The Fbw7 Tumor Suppressor Targets KLF5 for Ubiquitin-Mediated Degradation and Suppresses Breast Cell Proliferation

Dong Zhao, Han-Qiu Zheng, Zhongmei Zhou, and Ceshi Chen

Abstract

Fbw7 is a tumor suppressor frequently inactivated in cancers. The KLF5 transcription factor promotes breast cell proliferation and tumorigenesis through upregulating FGF-BP. The KLF5 protein degrades rapidly through the ubiquitin proteasome pathway. Here, we show that the Skp1-CUL1-Fbw7 E3 ubiquitin ligase complex (SCF<Fbw7>) targets KLF5 for ubiquitin-mediated degradation in a GSK3β-mediated KLF5 phosphorylation-dependent manner. Mutation of the critical S303 residue in the KLF5 Cdc4 phospho-degrons motif (S³⁰³PPSS) abolishes the protein interaction, ubiquitination, and degradation by Fbw7. Inactivation of endogenous Fbw7 remarkably increases the endogenous KLF5 protein abundances. Endogenous Fbw7 suppresses the FGF-BP gene expression and breast cell proliferation through targeting KLF5 for degradation. These findings suggest that Fbw7 inhibits breast cell proliferation at least partially through targeting KLF5 for proteolysis. This new regulatory mechanism of KLF5 degradation may result in useful diagnostic and therapeutic targets for breast cancer and other cancers. Cancer Res; 70(11); 4728–38. ©2010 AACR.

Introduction

The F-box and WD40 repeat domain–containing 7 (Fbw7/Cdc4) protein is a bona fide tumor suppressor inhibiting cell division and growth (1). Fbw7 is inactivated in numerous human malignancies, including breast cancer by gene mutation (2–4) and expression downregulation (5, 6). Fbw7 is an F-box protein that recruits substrates for the SCF<Fbw7> (a complex of Skp1, CUL1, and F-box proteins) E3 ubiquitin ligase. SCF<Fbw7> degrades several well-known oncproteins, including MYC (7, 8), Cyclin E (4, 9), Notch (10), c-Jun (11), and mammalian target of rapamycin (12, 13). All Fbw7 substrates contain at least one conserved Cdc4 phospho-degrons (CPD) sequence (T/S)PXX(S/T/E) in which the T/S residue can be phosphorylated by GSK3 (1).

The KLF5 transcription factor has been shown to play important roles in cancer (14). Accumulated evidence suggests that KLF5 promotes fibroblast, colon, bladder, and breast cell proliferation (15–17). KLF5 is highly expressed in estrogen receptor (ER)–negative basal-type breast cancer and is an unfavorable prognostic biomarker correlated with shorter survival for breast cancer patients (18, 19). Our previous studies suggest that KLF5 promotes breast cell proliferation through directly upregulating the FGF-BP gene transcription (17). More recently, inhibition of KLF5 by small interfering RNA (siRNA) using nanoparticles has been shown to efficiently inhibit tumor growth in vivo (20). These findings define KLF5 as an oncogenic transcription factor and a potential therapeutic target for invasive breast cancer and other cancers.

KLF5 is an unstable protein with a short half-life (21). KLF5 can be degraded through the ubiquitin-dependent and ubiquitin-independent mechanisms (21, 22). Previously, we showed that the major KLF5 TAD contains destruction motifs (degrons) that recruit E3 ligases for ubiquitination and degradation (21). Besides the PY (S³²⁵PPSY) motif that recruits WWP1 (23), we noticed that the KLF5 TAD also contains two putative evolution-conserved CPD motifs (S³⁰³PPSS and S³²²TPPS) that could recruit Fbw7 containing E3 ligase complex SCF<Fbw7>. Given the significant roles of Fbw7 and KLF5 in human cancers, it is important to know whether Fbw7 promotes KLF5 degradation.

In this article, we show that Fbw7 targets KLF5 for ubiquitin-mediated proteosomal degradation. We show that the GSK3β kinase is involved in the KLF5 S303 phosphorylation that is required for Fbw7-mediated KLF5 degradation. Importantly, we found that Fbw7 suppresses breast cell proliferation at least partially through promoting KLF5 proteolysis. These findings help us understand the regulatory mechanism of KLF5 in human cancer.

Materials and Methods

Antibodies and reagents

The rabbit polyclonal anti-KLF5 and anti-WWP1 antibodies (Ab) are kindly provided by Dr. J.T. Dong (Emory University,
The anti–β-actin, anti-FLAG, and anti-glutathione S-transferase Abs are from Sigma. The anti-glyceraldehyde-3-phosphate dehydrogenase Ab is from Cell Signaling. The anti–MYC 9E10, anti-HA, anti-Ub, and anti-ERα Abs are from Santa Cruz Biotechnology. The anti–FGF-BP and goat anti-KLF5 Abs are from R&D Systems. The rabbit polyclonal anti-KLF5 pS303 Ab was generated using the keyhole limpet hemocyanin–conjugated peptide “FLPQATYFPPS/pS303/PPS” (Panora Biotech). The sera were collected and affinity purified. The Ab was diluted with 1:10,000 in 3% bovine serum albumin (BSA) for Western blotting. Calf intestinal alkaline phosphatase (CIP; 20 U/L) is from Promega.

