Myc-Induced MicroRNAs Integrate Myc-Mediated Cell Proliferation and Cell Fate
Jong Wook Kim1,2, Seiichi Mori3, and Joseph R. Nevins1,2

Abstract
The Myc pathway, often deregulated in cancer, is critical in determining cell fate by coordinating a gene expression program that links the control of cell proliferation with cell fate decisions. As such, precise control of the Myc pathway activity must be achieved to ensure faithful execution of appropriate cellular response and to prevent progressing toward a malignant state. With recent highlighted roles of microRNAs (miRNA) as critical components of gene control, we sought to evaluate the extent to which miRNAs may contribute in the execution of Myc function. Combined analysis of mRNA and miRNA expression profiles reveals an integration whereby the Myc-mediated induction of miRNAs leads to the repression of various mRNAs encoding tumor suppressors that block cell proliferation including p21, p27, and Rb. In addition, the proapoptotic PTEN tumor suppressor gene is also repressed by Myc-induced miRNAs, suggesting that Myc-induced miRNAs contribute to the precise control of a transcriptional program that coordinates the balance of cell proliferation and cell death. Cancer Res; 70(12); 4820–8. ©2010 AACR.

Introduction
Cancer is a disease of gene mutation, arising as a result of complex alterations in signaling pathways that are essential for making critical cell fate decisions under appropriate circumstances (1). The Myc pathway represents one key aspect of the signaling events that dictate important cellular outcomes in normal cells, and its dysregulation is a frequent etiology in cancer development (2). A key role for Myc is to integrate various environmental external signals so as to orchestrate an extensive transcription program that elicits cell proliferation, differentiation, or cell death (3, 4).

The Myc transcription factor recognizes a canonical motif known as the E-box (CACGTG), in which it forms a heterodimer with a partner protein Max, to further recruit additional cofactors that are necessary for transcriptional activation of target genes, many of which are critical for S-phase entry (5, 6). Equally important is the ability of Myc to repress the expression of various target genes, including those encoding key cell cycle arrest proteins such as cyclin-dependent kinase (CDK) inhibitors (p21 and p27), as well as additional tumor suppressor genes that act negatively to regulate the onset of proliferation (7–9). Indeed, ectopic expression of many Myc-repressed target genes have been shown to lead to defects in cell cycle progression and proliferation (10–12).

Despite such significance, much less is known of the mechanisms mediating the repression of gene expression by Myc. It has been proposed that Myc may achieve transcriptional repression in part through the recruitment of additional cofactors such as Miz1 or Sp1 (11, 13, 14), histone modifying factors, or DNA methyltransferases to possibly explain the conundrum of how a single molecule can act both as an activator and a repressor in the same cellular context (15, 16).

Adding to this complexity is the recent identification of microRNAs (miRNA) as important contributors to Myc activity. MiRNAs are small 19- to 24-nucleotide-long noncoding RNAs that individually target hundreds of genes by virtue of forming a partial complementary binding to the 3′-untranslated region (UTR) of its cognate genes (17). miR-17-92 cluster, which encode six individual miRNAs, is directly activated by Myc as a way to fine tune the activity of yet another Myc target E2F1 (18). Furthermore, these miRNAs, along with its paralogous cluster miR-106b-25, have been implicated in the control of the transforming growth factor β (TGF-β) signal pathway. (19, 20) More recent studies have shown that repression of many miRNAs by Myc contribute to conferring cells with proliferative advantage in tumor cells (21, 22). In this study, we set out to examine the role of miRNAs in affecting the dynamics of the Myc transcriptional network of normal proliferating cells through an integrative approach of examining the genome-wide expression profiles of mRNA and miRNA. By combined analysis of the two complementary data, we not only identify novel miRNAs that are induced by Myc, but also a regulatory connection that seems to ensure faithful execution of the Myc proliferative program...
by mediating the repression of key cell cycle arrest genes and apoptotic genes.

