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hloroethylene (TCE) is a suspected renal carcinogen. TCE-associated renal genotoxicity occurs predom-
y through glutathione S-transferase (GST) conjugation and bioactivation by renal cysteine β-lyase
1). We conducted a case-control study in Central Europe (1,097 cases and 1,476 controls) specifically
ed to assess risk associated with occupational exposure to TCE through analysis of detailed job histo-
ll jobs were coded for organic/chlorinated solvent and TCE exposure (ever/never) as well as the frequen-
intensity of exposure based on detailed occupational questionnaires, specialized questionnaires, and
assessments. Increased risk was observed among subjects ever TCE exposed [odds ratio (OR) = 1.63;

onfidence interval (95% CI), 1.04–2.54]. Exposure-response trends were observed among subjects above
low the median exposure [average intensity (OR = 1.38; 95% CI, 0.81–2.35; OR = 2.34; 95% CI, 1.05–5.21;
= 0.02)]. A significant association was found among TCE-exposed subjects with at least one intact GSTT1
(active genotype; OR = 1.88; 95% CI, 1.06–3.33) but not among subjects with two deleted alleles
enotype; OR = 0.93; 95% CI, 0.35–2.44; Pinteraction = 0.18). Similar associations for all exposure metrics
ing average intensity were observed among GSTT1-active subjects (OR = 1.56; 95% CI, 0.79–3.10; OR =
5% CI, 1.01–7.58; Ptrend = 0.02) but not among GSTT1 nulls (OR = 0.81; 95% CI, 0.24-2.72; OR = 1.16; 95%
7–5.04; Ptrend = 1.00; Pinteraction = 0.34). Further evidence of heterogeneity was seen among TCE-exposed
ts with ≥1 minor allele of several CCBL1-tagging single nucleotide polymorphisms: rs2293968, rs2280841,
043, and rs941960. These findings provide the strongest evidence to date that TCE exposure is associ-
ith increased renal cancer risk, particularly among individuals carrying polymorphisms in genes that are
ated w

important in the reductive metabolism of this chemical, and provides biological plausibility of the association
in humans. Cancer Res; 70(16); 6527–36. ©2010 AACR.
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ent studies have implicated the solvent trichloroethy-
CE) as a risk factor for cancer, with the strongest evi-
observed for renal cell cancer (RCC), liver cancer, and
oma (1–4). Because of public health concerns, most in-
CE has been phased out and workplace levels
most high-resource countries. However, TCE
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ns a major contaminant at toxic waste disposal sites
found at low concentrations in public drinking water
es in the United States and worldwide (4). In the third
nal Health and Nutrition Examination Survey, it was
that ∼10% of the U.S. population had detectable levels
in their blood (3). Both the IARC (4) and the National

ogy Program (5) consider TCE “a probable” human
gen. The uncertainty surrounding the carcinogenic
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tial of TCE stems from debate over the inconsistent
gs in epidemiologic studies. Final determination of the
ogenicity of TCE in humans will rely on additional
fic evidence from studies that use improved epidemiolog-
hods, refined solvent exposure assessment approaches,
at minimize uncertainty in disease classification com-
with the past (6).
e, a sophisticated questionnaire-based exposure assess-
method that incorporated job-specific evaluations and
ecular epidemiologic approach were used to evaluate
sociation between occupational TCE exposure and
isk in a case-control study conducted in Central and
n Europe. This region is of interest for the study of oc-
onal exposures because the prevalence and intensity of
res have been greater than in other industrialized re-
(7). This study specifically assessed exposure to chlori-
solvents and TCE through a detailed occupational
re assessment conducted by trained industrial hygie-
chemists, and occupational health professionals, with
edge pertaining to their use in each study region (8, 9).
can be metabolized through both an oxidative and