Cell culture and transfection

Wild-type (WT) and Fbw7 null DLD1 cells (kindly provided by Drs. B. Vogelstein and K.W. Kinzler, Johns Hopkins University, Baltimore, MD) were cultured in McCoy’s 5A supplemented with 10% fetal bovine serum. SUM149 were cultured in Ham’s F-12 supplemented with 5% FBS, 5 μg/mL insulin, and 1 μg/mL hydrocortisone. All transient transfections for plasmids and siRNAs were performed using Lipofectamine 2000 (Invitrogen). All chemically synthesized siRNAs were purchased from Ambion and transfected at 10 nmol/L final concentration. The siRNA target sequences are provided in Supplementary Table S1.

Expression plasmids

The pcDNA3 plasmids expressing WT KLF5, Δ323-248, Δ299-348, and Δ321-328 have been described in our previous study (21). The KLF5-S303A, KLF5-S307A, KLF5-T323A, and KLF5-T323A/T327A were generated using the PCR-directed mutagenesis method. Three FLAG tags were added to the COOH-terminus of KLF5 and its mutants. All FLAG- and MYC-tagged WT and mutant Fbw7 plasmids are kindly provided by Dr. B.E. Clurman (Fred Hutchinson Cancer Research Center, Seattle, WA). The Fbw7-γ and Fbw7-γ-F genes were amplified and subcloned into the pLent6 vector.

Quantitative reverse transcription-PCR assays

Total RNA was isolated from cells using the Trizol reagent (Invitrogen) and subjected to reverse transcription with random hexanucleotide primers using the iScript cDNA Synthesis kit (Bio-Rad). Quantitative real-time PCR was performed on the ABI-7300 system, using Roche FastStart SYBR Green Master containing Rox (Roche Diagnostics). The primer sequences used in this study are listed in Supplementary Table S2.

Immunofluorescence staining

HEK293FT cells (5 × 10⁴) were plated on a gelatin-coated glass slide. The cells were transfected with KLF5 and FLAG-tagged Fbw7 isofoms, respectively. Two days after transfection, the cells were treated with 10 μmol/L MG132 for 4 hours and then were fixed using 4% paraformaldehyde at 4°C overnight. The slides were washed with PBS and permeabilized by 0.2% Triton X-100 in PBS for 5 minutes. The cells were then quenched with 50 mmol/L NH₄Cl for 5 minutes and blocked with 10% goat serum for 1 hour at room temperature. The anti-KLF5 Ab (1:100) and anti-FLAG M2 mouse monoclonal Ab (1:300) were diluted with 0.1% BSA to stain the cells at 4°C overnight. The slides were washed and incubated with secondary Abs [rhodamine goat anti-rabbit Ab from Jackson ImmunoResearch (1:150) and Alexa-488 goat anti-mouse from Molecular Probes (1:150)] in 5% goat serum for 1 hour at room temperature. Fluorescent images were captured using an Olympus BX-61 microscopy at total ×400 magnification.

Protein ubiquitination assays

The in vitro ubiquitination assay is performed using an ubiquitination kit from Enzo Life Science. The 3×FLAG-tagged KLF5 and KLF5-S303A substrate proteins were purified from HEK293FT cells using immunoprecipitation (IP) with FLAG M2 beads. The KLF5 proteins were eluted by using 3× Flag peptide (100 μg/mL; Sigma). Similarly, the SCF(Fbw7) E3 complexes were purified from HEK293FT cells using IP. Myc-CUL1, Rbx1, Skp1, and FLAG-Fbw7γ/-F/R338L were cotransfected. The reaction was performed with 0.75 μL E1, 1.5 μL E2 (UbCH5c), 0.75 μL Mg-ATP buffer, 1.5 μL 10× ubiquitination buffer, 0.75 μL Ub, 0.75 μL ubiquitin aldehyde, 2 μL KLF5, 2 μL E3 (SCF(Fbw7) or its mutants), and H2O in a 15 μL volume at 30°C for 1 hour. The ubiquitinated KLF5 proteins were detected by Western blotting. The KLF5 ubiquitination assay in cells has been described in our previous study (23). In vitro kinase assays

FLAG-tagged KLF5 and its mutants (S303A and S307A) were purified by IP. The KLF5 proteins (5 μL) were incubated with and without 0.4 μL active GSK3β enzyme (New England Biolabs), 2 μL 10× reaction buffer, 0.4 μL 10 mmol/L ATP, 0.2 μL γ-32P-ATP (25Ci/mmol, MP Biomedicals), and H2O up to 20 μL. The mixtures were incubated for 1 hour at 30°C and subjected to SDS-PAGE and autoradiography.