Materials and Methods

Cell culture

Human mammary epithelial cells were cultured as previously described (23). Before infection with recombinant adenovirus expressing Myc or green fluorescent protein (GFP), cells were grown in 0.25% serum starvation medium (without epidermal growth factor) for 48 hours. WI38 fibroblasts and HeLa cells were maintained in DMEM with 10% fetal bovine serum in 5% CO₂, mouse embryonic fibroblast (MEF) harboring c-Myc (Myc-MEFs) were cultured as previously described. (24).

MiRNA array hybridization and data analysis

Experiments for generating miRNA expression profiles reflecting Myc activities were carried out as previously described (25). For RNA preparation, the mirVana miRNA Isolation kit (Ambion) was used to extract total RNA retaining smaller RNA population. Concentration and the quality of the resulting RNAs were assessed both through NanoDrop (Thermo Scientific) and Agilent 2100 bioanalyzer. MiRNA array hybridization was carried out according to the manufacturer's protocol (Exiqon). High-quality RNA derived from lung, breast, brain, heart, and prostate tissues (Ambion) were pooled and used as a reference to label green channel across the samples. The resulting GPR files were loess normalized using the Limma package in R (26). The normalized data were labeled 1 or 0 depending on the status of Myc. We correlated the Myc status with each miRNA probe and calculated the P value of the significance of the observed correlation against a null hypothesis of no correlation.

Myc expression profile which was previously generated on an U133 plus2.0 array (GSE151) was MAS5 normalized with R. Software to implement Gene Set Enrichment Analysis (GSEA) was downloaded from the Broad Institute Web site. The samples were given phenotypic label depending on the Myc status, and C3 gene set was selected for the analysis (27). The detailed description of the parameters used to run the analysis is provided in Supplementary Table S6. Gene sets whose nominal P values are <0.05 and false discovery rates are <0.25 were considered to be significant for further investigation.

PTEN luciferase reporter assay

3′-UTR sequence of the PTEN was retrieved through National Center for Biotechnology Information nucleotides. The PTEN 3′-UTR were amplified using primers (for sequences, see Supplementary Table S5) flanking XhoI and NotI restriction sites and cloned into siCHECK-2 Vectors (Promega). Site-directed mutagenesis was carried out by using GeneTailor Site-Directed Mutagenesis System (Invitrogen) according to the manufacturer’s protocol and was verified by sequencing. Dual luciferase assay was carried out by cotransfecting HeLa cells with either the wild-type or the mutant luciferase construct, in combination with designated miRNA mimics (Dharmacon), and harvested according to the manufacturer’s protocols (Promega). All luciferase assays were carried out in HeLa cells 24 hours posttransfection in three independent experiments. Renilla luciferase activity was normalized to firefly luciferase to control for transfection variation.

Transfection

Cells were split 24 hours before all transfection assays at a confluence of 50% to 70%. Anti-sense oligos (ASO) targeting miR-18a, miR-20a, miR-23b, miR-130a, miR-193b, and miR-302c were obtained through integrative DNA technology. Small interfering RNA targeting Myc and miRNA mimics of miR-23b and miR-193b, and negative control oligos, were purchased from Dharmacon. For transfection of oligos and plasmids, Lipofectamine 2000 was used and the instructions were followed according to the protocols provided by the manufacturer (Invitrogen). ASOs were transfected at a concentration of 400 nmol/L, and the mimics were cotransfected at 200 nmol/L with psiCHECK-PTEN 3′-UTR vector (400 ng). For combined transfection of miRNAs, 200 nmol/L of indicated ASOs were used. For ectopic PTEN expression, 1-μg plasmids containing either a full-length PTEN (Origene) or miR-23b and miR-193b mutant PTEN 3′-UTR were cotransfected with 200 nmol/L of corresponding miRNA mimics. For Myc inhibition, 100 nmol/L of small interfering RNA targeting Myc was used before measurement of proliferation.