ive pathway. Toxicologic studies in animal models sug-
hat TCE-associated kidney damage occurs only after
ivation through the reductive metabolic pathway that
es prior hepatic and renal glutathione S-transferase
conjugation and subsequent cleavage by renal cysteine
ate β-lyase (CCBL1) to form cysteine S-conjugates;
dichlorovinyl-L-cytseine) and S-(1,2,2-trichlorovinyl-
eine) (9–12). These metabolites are highly reactive
ave been shown experimentally to form DNA adducts,
breaks, bacterial mutagenicity, and renal cell geno-
y and cytotoxicity (11–13). Therefore, the second aim
study was to evaluate the significance of the reductive
ay in human carcinogenicity and whether common
on in genes involved in reductive metabolism would
y TCE-associated RCC risk. Because the enzyme GSTT1
wn to conjugate small, halogenated compounds such
E, and because it is highly active in the kidney, we hy-
sized that RCC risk would be elevated among TCE-
d subjects with at least one intact GSTT1 allele and
not be elevated among TCE-exposed subjects with de-
lleles. In addition, the renal CCBL1 gene was selected
alysis. Because there are currently no known functional
orphisms identified that directly affect isoform forma-
nzyme activity, or expression, a comprehensive tagging
nucleotide polymorphism (SNP) approach was used to
e common variation across the CCBL1 gene region, to
e whether common variants modified associations be-
RCC and TCE exposure.

rials and Methods

population
ospital-based case-control study of RCC was conducted
en 1999 and 2003 in seven centers in four countries of
al and Eastern Europe (Moscow, Russia; Bucharest,

ia; Lodz, Poland; and Prague, Olomouc, Ceske-Budejovice
rno, Czech Republic) as previously described (14, 15).

follow
sures,

r Res; 70(16) August 15, 2010
wly diagnosed and histologically confirmed cases of
cancer (ICD-O2 code C.64) were identified at partici-
hospitals in each area between 1999 and 2003. Cases
reside in the study area for at least 1 year before di-

is. Histologic slides of renal tumor tissue from cases
reviewed by an international renal cancer pathology
at the U.S. National Cancer Institute (NCI; MM) for
rdized confirmation and disease classification. Only
med cases of RCC were retained in this analysis. Con-
n each center were chosen among subjects admitted as
ients or out-patients in the same hospital as the cases,
nontobacco-related conditions and were frequency
ed with cases by sex and age (±3 y), and by study cen-
tients with cancer or genitourinary disorders, except
nign prostatic hyperplasia, were also excluded from
ntrols. Although controls had to be cancer free at time
ollment, previous history of cancer was not an exclu-
riterion in either cases or controls. No single disease
up >20% of the diseases among selected controls from
enter. Diagnoses of controls included digestive (20.3%),
l nervous system (14.3%), eye and ear (16.9%), and
loskeletal/connective tissue diseases (12.1%). The
protocol was approved by relevant ethics committees,
l study subjects provided informed consent. This study
pproved by the Institutional Review Boards of all
ipating study centers, the IARC (Lyon, France), and
S. NCI at the U.S. NIH (NIH). Written informed consent
rticipation was obtained from all subjects. The final
population included 1,097 cases and 1,476 controls.
rviewers were trained at each center to perform face-
e interviews using standard questionnaires. Cases and
ls were asked about their life-style habits, in particular
o consumption, anthropometric measures 1 year be-
iagnosis, and their personal and familial medical histo-
eneral questionnaire was given for each job held for at
1 year and included a description of the tasks per-
d, machines used, working environment, location of
performed, and time spent on each task. To improve
ion of the exposure assessment, specialized occupa-
questionnaires were also used in cases of employment
cific jobs or industries likely to entail exposure to
or suspected occupational carcinogens of interest. De-

n the questionnaires have been reported previously (8).
osure assessment teams from each center with exten-
nowledge of industries in each region received addi-
training by the NCI industrial hygienist (PS) for the
tion of chlorinated solvents and TCE, in addition to
ceived for an earlier study of lung/head and neck can-
onducted in each center (16). For every job in each sub-
work history, the team from each center evaluated the
ncy and intensity of exposure to agents and groups of
, based on the general occupational questionnaire, the
lized questionnaires, and their own experience in in-
al hygiene and knowledge about historical working con-
s at specific plants in their study area while blinded to
ontrol status. Job-specific questionnaires covered the

ing: (a) possible organic and chlorinated solvent expo-
(b) hours per week of exposure, (c) source of solvent