Results

Fbw7 interacts with KLF5

To test if all Fbw7 isoforms (α, β, and γ) interact with KLF5, we cotransfected FLAG-Fbw7 and FLAG-Fbw7γ (without the intact F-box that interacts with Skp1; ref. 7) with KLF5 into HEK293FT cells. The cells were treated with the MG132 proteasome inhibitor to protect the KLF5 protein from degradation by Fbw7. We performed IP with the anti-FLAG Ab and found that all (α, β, and γ) WT and -F Fbw7 proteins interact with the KLF5 protein (Fig. 1A). These results indicate that all Fbw7 isoforms interact with KLF5 in an F-box–independent manner.

To further test if the Fbw7 WD40 repeats are responsible for KLF5 binding, we cotransfected FLAG-Fbw7-WD (8 WD40 repeats only; ref. 7) with KLF5 into HEK293FT cells and performed IP. We found that the WD40 repeats are sufficient for KLF5 binding (Fig. 1A). When the key R338 residue is mutated into L in Fbw7γ, the protein-protein interaction is dramatically reduced (Fig. 1B). Thus, the WD40 repeats are sufficient and necessary for KLF5 binding. To test if Fbw7
Figure 1. The Fbw7 protein interacts with KLF5 through the WD40 repeats/CPD motif. A, KLF5 is coprecipitated with FLAG-Fbw7 (α, β, and γ; WT and Fbw7γ-F mutant). HEK293FT cells were cotransfected with different combinations of expression plasmids. IP was performed using the FLAG-M2 affinity gel. B, FLAG-Fbw7γ-R338L does not efficiently interact with KLF5 compared with WT FLAG-Fbw7. C, KLF5-S303A dramatically loses interaction with FLAG-Fbw7γ compared with WT KLF5 and KLF5-T323A. The endogenous KLF5 and FLAG-Fbw7γ-F interact in RWPE1. FLAG-Fbw7γ-F increases the KLF5 protein level because it may function as a dominant-negative mutant of Fbw7. D, the subcellular localization of KLF5 and FLAG-Fbw7 (α, β, and γ) in HEK293FT cells, as determined by immunofluorescence. The cells were treated with MG132 to prevent KLF5 from degradation by Fbw7.
binds to KLF5 CPD motifs, we mapped the KLF5 CPD motifs that are responsible for Fbw7 binding. We found that the S303A mutation in the first CPD motif dramatically decreases the protein-protein interaction whereas the T323A mutation in the second CPD motif does not (Fig. 1C). These results indicate that the KLF5 CPD motif (S303) is responsible for Fbw7 binding. Additionally, we showed that the endogenous KLF5 interacts with FLAG-Fbw7 in the RWPE1 cells (Fig. 1C).

It has been documented that Fbw7 α and γ are in the nucleus and nucleolus, respectively, in U2OS cells whereas Fbw7β is in the cytoplasm (1). To determine whether Fbw7 isoforms are colocalized with KLF5, we cotransfected FLAG-Fbw7 isoforms and KLF5 into HEK293FT cells and found that Fbw7α and γ are localized in the nucleus whereas Fbw7β is in the cytoplasm by immunofluorescence staining (Fig. 1D). As expected, KLF5 is predominately localized in the nucleus, although it can also be detected in the cytoplasm (Fig. 1D). The colocalization of KLF5 and Fbw7 α and γ is obvious.

Fbw7 overexpression promotes the KLF5 protein proteasomal degradation

Next, we asked whether Fbw7 overexpression decreases the KLF5 protein levels. To test this, we first cotransfected Fbw7γ and Fbw7γ-F with KLF5 into HEK293FT cells and found that WT Fbw7γ dramatically reduces the KLF5 steady level compared with the empty vector and Fbw7γ-F (Fig. 2A). MG132 can increase the KLF5 steady level in the presence of Fbw7γ (Fig. 2A). Similar results were observed for Fbw7α and β (Supplementary Fig. S1A and C).

To further evaluate whether Fbw7 promotes KLF5 degradation, we overexpressed WT Fbw7γ and KLF5 into HEK293FT cells and measured the KLF5 protein half-lives by cycloheximide chase assays. We found that Fbw7γ dramatically reduces the KLF5 half-life compared with the empty vector, Fbw7γ-F, and Fbw7γ-R338L (Fig. 2B). The Fbw7γ-mediated KLF5 protein half-life decrease is completely blocked by MG132 (Fig. 2B). Similarly, Fbw7α also significantly decreases the KLF5 protein half-life in HEK293FT cells (Supplementary Fig. S1B).