Bromodeoxyuridine immunostaining

Bromodeoxyuridine (BrdUrd) immunostaining was assessed on asynchronously growing WI38 fibroblasts. Twenty-four hours after 1.5 × 10⁵ cells were split into a six-well plate, cells were either mock transfected or transfected with ASOs. To achieve a steady-state inhibition of individual miRNAs and also to avoid contact inhibition upon confluence, the transfection protocols were repeated 48 hours after the initial transfection. The cells were pulsed labeled for 1 hour with 10 μmol/L of BrdUrd 24 hours after the second transfection. Immunostaining protocol was carried out as previously reported (28).

Caspase-3 assay

Active caspase-3 staining assay (BD Pharmingen) was carried out according to the manufacturer’s protocol. Apoptosis upon transfection of either PTEN construct with full-length 3′-UTR (Origene), or ASOs inhibiting the activity of miR-23b, miR-193b, and miR-302c was also determined. The latter was used as an internal control, alongside mock transfection. Floating cells, as well as attached cells, were collected 48 hours after transfection. Cells stained with phcoerythrin (PE)-conjugated anti–caspase-3 were subject to flow cytometry analysis on Canto II (BD Pharmingen), and subsequent data were analyzed on the flow cytometry analyzing software (Flowjo). Fraction of cells that were labeled positive for PE staining was considered to be apoptotic.
Results

A comparison of mRNA and miRNA expression profiles induced by Myc

As one approach to explore the molecular architecture of the Myc pathway, we focused on a previously generated gene expression profile that reflects changes in mRNA levels as a consequence of Myc activity (25). This expression signature includes genes whose level of expression increases (red color) as well as genes that are repressed (blue color) by the action of Myc (Fig. 1). Examination of the functional annotation of the group of genes that were induced by Myc showed that many have known roles in metabolism and nucleotide biosynthesis, an aspect that has been previously established to be important for Myc-mediated proliferation (Supplementary Table S1; refs. 5, 6, 29). Although there was no predominant enrichment for specific biological annotation for genes that were repressed by Myc, they included many previously known Myc-repressed target genes, such as CDK inhibitors, cell cycle arrest genes, as well as components of the TGF-β signaling pathway, etc., many of whose activity negatively affect the activity of the Myc pathway, suggestive of an active mechanism by which Myc represses the activity of these functionally related genes (7–9).

To focus on the mechanisms that underlie the generation of this Myc profile, including the genes induced or repressed by Myc, we made use of GSEA, a computational tool developed to derive biological significance from phenotypes reflected in transcriptional profiles by using various a priori established gene set (30). We focused on gene sets representing regulatory motifs for transcription factor and miRNA binding that were previously defined by species conservation (27). As expected, there was a strong enrichment for canonical Myc binding sites within the group of genes that were activated by Myc (Fig. 1). In contrast, the group of genes that were repressed by Myc did not exhibit enrichment for Myc binding sites but rather a substantial enrichment for miRNA binding sites in their 3′-UTR sequences. A similar result was seen in a second independent data set (Supplementary Tables S2 and S3). This result suggested a possible contribution of miRNAs in mediating the repression of Myc target genes.

A role for Myc-induced miRNAs in cell proliferation

To address a potential role for miRNAs in a Myc regulatory program, we made use of the same experimental approach to generate RNA samples that were used to generate the mRNA expression profiles but now focusing on low-molecular-weight RNAs and hybridization to a miRNA microarray platform.
We used locked-nucleic acid–based miRNA arrays (Exiqon) that have previously been shown to have high specificity and sensitivity (31). As with the mRNA expression profile, the microarray was performed in 10 experimental replicates for each condition (Myc off and Myc on) to minimize any variations that may result from technical or experimental noises. Differentially expressed genes were identified by assigning a 1, 0 class to each phenotype and calculating correlation coefficient of individual miRNAs according to Myc status. Only genes with a P value of <0.05 (see Experimental Procedures) were selected for further analysis. As depicted in Fig. 2, several miRNAs displayed statistically significant correlation (P < 0.05) with the status of Myc expression (for full list, see Supplementary Table S4). Quantitative real-time PCR analysis on nine selected miRNAs, preferentially activated by Myc, showed an overall good correlation with the microarray results, indicating that the results reflected by the microarray analysis were reliable (Supplementary Fig. S1).

