Downregulation of MicroRNA-200 in EBV-Associated Gastric Carcinoma

Aya Shinozaki¹, Takashi Sakatani¹, Tetsuo Ushiku¹, Rumi Hino¹, Maya Isogai¹, Shunpei Ishikawa¹, Hiroshi Uozaki¹, Kenzo Takada², and Masashi Fukayama¹

Abstract

EBV-associated gastric carcinoma is a distinct gastric carcinoma subtype with characteristic morphologic features similar to those of cells that undergo epithelial-to-mesenchymal transition. The effect of microRNA abnormalities in carcinogenesis was investigated by measuring the expression of the epithelial-to-mesenchymal transition–related microRNAs, miR-200a and miR-200b, in 36 surgically resected gastric carcinomas using quantitative reverse transcription-PCR analysis. MiR-200 family expression was decreased in EBV-associated gastric carcinoma, as compared with that in EBV-negative carcinoma. Downregulation of the miR-200 family was found in gastric carcinoma cell lines infected with recombinant EBV (MKN74-EBV, MKN7-EBV, and NUGC3-EBV), accompanied by the loss of cell adhesion, reduction of E-cadherin expression, and upregulation of ZEB1 and ZEB2. E-cadherin expression was partially restored by transfection of EBV-infected cells with miR-200 family precursors. Reverse transcription-PCR analysis of primary precursors of miR-200 (pri-miR-200) revealed that the transcription of pri-miR-200 was decreased in EBV-infected cells. Transfection of MKN74 cells with BARF0, EBNA1, and LMP2A resulted in a decrease of pri-miR-200, whereas transfection with EBV-encoded small RNA (EBER) did not. These four latent genes contributed to the downregulation of the mature miR-200 family and the subsequent upregulation of ZEB1/ZEβ2, resulting in the reduction of E-cadherin expression. These findings indicate that all the latency type I genes have a synergetic effect on the downregulation of the miR-200 family that leads to reduced E-cadherin expression, which is a crucial step in the carcinogenesis of EBV-associated gastric carcinoma. Cancer Res; 70(11); 4719-27. ©2010 AACR.

Introduction

Gastric carcinoma is one of the most common malignancies worldwide and ranks second in terms of global carcinoma-related mortality (1). Effective therapy depends on the identification of distinct gastric carcinoma subgroups and the clarification of their pathologic features and molecular mechanisms. EBV-associated gastric carcinoma is a distinct subtype comprising 8% to 11% of all gastric carcinomas (2). Monoclonal EBV is present in nearly all neoplastic cells, strongly suggesting a causal role in gastric carcinogenesis. EBV-associated gastric carcinoma displays characteristic clinicopathologic features, including male predominance, proximal localization within the stomach, and a relatively better prognosis than EBV-negative gastric carcinoma. EBV-associated gastric carcinoma is identified by its unique morphology. It is generally referred to as a lymphoepithelioma-like carcinoma, which consists of poorly differentiated tumor cell nests intermingled with dense lymphocytic infiltration. These characteristic features reflect specific interactions between infective organisms and infected host cells, i.e., EBV and gastric epithelial cells.

Viruses represent one of the major factors that could cause excessive proliferation, migration, and prolonged survival of normal cells. EBV, originally isolated from Burkitt's lymphoma, is associated with various malignancies including Hodgkin’s lymphoma, lymphoproliferative disorders in immunosuppressed patients, nasopharyngeal carcinoma, and gastric carcinoma (3–5). Several studies have investigated the role of EBV in carcinogenesis, and attempted to show that EBV gene transcripts, such as EBNA2 or latent membrane protein-1 (LMP1), disturb signal transduction in host cells, and cause immortalization or transformation (6). However, the pathologic role of latent genes in EBV latency type I neoplasms, such as EBV-associated gastric carcinoma, in which only a few viral latent genes are expressed (BARF0, EBER, EBNA1, and LMP2A), has not been fully explained.