Because the KLF5-S303A loses the protein interaction with Fbw7γ (Fig. 1C), we tested the KLF5-S303A protein degradation by Fbw7. Consequently, the KLF5-S303A protein half-life cannot be decreased by WT Fbw7γ compared with the Fbw7γ-F mutant in HEK293FT cells (Fig. 2C). In contrast, mutation and deletion of the other CPD motif is still sensitive to Fbw7γ-mediated degradation (Supplementary Fig. S1E). These results clearly suggest that the CPD (S303) motif is responsible for Fbw7γ-mediated KLF5 degradation.

The KLF5 S303 is phosphorylated by GSK3β

KLF5-S303A cannot be recognized by Fbw7 (Fig. 1C) and cannot be degraded by Fbw7 (Fig. 2D). To further investigate whether the phosphorylation occurs at S303, we generated a FLAG-Fbw7–R338L, decreases the KLF5 protein half-life in HEK293FT cells, as determined by Western blotting. An empty vector and FLAG-Fbw7γ-F were used as controls. B, FLAG-Fbw7γ, but not FLAG-Fbw7γ-F and FLAG-Fbw7γ-R338L, decreases the KLF5 protein half-life in HEK293FT cells. The protein half-lives were measured by cycloheximide (CHX: 50 μg/mL) chase assays and Western blotting. Glutathione S-transferase was used as a transfection control. The exposure times have been adjusted for each panel to compare protein degradation. C, KLF5-S303A is resistant to FLAG-Fbw7γ-mediated degradation.

KLF5-S303A cannot be decreased by WT Fbw7γ compared with the Fbw7γ-F mutant in HEK293FT cells (Fig. 2C). In contrast, mutation and deletion of the other CPD motif is still sensitive to Fbw7γ-mediated degradation (Supplementary Fig. S1E). These results clearly suggest that the CPD (S303) motif is responsible for Fbw7γ-mediated KLF5 degradation.

Because the KLF5-S303A loses the protein interaction with Fbw7γ (Fig. 1C), we tested the KLF5-S303A protein degradation by Fbw7. Consequently, the KLF5-S303A protein half-life cannot be decreased by WT Fbw7γ compared with the Fbw7γ-F mutant in HEK293FT cells (Fig. 2C). In contrast, mutation and deletion of the other CPD motif is still sensitive to Fbw7γ-mediated degradation (Supplementary Fig. S1E). These results clearly suggest that the CPD (S303) motif is responsible for Fbw7γ-mediated KLF5 degradation.

The KLF5 S303 is phosphorylated by GSK3β

KLF5-S303A cannot be recognized by Fbw7 (Fig. 1C) and cannot be degraded by Fbw7 (Fig. 2D). To further investigate whether the phosphorylation occurs at S303, we generated a KLF5-S303 phosphorylation–specific Ab using a synthesized phosphorylated peptide. This anti-KLF5 pS303 Ab works well for Western blotting as it specifically detects the phosphorylated KLF5 band from WT KLF5 and KLF5-S307A, but not KLF5-S303A (Fig. 3A). To further test whether the KLF5 phosphorylation is required for Fbw7 binding, we treated the FLAG-Fbw7γ and KLF5-transfected HEK293FT cell lysate with different dosages of CIP and performed IP. We confirmed that the CIP treatment almost completely eliminated the KLF5 S303 phosphorylation (Fig. 3A). Importantly, the binding between FLAG-Fbw7γ and KLF5 is significantly reduced after the CIP treatment (Fig. 3A).

It is well known that GSK3β is the kinase for the first Ser/Thr in the CPD motifs of several Fbw7 substrates, such as MYC (1). To test if the KLF5 degradation is regulated by GSK3β in cultured cells, we treated HeLa cells with the GSK3 inhibitor LiCl and the negative control KCl. As expected,
LiCl decreases the KLF5 pS303 levels (Fig. 3A) and extends both the KLF5 and MYC protein half-lives in HeLa (Fig. 3A). These results suggest that GSK3\(\beta\) could be the kinase for KLF5 S303 phosphorylation.

To directly test whether GSK3\(\beta\) phosphorylates KLF5 at S303, we performed the \textit{in vitro} kinase assay using the purified recombinant GSK3\(\beta\) kinase and the purified recombinant KLF5/KLF5-S303A/KLF5-S307A proteins in the presence of \(\gamma\)-32P-ATP. We found that GSK3\(\beta\) can efficiently phosphorylate WT KLF5 and KLF5-S307A but not KLF5-S303A (Fig. 3B). These results indicate that the KLF5 protein phosphorylation at S303 can be mediated by GSK3\(\beta\) \textit{in vitro}.