Previous work has shown that members of the miR-17-92 cluster are a direct target of Myc (18). Indeed, the analysis depicted in Fig. 2 shows that members of this cluster of miRNAs, specifically miR-18a and miR-20a, were indeed activated by Myc. We also found induction of many miRNAs that were previously shown to be induced by serum (32, 33), consistent with a role for Myc in the response to serum. We also observed overlap in several miRNAs that are induced by N-Myc (let-7I, miR-100, miR-221, miR-92, and members of the miR-17-92 cluster), raising the possibility that some miRNAs may be common target of both n-Myc and c-Myc (34).

Several the miRNAs that were induced by Myc overlapped with the predictions by GSEA of miRNAs potentially targeting Myc-repressed mRNAs, suggesting that miRNAs induced by Myc may indeed participate in mediating repression of Myc target genes. To further examine the functional implications of Myc induced miRNAs to Myc pathway activity, we chose to focus on miRNAs whose average raw expression value was at least 2-fold above background (miR-20a, miR-100, miR-183, miR-193b, miR-130a, miR-221, miR-222, and miR-23b). Examination of the predicted targets of these miRNAs, also repressed by Myc as reflected in the Myc expression profile, revealed a potential connection between the Myc-induced miRNAs with Myc targets, which play a role in cell cycle progression (Supplementary Fig. S2; Table 1). For example, the Myc-induced miR-20a is predicted to target the cyclin-dependent kinase inhibitor p21 (CDKN1A), a gene encoding a negative regulator of cell cycle progression. Likewise, Myc induces the expression of miR-221 and miR-222, which are predicted to target p27 and p57 (CDKN1B, CDKN1C), additional CDK inhibitors that have prominent

Table 1. Myc-induced miRNAs and their predicted targets

<table>
<thead>
<tr>
<th>Predicted target</th>
<th>miRNA</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDKN1A</td>
<td>miR-20a</td>
<td>(33)</td>
</tr>
<tr>
<td>CDKN1B</td>
<td>miR-221, 222</td>
<td>(33, 35, 37)</td>
</tr>
<tr>
<td>CDKN1C</td>
<td>miR-221, 222</td>
<td>(33, 35, 37)</td>
</tr>
<tr>
<td>CYLD</td>
<td>miR-130a</td>
<td></td>
</tr>
<tr>
<td>IRF1</td>
<td>miR-130a, 20a, 23b</td>
<td>(33, 35, 37)</td>
</tr>
<tr>
<td>PTEN</td>
<td>miR-20a, 23b, 193b</td>
<td></td>
</tr>
<tr>
<td>RB1</td>
<td>miR-20a</td>
<td></td>
</tr>
<tr>
<td>SMAD2</td>
<td>miR-18a, 18b</td>
<td>(47)</td>
</tr>
<tr>
<td>SMAD3</td>
<td>miR-23b</td>
<td></td>
</tr>
<tr>
<td>TSC1</td>
<td>miR-130a</td>
<td></td>
</tr>
</tbody>
</table>
roles in triggering cell cycle arrest. As miR-221/222 - p27 and p57 connection has been well established, this further supports a widespread mechanism of Myc-induced miRNAs in suppressing the expression of key cell cycle arrest genes (33, 35–37). Taken together, our integrated analysis of miRNA and mRNA profile suggests that, in addition to the induction of various protein-encoding genes that mediate cellular proliferation, Myc induces a series of miRNAs that inhibit genes responsible for the negative control of cellular proliferation.