Recently, a novel class of small, noncoding RNA molecules referred to as microRNAs (miRNA) have been identified as important posttranscriptional regulators of gene expression. MiRNAs play an important role in a wide variety of complex biological processes, including cellular development and differentiation, but investigations have only begun to clarify...
their significance in viral infection and carcinogenesis. In a preliminary experiment, we found that miR-200a and miR-200b were downregulated in a gastric carcinoma cell line infected with EBV. Both miRNAs belong to the miR-200 family, the downregulation of which induces epithelial-to-mesenchymal transition (EMT) in normal and neoplastic cells via dysregulation of the E-cadherin transcription repressors, ZEB1 and ZEB2. ZEB1 and ZEB2, also known as TCF8 and SIP1, respectively, are possible targets of the miR-200 family, and they were found to repress E-cadherin expression in vitro in the previous reports (7–10).

In the present study, we first confirmed that miR-200a and miR-200b were downregulated in surgically resected gastric carcinoma tissue, and assessed the associations between miR-200a and miR-200b downregulation and E-cadherin expression. We then verified that the miR-200 family was downregulated in vitro using established EBV-infected cell lines as models of EBV-associated gastric carcinoma and studied the EBV-latent gene underlying the downregulation of miR-200a and miR-200b. Our results identified a new role for miRNAs in the carcinogenesis of EBV-associated gastric carcinoma.

Materials and Methods

Tissue samples

Thirty-six cases of primary gastric carcinoma were used to investigate miR-200a and miR-200b expression in EBV-associated gastric carcinoma tissue. The cases were taken from the archives of the Department of Pathology at the University of Tokyo Hospital. The study included 18 EBV-associated gastric carcinoma cases and 18 EBV-negative gastric carcinoma cases. All aspects of the study were approved by the University of Tokyo Ethics Committee. The H&E-stained slides of the cases were reviewed. All cases of gastric carcinoma were histologically evaluated according to Lauren’s classification (11). We used the tumor-node-metastasis classification of the International Union Against Cancer for tumor staging (12).

EBER in situ hybridization and immunohistochemistry

The presence of EBV in tumor cells was confirmed using in situ hybridization targeting EBV-encoded small RNA with EBER1-RNA oligonucleotide probes as previously described (13).

Immunohistochemical staining with E-cadherin (clone NCH-38, dilution 1:100; Dako), LMP1 (clone cs1-4, dilution 1:200; Dako), and EBNA2 (clone PE2, dilution 1:25; Dako) in surgically resected specimens was performed using the Ventana BenchMark automated immunostainer with the labeled streptavidin-biotin peroxidase method and visualized using 3,3′-diaminobenzidine with the appropriate positive and negative controls. The immunohistochemical results were blinded and independently evaluated by two pathologists (A. Shinozaki and T. Sakatani). The proportion of E-cadherin-positive tumor cells did not differ significantly among the cases, and E-cadherin expression was evaluated according to the staining pattern and intensity. E-cadherin expression was considered “preserved” when more than 50% of the positively stained tumor cells showed a strong and membranous staining pattern. Expression was defined as “decreased” when more than 50% of the positively stained tumor cells had a weak, discontinuous, and punctate cell membrane staining pattern. The expressions of LMP1 and EBNA2 were evaluated according to the number of cells which stained positively.

Cell culture and treatment

The gastric carcinoma cell lines used in the study were MKN7, MKN74, NUGC3, SNU719, and Raji. The former three were originally derived from gastric carcinoma with histologic features of well, moderately, and poorly differentiated adenocarcinoma without EBV infection, respectively. MKN7 and MKN74 were obtained from Riken BioResource Center Cell Bank (Tsukuba, Japan) and NUGC3 was from the Japanese Cancer Research Resource Bank (Osaka, Japan). SNU719 was derived from EBV-associated gastric carcinoma and was obtained from the Korean Cell Line Bank (Seoul, Korea). Raji was derived from Burkitt’s lymphoma, and was obtained from The Global Bioresource Center, American Type Culture Collection. The cell lines were authenticated by the cell banks using short tandem repeat PCR. The cell lines were cultured in RPMI 1640 (Nacalai Tesque) supplemented with 10% FCS (MP Biomedicals), penicillin (40 units/mL), and streptomycin (50 μg/mL) at 37°C in a 5% CO2 incubator.