Fbw7 ubiquinates KLF5

To test whether Fbw7 ubiquinates KLF5 in cultured cells, we performed the KLF5 ubiquitination assay in HEK293FT cells as described in our previous study (23). We found that WT Fbw7\(\gamma\) but not the Fbw7\(\gamma\)-F mutant increases the KLF5 ubiquitination (Fig. 3C). Under the same condition, KLF5-S303 cannot be efficiently ubiquitinated by Fbw7\(\gamma\) (Fig. 3C). Additionally, we examined the endogenous KLF5

Figure 3. GSK3\(\beta\)-mediated KLF5 phosphorylation at S303 regulates the KLF5-Fbw7 protein interaction and the KLF5 protein ubiquitination and degradation. A, KLF5 phosphorylation at S303 regulates the KLF5-Fbw7 protein interaction and the KLF5 protein degradation. CIP (100 units) decreases the S303 phosphorylation, as determined by Western blotting using the KLF5 pS303-specific Ab. The Fbw7-KLF5 protein interaction was disrupted by CIP. The cell lysate (200 \(\mu\)L) was treated with different dosages of CIP (0, 100 U, and 200 units) for 1 h at 30°C. The GSK3 inhibitor LiCl (20 mmol/L) decreases the endogenous KLF5 phosphorylation at S303, as determined by IP-Western blotting, and extends the KLF5 and MYC protein half-lives in HeLa, as determined by the cycloheximide chase assay. KCl was used as the negative control. N.s., a nonspecific band. B, the GSK3\(\beta\) kinase efficiently phosphorylates WT KLF5 and KLF5-S307A, as determined by the \textit{in vitro} kinase assay using \(\gamma\)-32P-ATP. The loading of the KLF5, KLF5-S303A, and KLF5-S307A proteins is shown by silver staining. C, Fbw7\(\gamma\) increases the ubiquitination of KLF5 but not KLF5-S303A in HEK293FT cells. Expressing plasmids for HA-Ub, Myc-Fbw7\(\gamma\), Myc-Fbw7\(\gamma\)-F, and KLF5-3 \times FLAG were transfected. The cells were treated with MG132 to accumulate the ubiquitinated KLF5. The IP was performed with the anti-FLAG M2 beads under denaturing conditions. An empty vector and FLAG-Fbw7\(\gamma\)-F were used as controls. D, Fbw7\(\gamma\) ubiquinates KLF5 but not KLF5-S303A \textit{in vitro} using its E3 ligase activity. The intact SCF\(^{Fbw7}\) E3 ligase complex was specifically purified by IP using the anti-FLAG M2 beads. FLAG-Fbw7\(\gamma\)-F and FLAG-Fbw7\(\gamma\)-R338L cannot ubiquitinate KLF5 under the same conditions.
ubiquitination in the Fbw7 WT and knockout DLD1 colon cancer cell lines (4) and found that the endogenous KLF5 ubiquitination is decreased in Fbw7 knockout DLD1 cells (Supplementary Fig. S2A).

To test whether Fbw7 directly ubiquitinates KLF5 in vitro, we purified Fbw7 and the SCFFbw7 E3 ligase complex from HEK293FT cells. The purified FLAG-Fbw7\textgamma/Fbw7\textgamma-R338L, but not Fbw7\textgamma-F, complexes contain the cooverexpressed Myc-CUL1 protein (Supplementary Fig. S2B), suggesting that the intact SCFFbw7 E3 complex was purified by IP Fbw7\textgamma, Fbw7\textgamma-R338L, but not Fbw7\textgamma-F. In the presence of the KLF5 substrate, Ub, E1, E2 (UbcH5a), and ATP, the ubiquitinated KLF5 is dramatically increased by WT Fbw7\textgamma, but not by Fbw7\textgamma-F or Fbw7\textgamma-R338L (Fig. 3D). Finally, we showed that Fbw7\textgamma cannot ubiquitinate KLF5-S303A efficiently compared with WT KLF5 in vitro (Fig. 3D). These results suggest that the SCFFbw7 E3 ligase specifically ubiquitinates KLF5 in vitro.

Endogenous SCFFbw7 promotes KLF5 degradation

To test if endogenous KLF5 is the substrate of endogenous Fbw7, we examined the KLF5 protein levels in the Fbw7 knockout DLD1 cells and found that KLF5 is upregulated, like another Fbw7 substrate MYC (Fig. 4A). In the presence of MG132, there is no difference for the KLF5 protein levels between the WT and Fbw7 null cells, suggesting that WT Fbw7 targets KLF5 for proteasomal degradation. To further test whether Fbw7 promotes the KLF5 protein degradation, we compared the KLF5 protein half-lives. As shown in Fig. 4A, both the KLF5 and MYC protein half-lives are dramatically extended in the Fbw7-deficient cells compared with the WT DLD1 cells.