To directly address the role of Myc-induced miRNAs in facilitating the induction of cell proliferation, we made use of asynchronously growing normal WI38 fibroblasts, as these cells have largely intact cell cycle machinery. As a control, we first assessed the extent to which inhibition of Myc would reduce the proliferation capacity of these cells. As shown in Fig. 3A, inhibition of Myc displayed a marked decrease in proliferation as measured by BrdUrd incorporation. We then measured the effect of inhibition of various miRNAs that were induced by Myc. Inhibition of miR-20a by ASOs led to a modest reduction in proliferation in WI38 fibroblasts, as previously shown in other cell types (Fig. 3A; ref. 38). Inhibition of miR-18a had little effect on the proliferation of WI38 fibroblasts and likewise for miR-130a (Fig. 3B). However, inhibition of miR-23b and miR-193b led to a marked effect on proliferation, both as assessed visually through the microscope, as well as through BrdUrd quantification, with the miR-193b inhibition leading to a most profound effect. Because it is possible that the function of the Myc-induced miRNAs could be at least partially redundant, we also examined whether the combined inhibition of miRNAs with multiple targets would have greater effect. Indeed, when the miRNAs were inhibited in combination, the effect was more pronounced as shown in Fig. 3C. This was not due to increase in the concentration of ASO as transfecting the same concentration of single miRNAs did not affect further BrdUrd incorporation (data not shown). Taken together, we conclude that Myc-induced miRNAs, either individually or collectively, affect the cell proliferation by targeting various cell cycle arrest genes.

A role for Myc-induced miRNAs in coordinating the balance of proliferation and cell death

A large body of previous work has shown that the activation of Myc in the absence of phosphoinositide 3-kinases (PI3K)/Akt pathway activity leads to apoptosis, consistent with a role for PI3K/Akt in providing survival signals in the context of normal cellular proliferation (4).
and tensin homologue (PTEN) gene, among the most frequently mutated genes in cancer, acts as an important regulator of the survival signals by antagonizing PI3K activity (39). Ectopic expression of PTEN in normal and cancer cells have been shown to induce cell cycle arrest or apoptosis depending on the cellular context (39). We noted a decrease in the level of PTEN transcripts in Myc-expressing cells, and this was further confirmed at the protein level by Western blot analysis (Supplementary Fig. S3). Based on our analysis of Myc-induced miRNAs (Table 1), three miRNAs (miR-20a, miR-23b, and miR-193b) were predicted to target PTEN (Fig. 4A). We chose to focus on miR-23b and miR-193b, miRNAs not previously implicated in the control of PTEN regulation, by first determining if these miRNAs did indeed target PTEN. To this end, we cloned the initial 2.2-kb fragment of the PTEN 3′-UTR sequence spanning the miRNA target sites upstream of the Renilla luciferase construct. This construct served as a reporter for miRNA targeting by measuring the extent to which there was a reduction in the luciferase activity following cotransfection of miR-23b and miR-193b. As shown in Fig. 4B, expression of miR-23b and miR-193b mimics each led to a substantial reduction in luciferase activity with the construct containing wild-type PTEN 3′-UTR (blue) relative to the control miRNA, whereas having little or no effect on the 3′-UTR that have mutation in the designated target sites (red), indicating that these miRNAs do indeed target PTEN.

To test whether these miRNAs may play a role in apoptosis by regulating PTEN levels in the context of Myc-induced apoptosis, we made use of MEFs that stably express the Myc oncogene (Myc-MEF; ref. 24). As shown in Fig. 5A, there was a strong induction of cell death in these Myc-expressing cells upon serum withdrawal, as measured by caspase-3 assay using flow cytometry. Furthermore, inhibition of PI3K activity with LY290024 in the presence of 10% serum also led to an induction of apoptosis confirming the role of PI3K signaling in Myc-induced apoptosis (Fig. 5B; ref. 40). Finally, consistent with the role of PTEN in antagonizing PI3K activity, ectopic expression of PTEN also led to an induction of apoptosis (Fig. 5C).

