAIL-induced apoptosis was maximal in LU1205/ATM1 cells compared with the control cells (Fig. 4D). Results obtained with suppression of ATM expression by specific shRNA generally confirmed our data based on an inhibition of ATM activity by its inhibitor KU-55933 (see Fig. 3). However, certain differences between these two approaches have also been observed. Irradiation had no additional effect on DR5 surface expression in ATM-deficient cells compared with untreated ATM-deficient cells with already increased DR5 expression (Fig. 4D), whereas irradiated and KU-55933-treated cells showed higher DR5 expression than KU-55933-treated nonirradiated cells (Fig. 4A). Consequently, there was no additional increase in levels of TRAIL-mediated apoptosis in ATM-deficient irradiated cells compared with already high levels of TRAIL-mediated apoptosis in nonirradiated ATM-deficient cells (Fig. 4D). Such differences are probably results of a substantial change in the basal characteristics of ATM-deficient cells. However, the critical feature, pronounced up-regulation of TRAIL-mediated apoptosis in melanoma cells, was observed for both approaches.

Role of STAT3 Tyr705 and Ser727 phosphorylation in ATM-dependent regulation of DR5 expression. Several signaling pathways and the corresponding transcription factors may be involved in the regulation of radiation-induced DR5 expression: ATM-Chk2-p53, IKK-NF-κB, MEK-extracellular signal-regulated kinase (ERK)-Elk1, MKK4/7-JNK-cJun, and JAK2-STAT3. Because suppression of p53 and NF-κB activities by KU-55933 was not accompanied by a decrease in the DR5 surface expression, it might indicate the existence of an alternative ATM-dependent signaling pathway.

![Figure 5](image-url)
characterized by the activation of a transcription factor that could negatively control DR5 expression.

We used specific inhibitors of signaling pathways to further resolve the mechanism of regulation of DR5 expression. Similarly to the inhibitor of IKK-NF-κB (Fig. 3B), JNK inhibitor SP600125 (10 μmol/L) blocked an increase in DR5 surface expression (Fig. 5A and B). As expected, this inhibitor down-regulated c-Jun phosphorylation (Fig. 5C) after γ-irradiation of LU1205 cells. These results indicate a positive role of JNK in the regulation of radiation-induced DR5 expression (Fig. 5A and B) that further confirmed observations on the significance of JNK-SP1 for enhancing expression of DR5 (33). U0126 (10 μmol/L), a MEK-ERK inhibitor, substantially decreased DR5 surface expression in both nonirradiated and irradiated cells (Fig. 5A and B). This inhibitor suppressed constitutive ERK1/2 phosphorylation in LU1205 cells, whereas KU-55933 had no effects (Fig. 5C). Only AG490 (50 μmol/L), a JAK2-STAT3 inhibitor, resembled the positive effects of KU-55933 on DR5 levels in melanoma cells (Fig. 5A and B). STAT3 Tyr705 phosphorylation mediated by JAK2 is involved in STAT3 dimerization and its subsequent translocation to the nucleus and interaction with genomic DNA (34). Ser277 phosphorylation of STAT3 further increases STAT3 transacting functions in the gene promoters.

KU-55933 treatment, as expected, suppressed radiation-induced ATM activation and notably reduced basal and radiation-induced levels of both STAT3 Tyr705 and Ser277 phosphorylation (Fig. 5C). A luciferase assay confirmed the summary negative effects of KU-55933 on STAT3-dependent reporter activity in γ-irradiated cells that was quite similar to STAT3-Luc inhibition by AG490 (Fig. 5D). A role of ATM, as well as the mitogen-activated protein kinase and mammalian target of rapamycin pathways in Ser277 phosphorylation of STAT3, was previously established (6, 34), whereas the ATM-dependent pathway that affects tyrosine phosphorylation of STAT3 is currently unknown. Interestingly, KU-55933 or ATM shRNA stably transfected in melanoma cells to radiation-induced death was already described (39, 40). As most metastatic melanomas are radioresistant, ionizing radiation alone is rarely used for treatment of this disease. We investigated in the present study an alternative approach involving a combined treatment of γ-irradiation and an inhibitor of ATM kinase followed by induction of recombinant TRAIL-mediated apoptosis. Using inhibition of ATM activity by KU-55933 or a partial suppression of ATM expression by specific ATM shRNA stably transfected in melanoma cells, we observed a substantial up-regulation of TRAIL-mediated apoptosis.