To further test if endogenous Fbw7 suppresses the KLF5 protein expression in other cells, we knocked down Fbw7 by two different siRNAs in HeLa, MCF10A, and BT20 cells. The Fbw7 knockdown efficiencies are about 60% to 80% in these cell lines (Fig. 4B). We could not detect the endogenous Fbw7 proteins in these cell lines (data not shown) because there are no effective anti-Fbw7 Abs for Western blotting to date (24). We found that the endogenous KLF5 and MYC protein levels are significantly elevated in all these cell lines (Fig. 4B). As expected, the KLF5 mRNA levels are not increased by Fbw7 siRNAs (Supplementary Fig. S2C). Furthermore, knockdown of Fbw7 by two different siRNAs clearly extends both the KLF5 and MYC protein half-lives in HeLa (Fig. 4B). Consistently, the KLF5 and MYC protein half-lives...
in the Fbw7-mutated SUM149 breast cancer cell line are much longer than those in MCF10A that has WT Fbw7 (Fig. 4C). These results strongly suggest that inactivation of endogenous Fbw7 by gene knockout, knockdown, or mutation increases the KLF5 protein stability.

Because Fbw7 functions as an adaptor for SCF\(^{Fbw7}\), we asked whether knockdown of other SCF components, such as CUL1 (25), also increases the KLF5 protein expression. We knocked down CUL1 and CUL2 in HeLa, respectively, and found the KLF5 protein levels are specifically upregulated by knocking down CUL1 but not CUL2 (Fig. 4D). The knockdown efficiencies of CUL1 and CUL2 are ~90% as monitored by quantitative reverse transcriptase PCR (qRT-PCR; Supplementary Fig. S2D). Importantly, the KLF5 mRNA levels are not upregulated by knocking down CUL1, suggesting that the upregulation of KLF5 occurs at the post-transcriptional level. Similar to the knockdown of Fbw7, knockdown of Rbx1 by siRNA also upregulates the KLF5 protein level in HeLa (data not shown). These findings suggest that the SCF\(^{Fbw7}\) E3 complex suppresses the KLF5 protein expression.

The expression of Fbw7 and KLF5 in breast cancer

Because the degradation of MYC by Fbw7 is isoform and cell line specific (24, 26), we asked whether the endogenous Fbw7 isoforms (\(\alpha\), \(\beta\), and \(\gamma\)) also promote KLF5 degradation in a cell line--dependent manner. To test this, we knocked down Fbw7 using the isoform-specific siRNAs (27) in HeLa, MCF10A, and 184B5 cell lines. We found that knockdown of any Fbw7 isoforms (\(\alpha\), \(\beta\), and \(\gamma\)) upregulates the KLF5 protein levels in HeLa with a similar extent (Fig. 5A). In the MCF10A breast cell line, knockdown of Fbw7\(\alpha\) and \(\beta\) isoforms upregulates KLF5 with a similar efficiency. However, knockdown of Fbw7\(\gamma\) does not show any significant changes for KLF5 (Fig. 5A). In the 184B5 breast cell line, only knockdown of Fbw7\(\alpha\) clearly upregulates KLF5 (Fig. 5A). These results suggest that the degradation of KLF5 by Fbw7 is also isoform and cell line specific. Consistent with a previous report that Fbw7\(\alpha\) is the predominant isoform expressed in breast cancer cell lines (3), endogenous Fbw7\(\alpha\) appears as the major active isoform for KLF5.

Previously, we showed that KLF5 is expressed in ER\(_{\alpha}\)-negative breast cell lines and downregulated in ER\(_{\alpha}\)-positive
The loss of KLF5 SUM149 leads to the accumulation of a high level of KLF5 with 184A1 and 184B5. Interestingly, inactivation of Fbw7 in immortalized cell lines (MCF10A, 184A1, and 184B5), the mRNA levels of Fbw7 and WWP1 appear to compensate each other because knockdown of either Fbw7 or WWP1 causes the expression upregulation of the other KLF5 E3 ligase (Supplementary Fig. S2E; Fig. 5C).

Finally, we measured the relative mRNA levels of KLF5, total Fbw7, and the individual Fbw7 isoforms (α, β, and γ) in 10 breast cell lines by qRT-PCR (Fig. 5D). Among three immortalized cell lines (MCF10A, 184A1, and 184B5), the mRNA levels of Fbw7α and total Fbw7 negatively correlate with the KLF5 protein levels (Fig. 5B and D). Consistent with our previous reports (17, 29), the low levels of KLF5 protein expression in ERα-positive breast cancer cells seem to be driven by the loss of KLF5 mRNA expression. In ERα-negative cancer cell lines, the downregulation of Fbw7 is obvious compared with 184A1 and 184B5. Interestingly, inactivation of Fbw7 in SUM149 leads to the accumulation of a high level of KLF5 protein without upregulating the KLF5 mRNA level (Fig. 5B and D).