To directly assess the role of the Myc-induced miRNAs predicted to target PTEN in controlling the induction of apoptosis, we blocked the activity of miR-23b and miR-193b with the use of ASOs in the Myc-MEFs. Consistent with the role of PTEN in apoptosis (Fig. 5D), the inhibition of miR-23b, and to a lesser degree miR-23b, led to an increase in the fraction of the apoptotic cells. The effect was specific because transfection of the same concentration of miR-302c (Fig. 5D) or miR-18a (data not shown), miRNAs not predicted to target PTEN, had no effect on the level of apoptosis. Western blot analysis indicated that indeed, PTEN levels were elevated upon inhibition of miR-23b and miR-193b, suggesting that the phenotype observed is specific to PTEN activity (Supplementary Fig. S4).

To further assess whether PTEN-induced apoptosis in the context of Myc activation can be rescued by these PTEN-targeting miRNAs, we cotransfected a PTEN construct with full-length wild-type 3′-UTR, in combination with either a control or miRNA mimics of miR-23b and miR-193b. Introduction of miR-23b and miR-193b mimics with PTEN reduced the number of cells undergoing apoptosis compared with a control miRNA mimic (Fig. 6A). To further test the specificity of the ability of miR-23b and miR-193b to rescue apoptosis induced by relieving PTEN expression, we generated mutant constructs that contain three bp substitutions in the corresponding miRNA binding sites in their 3′-UTR. Indeed, when we cointroduced miR-23b or miR-193b with either a wild-type PTEN or a mutant PTEN construct, the mutant constructs escaped the rescue and led to an increase in apoptosis relative to the wild-type construct (Fig. 6B). Based on these results, we conclude that Myc induces a group of miRNAs that contribute to a proliferation program by not only inhibiting the expression of antiproliferative genes but also by blocking the activity of PTEN, thus allowing activation of PI3K and the provision of cell survival signals.

Discussion

The critical role for Myc activity in cell proliferation is now well established (2). The expression of the Myc gene, and the
accumulation of the Myc protein, is tightly regulated by the stimulation of cell growth and leads to the activation of a large array of genes that provide the essential activities for a normal proliferative process (25, 29, 41, 42). Further, aberrant expression of Myc, without the full complement of proliferative signaling, can also trigger a cell death program providing an important nexus in the determination of cell fate (4, 40). Given this critical role for Myc, many studies have...
focused on both the mechanisms controlling Myc expression as well as the mechanisms by which Myc activity establishes and controls these proliferation and cell fate decisions (4).

High-throughput expression profiling to assess the global mRNA expression in various contexts of the Myc signaling, coupled with genome-wide chromatin interaction assays, has established a role for Myc in the activation of a vast array of protein-coding genes that enable a proliferation program (7–9). It is also clear that other genes are repressed as a function of Myc activity, including genes that negatively regulate cell proliferation (7–9). Adding to this complexity is the realization that a variety of noncoding miRNAs are also regulated by Myc and have been shown to target several key cellular regulatory genes (18, 21, 22, 43). The study we report here extends these observations and, importantly, now integrates the analysis of Myc in the control of miRNA expression within the overall context of a mRNA regulatory pathway important for the establishment of a proliferative state in a normal cell.