EBV infection

MKN7, MKN74, and NUGC3 were infected with recombinant EBV using the cell-to-cell contact method (14). A Burkitt’s lymphoma cell line, Akata, was modified to produce recombinant EBV, in which the neomycin-resistant gene is inserted into BXLF1, and was used as a source of the virus in the present study. EBV-infected cells were obtained after bulk selection with G418 (700 μg/mL; Sigma-Aldrich). EBV infection establishment was confirmed using EBER in situ hybridization applied to the cells grown on plastic slides after fixation with 10% formalin. The expression of EBV latent genes (BARF0, EBER, EBNA1, EBNA2, LMP1, and LMP2A) was evaluated using reverse transcription-PCR (RT-PCR) as previously described (15). EBV-infected cells were maintained in bulk in RPMI 1640 supplemented with 10% FCS and G418 (50 μg/mL), but G418 was removed from the medium 24 hours before the experiments.

RNA extraction and quantitative RT-PCR

Total RNA, including miRNA, was extracted from the paraffin-embedded tissue of surgically resected samples with a RecoverAll Total Nucleic Acid Isolation Kit for FFPE Tissues (Ambion). Two representative sections were selected from each case: one from gastric carcinoma tissue and the other from nonneoplastic gastric tissue. Extraction of total RNA from cultured cells was performed using the mirVana miRNA Isolation Kit (Ambion).

For miRNA analysis, mature miRNAs were reverse transcribed and quantitative PCR was performed using TaqMan...
MiRNA assays (Applied Biosystems) according to the protocols of the manufacturer. The miR-200a and miR-200b expression data were normalized to the reference RNA, RNU6B expression, and then the expression levels relative to those of SNU719 were calculated. For the mRNA analysis of E-cadherin, ZEB1, and ZEB2, total RNA was reverse transcribed using the SuperScript II First-Strand Synthesis system (Invitrogen) with random primers. Quantitative PCR was performed using TaqMan Gene Expression assays (Applied Biosystems) according to the protocols of the manufacturer. The data were normalized to glyceraldehyde-3-phosphate dehydrogenase expression. All quantitative PCR analyses were performed using the 7300 Real-time PCR System (Applied Biosystems).

The miR-200 family primary transcript precursor (pri-miR-200) expression was evaluated using RT-PCR analysis, and total RNA was extracted with TRI REAGENT (Sigma-Aldrich) and subjected to reverse transcription using the Quantitect reverse transcription kit (Qiagen) according to the protocols of the manufacturer. The RT-PCR analysis was performed using primers that targeted the predicted transcript start site of miR-200b~200a~429 clusters as previously described (8).

Western blotting

Whole cell extracts were prepared using lysis buffer [10 mmol/L Tris-HCl (pH 7.4), 150 mmol/L NaCl, 5 mmol/L EDTA, 1.0% Triton X-100, 1.0% sodium deoxycholate, 0.1% SDS, and 1 mmol/L of phenylmethylsulfonyl fluoride with protease inhibitor cocktail] and 10 μg of protein per lane was loaded and fractionated on an 8% SDS polyacrylamide gel. After transfer onto a polyvinylidene difluoride membrane, probing was carried out with anti-human E-cadherin antibody (clone NCH-38, 1:100; Dako). The membranes were visualized using the ECL Plus Western Blotting Detection System (GE Healthcare) according to the protocols of the manufacturer.