Cancer Research
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re, and (d) a description of solvent use. Every job of
articipant was coded for exposure to the agents previ-
valuated in a case-control study of lung/head and neck
(16). Organic solvents included any organic chemical
s a dry cleaner, degreaser, thinner, resin solvent, or
extraction agent; and petroleum solvents (e.g., white
); aliphatic chlorinated solvents; oxygenated solvents
lcohol and glycol ethers); and others, such as gasoline,
ne, and mineral spirits. The general category of aliphat-
rinated organic solvents included perchloroethylene,
lene chloride, carbon tetrachloride, and trichloroethane,
ecifically TCE. In attempt to reduce exposure misclas-
ion, after completion of coding for all agents, all sub-
riginally coded as exposed to organic solvents in the
al assessment were reevaluated at a later date by the
group of experts at each center. All coding in the re-
ment was performed while blinded with respect to the
us assessment and to disease status.
erts assessed the frequency, intensity, and confidence
osure to each of the two solvent categories and TCE in
ular for each exposed job held by each subject. Fre-
y of exposure was coded into three categories, repre-
g the average percentage of a working day during
occupational exposure was likely as follows: 1% to
f a day (i.e., 5–20 min/d), 5% to 30% of a day (0.5–
), and >30% of a day (>2.5 h/d). For estimation of sub-
cumulative exposure (ppm-year), the midpoint of the
ncy categories used was as follows: 0.025, 0.175, and
espectively. A midpoint of 0.50 was used for the highest
ry because we assumed a log-normal exposure distri-
. The intensity of exposure to organic and chlorinated
t groups was coded on a three-point scale (low, medi-
d high). For cumulative organic and chlorinated solvent
re, respective weights equal to 2.5, 25, and 100 were as-
to the three intensity categories, each corresponding to
idpoint of the estimated range of the solvent exposure
(ppm). TCE intensity was coded to one of three catego-
to <5 ppm (<27 μg/m3), 5 to 50 ppm (27–270 μg/m3),
0 ppm (>270 μg/m3), with midpoint weights for cumu-
exposure of 2.5, 25, and 75, respectively. For each sol-
onsidered to be present, the industrial hygienists also
the degree of confidence that a job would entail expo-
an agent. Confidence of exposure that represented the

ted percentage of workers that would be exposed in
b was categorized as possible (i.e., <40% workers at a
re expected to be exposed), probable (40–89% of work-
re expected to be exposed), or definite (at least 90% of
rs were expected to be exposed). After reassessment of
xposure, agreement was 100% in Romania (13 subjects)
oland (3 subjects), and 83% in the Czech Republic (90
ts). Reassessment of TCE exposure was not conducted
scow because Moscow subjects who were exposed to
c solvents were very unlikely to be exposed to TCE.

atory analysis
d samples were aliquoted shortly after collection, and

coat samples were stored in nitrogen vapor and
d to the NCI biorepository on dry ice. DNA was ex-

diagno
for th

acrjournals.org
d using a standard phenol-chloroform extraction. Gen-
g was conducted at the IARC and at the NCI's Core
yping Facility. DNA was blinded and randomized on
lates to avoid any potential bias; duplicate genotyping
erformed for a randomly selected 5% of the total series
ality control. In total, 925 (84.3%) cases and 1,192
) controls were genotyped for the GSTT1 deletion as
usly described (17, 18). To capture common genetic
ion across the renal CCBL1 gene, SNPs with minor al-
equencies of at least 5% in Caucasians using a tag SNP
d with an estimated r2 > 0.80 (19) were selected that
provide with high genomic coverage (80–90%) to cap-
ommon genetic variation across the renal CCBL1 gene
. Seven SNPs spanning from chromosomal regions
7061 (rs2293968) through 130700708 (rs941959) were
d to tag the CCBL1 region. In this exercise, boundaries
P selection were 20 kb 5′ to the start of the CCBL1
ription site and 10 kb 3′ to the last exon. SNPs were
ed from publicly available sequencing information
nd analyzed on an Illumina GoldenGate Oligo Pool
say as previously described (20). Genotyping of the
gene region was performed on 777 cases and 1,035
ls that provided a sufficient quantity and suitable
y of genomic DNA for genotyping on the Illumina
nGate platform because this method had more strin-
equirements than the GSTT1 analysis that used quan-
e PCR. Tagging SNPs included rs2293968 (c9orf114;
16A>G), rs2280841 (CCBL1; IVS5-19C>T), rs2259043
L1 ; IVS1-231G>A), rs12554930 (CCBL1 ; IVS1+
C>G), rs941960 (CCBL1; IVS1+3144G>C), rs10988141
8A; IVS1-1865G>T), and rs941959 (LRRC8A; IVS2-
>C). The genotype frequencies among controls
d no deviation from the expected Hardy-Weinberg
rium proportions (P > 0.05). Genotyping concordance
00% for all SNPs except rs941959 (99%) and rs2259043
Completion rates for all SNPs ranged between 99.5%
00%.