The significance of Myc-mediated repression has long been recognized, both in the context of normal cellular physiology, as well as in transformation, as many of the repressed target genes represent those that play negative roles in the Myc pathway activity (7–9). Despite extensive investigation, there seems to be not one single mechanism to explain how Myc achieves this function. Rather, various epigenetic, as well as indirect protein-protein interaction mechanisms, have been reported to contribute to this process (10, 13–16, 44). For example, p27 has been established as a repressed target of Myc important for antagonizing cell cycle progression, and various models have been proposed as to how this may be achieved (12). Based on our data, induction of miR-221 and miR-222 by Myc may also be involved in ensuring repression of these genes at a posttranscriptional level (33, 35, 37). Likewise, repression of p21 by Myc has long been a topic of interest, and our data, as verified by others, suggest another mechanism by which Myc keeps the level of this protein low (11, 14). Indeed, inhibiting some of these Myc-induced miRNAs in an actively growing culture of normal human fibroblast cells functionally mimics that of ectopically expressing these genes, providing further validations to the notion that Myc uses miRNAs to orchestrate transcriptional program to allow into proliferation (Fig. 3).

Our focus in this work has been on the role of Myc-mediated gene regulation in the context of normal cellular proliferation. In contrast, many studies have also focused on the significant role of deregulated Myc activity in cancer. Likewise, many recent studies have detailed the alterations in miRNA expression in cancer cells and tumors (45), particularly the generalized reduction in miRNA levels in many oncogenic states (46). Indeed, a recent report has linked the repression of miR-23a/b with the action of Myc, contributing to enhanced glutamine metabolism (21). The observation that Myc repressed miR-23a/b is in contrast to our observation that Myc induces this miRNA in normal epithelial cell culture. Although the mechanistic basis for this distinction is unclear, we surmise that additional regulatory activities that ultimately determine the consequence of Myc action, whether activation or repression, define distinctions between the normal cell state and an oncogenic state.

Perhaps of most interest is the link established by this study in balancing cell proliferation with the control of cell death through the action of several Myc-induced miRNAs that target the tumor suppressor PTEN. Many studies have now delineated a role for the PI3K/Akt pathway in providing cell survival signals, blocking the induction of p53-mediated apoptosis as part of a normal proliferative process (4, 40). Recent work has also identified a role for miRNAs in the miR-17-92 cluster in targeting PTEN (20). Given the role of PTEN in the negative control of PI3K activity, the ability of Myc to induce miRNAs that target PTEN, as documented here, provides a mechanism for synergy in creating the proliferative state (39). Based on these combined results, we propose a novel mechanism by which Myc regulates both the expression of antiproliferative genes, such as the CDK inhibitors and Rb, as well as the level of PTEN to evade apoptosis, through the action of Myc-induced miRNAs.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Jen-Tsan Ashley Chi, Igor Shats, and Jeffery T. Chang for the helpful discussions and critical reading of the manuscript, Bryan R. Cullen and Pavlina S. Konstantinova for helping with vector constructions and helpful advice, and Kaye Culler for her assistance in the preparation of the manuscript.

Grant Support

Grant from the NIH/National Cancer Institute grant no. 5 U54 CA112952 (J.R. Nevins and J.W. Kim) and a grant from the Department of Defense (W81XWH-09-1-0102; J.W. Kim).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 02/24/2010; revised 04/02/2010; accepted 04/21/2010; published OnlineFirst 06/01/2010.

References

32. Gu J, Iyer VR. PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol 2006;7;R42.
Correction: Myc-Induced MicroRNAs Integrate Myc-Mediated Cell Proliferation and Cell Fate

In this article (Cancer Res 2010;70:4820–8), which was published in the June 15, 2010 issue of Cancer Research (1), an incorrect version of Fig. 6A was published; the correct figure appears below.

Reference

Posted Online 08/01/2010.
©2010 American Association for Cancer Research.
doi: 10.1158/0008-5472.CAN-10-2037
Myc-Induced MicroRNAs Integrate Myc-Mediated Cell Proliferation and Cell Fate

Jong Wook Kim, Seiichi Mori and Joseph R. Nevins

Cancer Res 2010;70:4820-4828. Published OnlineFirst June 1, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-0659

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/06/04/0008-5472.CAN-10-0659.DC1

Cited articles
This article cites 47 articles, 13 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/12/4820.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at: /content/70/12/4820.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.