Transfection with miRNA precursors

EBV-infected MKN74 cells (MKN74-EBV) were seeded at 2 × 10⁵ cells per well in six-well plates and transfected with synthetic precursors of miRNAs (pre-miR miRNA Precursor Molecules; Ambion) using siPORT NeoFX Transfection Agent (Ambion). The final concentration of each pre-miR was 20 nmol/L (pre-miR-200a), 20 nmol/L (pre-miR-200b), and 40 nmol/L (20 nmol/L pre-miR-200a and 20 nmol/L pre-miR-200b). Total RNA was collected for assay 3 days posttransfection. Cells transfected with pre-miR miRNA Precursor Negative Control no. 1 (Ambion) at a final concentration of 20 nmol/L were used as a negative control.

Transfection with EBV-latent genes

Each EBV-latent gene, BARF0, EBER (EBER1 and EBER2), EBNA1, and LMP24 (gifts from Dr. Paul J Farrell) was cloned into a pcDNA3 vector containing FLAG-tag. MKN74 cells were transfected with each expression vector using FuGENE6 Transfection Reagent (Roche). The expression of each gene was confirmed using RT-PCR analysis as previously described (15, 16).

Statistical analyses

Statistical differences between clinicopathologic variables and E-cadherin expression were determined using Fisher’s exact test, Student’s t test, or the Mann-Whitney U test. Associations between miRNA expression levels and clinicopathologic variables were analyzed using Student’s t test, and ANOVA followed up with Fisher’s Protected Least Significant Difference, Pearson’s correlation coefficient, or Spearman’s rank correlation. All analyses were performed using StatView statistical software (version 5.0, SAS Institute, Inc.). P < 0.05 was considered to be statistically significant.

Results

Downregulation of the miR-200 family in surgically resected EBV-associated gastric carcinoma

MiR-200a and miR-200b expression levels in the surgically resected gastric tissue are shown in Fig. 1A. Expression of both miR-200a and miR-200b was decreased in EBV-associated gastric carcinoma compared with that in EBV-negative gastric carcinoma (P = 0.0107 and 0.002, respectively; ANOVA, Fisher’s Protected Least Significant Difference follow-up), and compared with that in nonneoplastic gastric tissue obtained from EBV-associated gastric carcinoma patients (P = 0.003 and 0.0001, respectively). No statistically significant differences in miR-200a or miR-200b expression were observed between the nonneoplastic tissue and tumor tissue from EBV-negative gastric carcinoma patients or between nonneoplastic tissues obtained from EBV-associated gastric carcinoma patients and those from EBV-negative gastric carcinoma patients. No statistically significant differences were observed between miR-200 family expression and age, sex, tumor size, tumor histology, stage, venous or lymphatic invasion, and lymph node metastasis.

Association between miR-200 family expression and clinicopathologic variables

E-cadherin expression was evaluated using immunohistochemistry. The typical decreased/preserved staining patterns of E-cadherin are shown in Fig. 1B. Nine out of 18 EBV-associated gastric carcinoma cases showed decreased E-cadherin expression patterns, whereas only 1 out of 18 EBV-negative cases showed decreased E-cadherin expression, and the difference was statistically significant (Fisher’s exact test, P = 0.0072).

Tumors with decreased E-cadherin expression had lower levels of miR-200a and miR-200b than tumors with preserved E-cadherin expression, and the differences were statistically significant (P = 0.0253 and 0.0379, respectively, Student’s t test; Fig. 1C).

Downregulation of the miR-200 family and E-cadherin in EBV-infected cell lines

The effect of EBV infection on downregulation of the miR-200 family and E-cadherin was further investigated in vitro in EBV-infected gastric carcinoma cell lines (MKN74-EBV, MKN7-EBV, and NUGC3-EBV). Western blot analysis revealed that E-cadherin expression was decreased in all three
EBV-infected cell lines, as compared with their original cell lines (Fig. 2A). Furthermore, miR-200a and miR-200b expression were downregulated in these EBV-infected cell lines (Fig. 2B). Quantitative RT-PCR analysis showed ZEB1 upregulation in all EBV-infected cell lines and ZEB2 upregulation in the MKN74-EBV and NUGC3-EBV cell lines (Fig. 2B). EBV infection produced a dramatic morphologic change in the MKN74-EBV cell line (Fig. 2C). It showed significant loss of cell-to-cell adhesion, as compared with its original cell line, MKN74, which formed colonies with a cobblestone arrangement of mutually cohesive cells.