Fbw7 suppresses the FGF-BP expression and breast cell proliferation through promoting KLF5 degradation

Recently, we showed that KLF5 promotes breast cell proliferation through upregulating the FGF-BP expression (17). To test whether Fbw7 suppresses the KLF5 transactivation function, we knocked down Fbw7 by siRNA in MCF10A, 184B5, and MCF7 breast cells (Supplementary Fig. S3A) and found that the KLF5 protein levels are upregulated (Fig. 6A). In agreement with the fact that FGF-BP is one of the KLF5 transcriptional targets (17), we found that the FGF-BP expression upregulation occurs at the mRNA and/or protein levels (Fig. 6A). Knockdown of Fbw7 by two different short hairpin RNAs in 184B5 shows similar results (Supplementary Fig. S3B). Importantly, the depletion of KLF5 can significantly rescue the Fbw7 siRNA–induced FGF-BP upregulation in all three cell lines (Fig. 6A). These observations suggest that endogenous Fbw7 suppresses the KLF5 function of inducing the FGF-BP gene transcription in breast cells.

Because KLF5 promotes breast cell proliferation (17) and Fbw7 also targets several other oncogenes for degradation, it is important to elucidate whether Fbw7 suppresses breast cell proliferation through KLF5. As shown in Fig. 6B, knockdown of Fbw7 significantly increases DNA synthesis in MCF10A, 184B5, and MCF7. Knockdown of Fbw7 by two different short hairpin RNAs in 184B5 also increases DNA synthesis and cell proliferation (Supplementary Fig. S3C). In agreement with our earlier report (17), depletion of KLF5 can almost completely block the Fbw7 siRNA–induced DNA synthesis increase in all three cell lines. Additionally, depletion of KLF5 in MCF7 can rescue the Fbw7 siRNA–induced colony formation increase in soft-agar (Supplementary Fig. S3D). These results strongly argue that endogenous Fbw7 suppresses breast cell proliferation through targeting the endogenous KLF5 for degradation.

Finally, we tested whether restoring the Fbw7 expression in the SUM149 breast cancer cell line, in which the endogenous Fbw7 loses its activity by gene mutation (3), inhibits FGF-BP expression and DNA synthesis. FLAG-Fbw7γ, FLAG-Fbw7γ-F, and LacZ were overexpressed in SUM149 by lentiviruses. As expected, the KLF5 protein level, but not its mRNA level, is specifically downregulated by the WT Fbw7γ compared with LacZ and Fbw7γ-F (Fig. 6C). Furthermore, restoring WT Fbw7γ in SUM149 significantly decreases the FGF-BP mRNA level (Fig. 6C) and DNA synthesis (Fig. 6D) compared with LacZ and Fbw7γ-F.

Discussion

This is the first study to report that the KLF5 protein degradation is targeted by the SCF^{Fbw7}-E3 ligase. We provide several lines of evidence to support that Fbw7 targets the KLF5 protein for ubiquitin-mediated proteasomal degradation and suppresses breast cell proliferation. First, Fbw7 binds to the KLF5 protein through the WD40/CPD motif interaction. Second, Fbw7 overexpression decreases the KLF5 protein level and half-life. Third, the phosphorylation of KLF5 at S303 by GSK3β is indispensable for Fbw7 to target KLF5 for ubiquitination and degradation. Fourth, Fbw7 ubiquititates KLF5 through its E3 ligase activity. Additionally, the inactivation of Fbw7 increases the endogenous KLF5 protein level and half-life. Finally, Fbw7 suppresses the KLF5 functions of promoting the FGF-BP gene expression and breast cell proliferation.

The KLF5 protein is an unstable protein with a short half-life. Previously, we reported that KLF5 degrades rapidly through the ubiquitin proteasome pathway (21). The degrons overlap with its TAD between 299 and 348. We first identified a PY motif from this region that recruits WWP1 (23). However, Fbw7 binds exclusively to the KLF5 CPD motif in a S303 phosphorylation–dependent manner (Supplementary Fig. S4). Thus, KLF5 TAD contains two different degrons that recruit Fbw7 and WWP1, respectively (Supplementary Fig. S4). Depletion of either WWP1 or Fbw7 increases the KLF5 protein levels in MCF10A; however, Fbw7 is the major E3 ligase for KLF5. Interestingly, when Fbw7 is knocked down in MCF10A, the WWP1 expression level is upregulated and vice versa (Supplementary Fig. S2E; Fig. 5C). Thus, Fbw7 and WWP1 are coordinately activated to target KLF5 for degradation.

The KLF5 protein is phosphorylated by PKC (30) and extracellular signal-regulated kinase (31). For the first time, we found that the phosphorylation of KLF5 at S303 by GSK3β promotes the protein ubiquitination by Fbw7. Additionally, GSK3β-mediated phosphorylation usually needs priming phosphorylation at +4 site (S307 in KLF5; ref. 1). However, KLF5-S307A can still be efficiently phosphorylated.
by GSK3β in vitro and in cultured cells (Fig. 3). In addition, we found that KLF5-S307A can still efficiently interact with Fbw7γ and be ubiquitinated by Fbw7γ (data not shown). These results suggest that the priming phosphorylation could be from other sites.