A previous report described ATM-dependent activation of STAT3 transcriptional activity (6) that might negatively control DR5 gene expression, which we confirmed in the present study. Consequently, partial reduction of Ser277 and Tyr705 phosphorylation of STAT3 by KU-55933 reversed DR5 down-regulation, which was directed by ATM. A role for ATM, mammalian target of rapamycin, and the mitogen-activated protein kinase pathways in Ser277 phosphorylation of STAT3 was described previously (6, 34), whereas an ATM-dependent signaling pathway resulting in up-regulation of tyrosine phosphorylation of STAT3 needs to be investigated. Further, dominant-negative STAT3β with deleted Ser277 was effective in several actions, such as suppression of melanoma xenotransplant growth, probably via inhibition of STAT3-dependent expression of cyclin D1 (42), and an up-regulation of DR5 and FAS (37) surface expression in cell culture and in vivo. A substantial inhibition of melanoma xenotransplant growth by STAT3β might also indicate a role for DR5- and FAS-mediated apoptosis in this process.

A negative role for STAT3 was shown previously for the regulation of FAS (37) and p53 (43) transcription, whereas STAT3,
together with NF-κB, was involved in the positive control of antiapoptotic Bcl-xL and cFLIP/CFLAR gene expression (44–47). Coordinated up-regulation of DR5 expression (through suppression of ATM-STAT3 activity) and down-regulation of cFLIP protein levels (through suppression of ATM-NF-κB- and ATM-STAT3-dependent expression) may represent an efficient combination treatment that can dramatically accelerate TRAIL-mediated apoptosis in several cancer cell systems (26, 46).

One of the critical factors that determine the efficacy of anticancer therapy is the ability to selectively kill cancer cells while minimally affecting normal cells. In this context, TRAIL via interaction with the correspondent TRAIL-R1/R2 on the surface of cancer cells may induce a fatal signaling cascade in cancer cells and has only minimal cytotoxic effects in normal cells (10).

There have been numerous attempts to increase sensitivity of cancer cells to TRAIL using different types of combined treatment. Based on the results of the present study, combined treatment with γ-irradiation and an ATM inhibitor that is followed by treatment with exogenous TRAIL represents a potentially effective approach for cancer cell killing. Our findings provide a basis for further investigation of TRAIL-mediated target treatment to overcome apoptotic resistance of metastatic melanomas.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Received 10/7/08; revised 1/30/09; accepted 2/12/09; published OnlineFirst 4/7/09.

Grant support: NIH grant CA 49062, Superfund grant ES 10349, and Environmental Center grant ES 09059.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1754 solely to indicate this fact.

We thank Drs. Y. Shiloh, Z. Ronai, M. Herlyn, A. Balajee, and H.B. Lieberman for plasmid constructs, melanoma lines, and discussion.
Inhibition of ATM Enhances TRAIL-Mediated Apoptosis

References

www.aacrjournals.org

Downloaded from cancerres.aacrjournals.org on July 19, 2017. © 2009 American Association for Cancer Research.
Inhibition of Ataxia Telangiectasia Mutated Kinase Activity Enhances TRAIL-Mediated Apoptosis in Human Melanoma Cells

Updated version

Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-08-3883

Supplementary Material

Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2009/04/06/0008-5472.CAN-08-3883.DC1

Cited articles

This article cites 46 articles, 23 of which you can access for free at: http://cancerres.aacrjournals.org/content/69/8/3510.full#ref-list-1

Citing articles

This article has been cited by 8 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/69/8/3510.full#related-urls

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.