The effect of transfection with miR-200 family precursors on E-cadherin expression

The effect of transfection with miR-200 family precursors on E-cadherin expression in cells with low endogenous miR-200 family expression was investigated. We found that transfection of MKN74-EBV with miR-200a and miR-200b precursors alone or together resulted in the downregulation of ZEB2, as compared with their levels in MKN74-EBV transfected with negative controls (Fig. 3). Subsequently, an increase in E-cadherin at the transcriptional level was observed in MKN74-EBV cells transfected with the miR-200 family (Fig. 3).

Downregulation of pri-miR-200 in EBV-infected gastric cell lines

To investigate how EBV infection regulates miR-200a and miR-200b levels, we performed RT-PCR analysis of their primary precursor, pri-miR-200 in EBV-infected cell lines. Pri-miR-200 transcripts were detected in MKN74, MKN7, and NUGC3 cells; however, a decrease in pri-miR-200 was apparent in all of the three cell lines infected with EBV (Fig. 4A).

The effect of EBV latent gene expression on downregulation of the miR-200 family and E-cadherin

To further elucidate which viral factor underlies the downregulation of the miR-200 family, we established MKN74 cells transfected with four different EBV latent genes, BARF0, ...
EBERs, EBNA1, and LMP2A, that are expressed in EBV-associated gastric carcinoma. RT-PCR analysis confirmed the expression of these four latent genes and the absence of LMP1 and EBNA2 expression in MKN74-EBV (Fig. 4B). The lack of LMP1 and EBNA2 expression in EBV-associated gastric carcinoma was also confirmed immunohistochemically in surgically resected tissues, which defined these tumors as latency type I, as has been described previously.

RT-PCR analysis showed a decrease in pri-miR-200 transcripts in MKN74 cells transfected with BARF0, EBNA1, and LMP2A, compared with MKN74 and MKN74-Flag (Fig. 4C), although the degree of reduction of pri-miR-200 was not as prominent as in MKN74-EBV cells. In contrast, transfection of EBERs did not downregulate pri-miR-200.

To further evaluate the downstream effects of EBV-latent genes, the expression of miR-200a, miR-200b, ZEB1, ZEB2, and E-cadherin was investigated in MKN74 transfected with BARF0, EBERs, EBNA1, and LMP2A (Fig. 5). MKN74-BARF0, MKN74-EBERs, and MKN74-EBNA1 cells showed downregulation of mature miR-200a and miR-200b compared with MKN74 and MKN74-Flag, and MKN74-LMP2A showed downregulation of mature miR-200b compared with MKN74-Flag. Quantitative RT-PCR analyses revealed the upregulation of ZEB1 in MKN74-BARF0, MKN74-EBERs, and MKN74-LMP2A (Fig. 5A). Subsequent downregulation of E-cadherin expression was observed in all cells transfected with EBV latent genes at the transcriptional level, among which only MKN74-EBERs showed a prominent decrease in E-cadherin expression in Western blotting (Fig. 5B), together with a slight change in cell morphology and the loss of cell-to-cell adhesion (Fig. 5C).