Three Fbw7 isoforms (α, β, and γ) show different subcellular localization in U2OS (1) and HEK293FT cells (Fig. 1D). KLF5 is predominately localized in the nucleus of HEK293FT cells (Fig. 1D). However, a small fraction of KLF5 has been shown to localize in the cytoplasm (32). Nevertheless, all Fbw7 isoforms interact with KLF5 in our IP experiments after the disruption of the intact cell structures (Fig. 1A). Overexpression of any Fbw7 isoforms decreases the KLF5 protein levels (Supplementary Fig. S1A and C; Fig. 2A). Importantly, knockdown of any endogenous Fbw7 isoforms in HeLa increases the endogenous KLF5 protein levels (Fig. 5A). In breast cells, Fbw7α seems to be the major functional endogenous isoform for KLF5.
Fbw7 has been documented to be inactivated by somatic gene mutation in a small subset (~1%) of breast cancers based on the Catalogue of Somatic Mutations in Cancer Database. Interestingly, polymorphism of the Fbw7 gene was found to be associated with high-stage and ERα-negative breast cancers (33). Fbw7 has been reported to be induced by the p53 tumor suppressor (6) that is frequently mutated in ERα-negative breast tumors. Indeed, the total Fbw7 mRNA levels in ERα-negative breast cancer cell lines are generally lower than that in ERα-positive breast cancer cell lines (Fig. 5D). In addition to breast cancer, Fbw7 is more frequently mutated in tumors from the endometrium (15%), large intestine (9%), thyroid (8%), hematopoietic and lymphoid tissue (8%), pancreas (3%), and others. Consistently, the conditional knockout of Fbw7 in the T-cell lineage of mice shows thymic hyperplasia and eventually the mice develops thymic lymphoma (34). The Fbw7 heterozygous knockout mice increase susceptibility to radiation-induced tumorigenesis (6). It is well documented that KLF5 plays oncogenic roles in breast cancer (17), colon cancer (35), leukemia (36), and pancreatic cancer (37). These findings suggest that genetic inactivation of Fbw7 in a variety of cancers could promote cancer progression through accumulating KLF5.

Fbw7 has been suggested to be a tumor suppressor controlling the level of the key cell cycle regulatory protein Cyclin E (1). In this study, we show that Fbw7 inhibits KLF5. Importantly, KLF5 seems to be a critical substrate for Fbw7 to suppress breast cell proliferation because depletion of KLF5 can rescue the inactivation of Fbw7-induced DNA synthesis increase (Fig. 6A and B). KLF5 has been shown to promote G1-S and G2-M cell cycle transition through upregulating the FGF-BP, Cyclin D1, and Cyclin B1 protein levels (15, 16). Thus, Fbw7 suppresses cell cycle progression by directly and indirectly controlling multiple cell cycle regulatory proteins.

In summary, we show that Fbw7 targets KLF5 proteins for ubiquitin-mediated proteosomal degradation in a S303 phosphorylation-dependent manner. We show that Fbw7 suppresses KLF5’s functions of promoting gene transcription and breast cell proliferation. Given the frequent inactivation of Fbw7 in breast and other cancers, these findings may help us further understand the roles of Fbw7 and KLF5 in cancer development.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Drs. J.T. Dong, B.E. Clurman, B. Vogelstein, K.W. Kinzler, M. Tenniswood, and C. Yan for kindly providing reagents.

Grant Support

Grant from the American Cancer Society (RSG-08-199-01) and a grant from the Department of Defense (W81XWH-07-1-091). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 01/07/2010; revised 03/19/2010; accepted 04/02/2010; published OnlineFirst 05/18/2010.

References

www.aacrjournals.org Cancer Res; 70(11) June 1, 2010 4737

Downloaded from cancerres.aacrjournals.org on June 3, 2017. © 2010 American Association for Cancer Research.
The Fbw7 Tumor Suppressor Targets KLF5 for Ubiquitin-Mediated Degradation and Suppresses Breast Cell Proliferation

Dong Zhao, Han-Qiu Zheng, Zhongmei Zhou, et al.

Cancer Res 2010;70:4728-4738. Published OnlineFirst May 18, 2010.

Updated version Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-10-0040

Supplementary Material Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2010/05/17/0008-5472.CAN-10-0040.DC1

Cited articles This article cites 37 articles, 18 of which you can access for free at: http://cancerres.aacrjournals.org/content/70/11/4728.full.html#ref-list-1

Citing articles This article has been cited by 20 HighWire-hosted articles. Access the articles at: /content/70/11/4728.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.