Protein-Chemical Aspects of Cancer*

Gerrit Toennies, Ph.D.

(From the Lankenau Hospital Research Institute and The Institute for Cancer Research, Philadelphia 30, Pennsylvania)

(Received for publication September 26, 1946)

CONTENTS

1. INTRODUCTION 193
2. PROTEIN CHEMISTRY OF CANCER TISSUE 194
 2.1. AMOUNT AND KIND OF PROTEIN FRACTIONS 194
 2.2. PHYSICOCHEMICAL DATA ON PROTEIN COMPOSITION 195
 2.3. NITROGENOUS INTERMEDIATES 196
 2.3.1. Peptides, Amino Acids, Creatine, etc. 196
 2.3.2. Glutathione 197
 2.4. ORDINARY PROTEIN COMPONENTS 197
 2.4.1. Basic Amino Acids 197
 2.4.2. Protein Sulfur 199
 2.4.3. Sulfur Amino Acids 200
 2.4.4. Tryptophane 201
 2.4.5. Other Amino Acids 202
 2.4.6. Protein Phosphorus 202
 2.4.7. General 202
 2.5. NUCLEIC ACIDS, THEIR COMPONENTS AND COMBINATIONS 203
 2.5.1. Nucleic Acid Phosphorus 203
 2.5.2. Purines, Nucleosides, Nucleotides 204
 2.5.3. Nucleic Acids 205
 2.5.4. Desoxyribonucleic Acid 206
 2.5.5. Ribonucleic Acid 206
 2.5.6. Nucleoproteins 207
 2.6. METABOLIC DIFFERENTIATION OF PROTEINS 209
 2.6.1. Tissue Digestibility 209
 2.6.2. Enzyme Proteins 209
 2.6.3. Carcinogenic Viruses 210
 2.7. CANCER GROWTH AND PROTEIN COMPOSITION 211
 2.8. NUTRITION AND PROTEIN COMPOSITION 211
3. PROTEIN CHEMISTRY OF NON-CANCEROUS ORGANS 213
 3.1. PROTEIN COMPONENTS OF TISSUE 213
 3.1.1. Protein Properties 213
 3.1.2. Sulfur Compounds 213
 3.1.3. Amino Acids 214
 3.1.4. Nucleic Acid and Other Non-Protein Nitrogen 215
 3.2. PROTEIN COMPONENTS OF BLOOD 216
 3.2.1. Whole Blood 216
 3.2.2. Protein Fractions 216
 3.2.3. Physical Properties 218
 3.2.4. Amino Acid Content 218
 3.2.5. Non-Protein Nitrogen (Including Glutathione) 218
 4. PROTEIN CHEMISTRY OF EXCRETORY PRODUCTS 222
 5. CONCLUSION 222
 6. REFERENCES 223

1. INTRODUCTION

The idea that the abnormal behavior of cancer cells is an expression of abnormalities in their chemical make-up is an old and obvious one, and the early part of this century saw a number of enthusiastic analytical attacks upon this problem by chemical investigators. That these attacks were focussed largely upon proteins is not surprising in view of the predominating position both quantitatively and functionally of this chemical class in the composition of tissue solids. However, when some premature conclusions based on faulty evidence concerning characteristic abnormalities in the amino acid content of tumor proteins were anticiplamed by further and more firmly founded data indicating absence of an obvious tumor-distinctive amino acid spectrum, interest in this line of attack waned and at the same time other aspects of cancer chemistry, such as those of carcinogenic agents and enzymatic activity, grew in importance as foci of investigative attention. While at present the available evidence speaks against a striking gross difference between "cancer protein" and "normal protein," the conclusion that the proteins of normal and malignant cells are the same is certainly not warranted. At the microscopic level of the modern cytologist, cancer cells definitely reveal morphological abnormalities (18, 32, 110) even though under the lower-power lens of the clinical pathologist the individual malignant cell shows no