Discussion

The role that cellular miRNA abnormalities play in the genesis of diseases such as cancer has been intensely
investigated. In EBV-related tumors, the EBV-latent membrane protein, LMP1, was recently found to activate several miRNAs, including miR-146a and miR-155, through NF-κB pathways, and this mechanism might underlie the development of B-cell malignancies (17, 18). However, the role of miRNAs in carcinogenesis has not been investigated in EBV-associated gastric carcinoma. The abnormal expression of several miRNAs in gastric carcinoma has been reported in vitro and in vivo. Zhang and colleagues reported that miR-21 was overexpressed in gastric cancer and that it accelerated cell proliferation and had antiapoptotic effects (19). Recently, Du and colleagues showed that miR-141, a member of the miR-200 family, had an inhibitory effect on cell proliferation and was downregulated in 80% of gastric carcinomas; however, the authors did not investigate the association between miR-141 and E-cadherin or epithelial-to-mesenchymal transition in their study (20).

Abnormal E-cadherin expression plays a key role in gastric carcinogenesis. In our previous study, hypermethylation of the E-cadherin gene promoter was more frequent in EBV-associated gastric carcinoma than in EBV-negative gastric carcinoma. This finding is consistent with the abnormal expression of E-cadherin in cancer tissues (21). In the present study, we observed that the miR-200 family was specifically downregulated in surgically resected EBV-associated gastric carcinoma tissue, leading to the reduction of E-cadherin expression. This phenomenon was also confirmed in vitro in the EBV-infected gastric cancer cell lines; EBV infection induced downregulation of the miR-200 family and the subsequent upregulation of ZEB1 and ZEB2, resulting in the inhibition of E-cadherin expression and the corresponding morphologic change, especially in MKN74 cells. These results are consistent with previous studies that showed a role for the miR-200 family in the induction of
epithelial-to-mesenchymal transition in normal cells and various cancer cells (7–10). It is noteworthy that EBV-associated gastric carcinoma has a unique expression profile among other cell adhesion molecules, including major tight junction proteins such as claudins (22). E-cadherin dysregulation induced by EBV infection further contributes to the disruption of cell-to-cell adhesion and promotion of cell migration. These abnormalities might be closely associated with the development, progression, and unique histologic features of EBV-associated gastric carcinoma.

The results of the present study showed that EBV infection downregulates pri-miR-200 at the transcriptional level. Considering that MKN74-EBV showed the most prominent morphologic change that well reflected the marked loss of E-cadherin expression, we selected MKN74-EBV as the most suitable model of EBV-associated gastric carcinoma for further experimentation to investigate which EBV latent gene contributed to the regulation of pri-miR-200. Among various kinds of EBV-associated malignancies, EBV-associated gastric carcinoma is distinctive owing to the limited number of EBV latent genes expressed in tumor cells. It is classified as latency type I; expressed latent genes are restricted to BARF0, EBERs, EBNA1, and LMP2A, excluding LMP1 or EBNA2 which have been considered to be essential for transforming ability (3, 5, 6). We recently revealed that LMP2A plays an important role in the dysregulation of intracellular signaling pathways, such as phosphorylation of signal transducers and activators of transcription 3, leading to the promotion of DNMT1-mediated CpG island methylation (16). In contrast, Iwakiri and colleagues showed that EBERs upregulate insulin-like growth factor I to function as an autocrine growth factor (23, 24). In the present study, transfection of MKN74 with BARF0, EBNA1, and LMP2A downregulated the pri-miR-200 transcript, whereas transfection of EBERs did not. However, all four of these genes played a role in the downregulation of mature miR-200 and the subsequent decrease in E-cadherin expression. The results of our study revealed that all the latency type I genes have a synergetic effect on the downregulation of miR-200 family in EBV-associated gastric carcinoma; the repression of pri-miR-200 transcription by BARF0, EBNA1, and LMP2A, and the inhibition of mature miR-200 at the posttranscriptional step by EBERs. The subsequent decrease in E-cadherin expression was attributed to the upregulation of ZEB1 and/or ZEB2 in most of the cell lines transfected with EBV latent genes, whereas MKN74-EBNA1 was not associated with the upregulation of ZEB1 or ZEB2. This implies the presence of some other mechanisms which do not involve ZEB1 or ZEB2. Recently, Tryndyak and colleagues showed in their study that miR-200 family–mediated transcriptional upregulation of E-cadherin was associated indirectly with increased

Figure 4. The effect of EBV and its latent genes on downregulation of primary precursor of miR-200 (pri-miR-200). A, RT-PCR analysis of pri-miR-200 in gastric carcinoma cell lines. B, transfection of MKN74 cells with EBV latent genes. RT-PCR analysis of EBV latent genes in MKN74-EBV cells and MKN74 cells transfected with vectors containing each latent gene or Flag tag (Flag). SN719 was used as a positive control for latency type I genes BARF0, EBERs, EBNA1, and LMP2A, and Raji was used as a positive control for latency type II genes EBNA2 and LMP1. C, RT-PCR analysis of pri-miR-200 in MKN74 cells transfected with EBV latency type I genes.
The acetylation of histone H3 at the E-cadherin promoter, the mechanism independent of the expression level of ZEB1 (25). The effect of histone acetylation status should be investigated in future studies to clarify the role of miR-200 family in the regulation of E-cadherin expression in EBV-associated gastric carcinoma.

In mammalian miRNA biogenesis, pri-miRNAs are cleaved into pre-miRNAs by the nuclear RNase III Drosha and further processed into mature miRNAs by cytosolic Dicer. The decrease in mature miRNAs in human cancers may be caused by genomic or epigenetic alterations, as well as by the impairment of miRNA processing steps (26). The exact mechanisms of how BARF0, EBNA1, and LMP2A repress pri-miR-200 transcription remain to be elucidated in future studies, and how EBERs reduce mature miR-200 family expression must be clarified as well. One possible explanation might be the hypermethylation of promoter regions of these miRNA genes, an interaction between viral and cellular non-coding RNAs, or a decrease in the half-life of mature forms of the miR-200 family; however, these hypotheses need further elucidation (27).

In conclusion, the present study showed that EBV infection of epithelial cells causes downregulation of the miR-200 family by repressing transcription of pri-miRNAs and by posttranscriptional dysregulation of the miRNA, and all the latency type I genes have a synergistic effect on these processes. Downregulation of the miR-200 family causes a reduction in E-cadherin expression through the upregulation of the E-cadherin repressors, ZEB1 and ZEB2. The loss of cell-to-cell adhesion is essential for tumor progression, and our findings provide some clues for clarifying viral carcinogenesis in EBV-associated gastric carcinoma.

Figure 5. The effect of EBV latent genes on downregulation of miR-200 family, ZEB1/ZEB2, and E-cadherin. A, quantitative RT-PCR analysis of the miR-200 family, ZEB1, and ZEB2 in MKN74 cells transfected with EBV latency type I genes. Columns, average values of measurements done in triplicate; bars, SD (**, P < 0.05, statistically significant compared with MKN74 and MKN74-Flag; *, P < 0.05, statistically significant compared with MKN74-Flag). B, quantitative RT-PCR analysis and Western blot analysis of E-cadherin expression in MKN74 cells transfected with EBV latent genes. Columns, average values of quantitative RT-PCR analyses done in triplicate; bars, SD (**, P < 0.05, statistically significant compared with MKN74 and MKN74-Flag). C, morphologic changes observed in MKN74-EBER cells with a slight decrease in cell-to-cell adhesion.
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr. Paul J. Farrell (Tumor Virology, Division of Investigative Science, Imperial College, London, United Kingdom) for supplying the LMP2A cDNA.

References

Downregulation of MicroRNA-200 in EBV-Associated Gastric Carcinoma

Aya Shinozaki, Takashi Sakatani, Tetsuo Ushiku, et al.

Cancer Res 2010;70:4719-4727. Published OnlineFirst May 18, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-4620

Cited articles
This article cites 25 articles, 10 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/11/4719.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
/content/70/11/4719.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.