tical analysis
egorical exposure metrics rather than continuous mea-
were used to evaluate exposure-response relationships
se categorical methods were used to estimate exposure
for each job. Unconditional logistic regression model-
s initially used to estimate associations between expo-
and RCC risk, expressed as odds ratios (OR) and 95%
ence intervals (CI). Estimates of risk among exposed
ts were calculated in reference to unexposed. All re-
n models were adjusted for sex, age, and study center.
potential RCC risk factors such as place of residence
/urban), tobacco smoking (never, former, current),
mass index (BMI; calculated as weight/height2: < 25,
.4, 27.5–29.9, 30–34.5, and ≥35 or more kg/m2), and
ported history of hypertension did not alter ORs by
therefore, these characteristics were not included in
nal models. Analyses were also modeled to account
0-year lag, in which jobs held in the last 20 years before

sis (cases) or interview (controls) were excluded. ORs
e two solvent exposure groups (organic, chlorinated)

Cancer Res; 70(16) August 15, 2010 6529
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n (%) n (%) OR‡ (95% CI) P§ n (%) n (%) OR‡ (95% CI) P
ic solvents
590 (71.4) 874 (73.7) 1.00 Reference 590 (72.2) 874 (75.0) 1.00 Reference

236
 8.6) 312 (
 6.3) 1.12
 .92–1.38) 0.26
 227
 7.8) 291
 5.0) 1.17
 .95–1.44) 0.15
.5 107 (45.3) 156 (50.0) 1.03 (0.78–1.36) 102 (44.9) 145 (49.8) 1.07 (0.80–1.41)
.5 129
 4.7) 156 (
 0.0) 1.22
 .94–1.58) 0.17
 125
 5.1) 146
 0.2) 1.27
 .97–1.65) 0.09
60 119 (50.4) 154 (49.4) 1.12 (0.86–1.47) 112 (49.3) 138 (47.4) 1.19 (0.90–1.57)

60 117
 9.6) 158 (
 0.6) 1.13
 .86–1.47) 0.29
 115
 0.7) 153
 2.6) 1.15
 .88–1.50) 0.20

ative (ppm-years)

6 117 (49.6) 156 (50.0) 1.04 (0.79–1.36) 109 (48.0) 136 (46.7) 1.11 (0.84–1.48)

6 119
 0.4) 156 (
 0.0) 1.22
 .93–1.59) 0.17
 118
 2.0) 155
 3.3) 1.22
 .93–1.59) 0.12

e intensity (ppm)

4 104 (44.1) 122 (39.1) 1.14 (0.85–1.53) 97 (42.7) 105 (36.1) 1.25 (0.92–1.69)
4 132 (55.9) 190 (60.9) 1.11 (0.87–1.43) 0.31 130 (57.3) 186 (63.9) 1.12 (0.87–1.44) 0.24
ated solvents
749 (90.8) 1,108 (93.6) 1.00 Reference 749 (93.5) 1,108 (94.8) 1.00 Reference

76
 .2) 76 (
 .4) 1.33
 .95–1.88) 0.10
 52
 .5) 61
 .2) 1.12
 .76–1.66) 0.56
.5 32 (3.9) 38 (3.2) 1.12 (0.68–1.81) 25 (3.1) 31 (2.7) 1.06 (0.62–1.83)
.5 44
 .3) 38 (
 .2) 1.56
 .99–2.46) 0.06
 27
 .4) 30
 .6) 1.19
 .69–2.03) 0.52
90 31 (3.8) 39 (3.3) 1.03 (0.63–1.67) 21 (2.6) 31 (2.7) 0.88 (0.50–1.55)

90 45
 .5) 37 (
 .1) 1.68
 .06–2.64) 0.04
 31
 .9) 30
 .6) 1.39
 .82–2.33) 0.35

ative (ppm-years)

6 34 (4.1) 39 (3.3) 1.15 (0.71–1.86) 19 (2.4) 30 (2.6) 0.84 (0.46–1.51)

6 42
 .1) 37 (
 .1) 1.53
 .96–2.42) 0.07
 33
 .1) 31
 .7) 1.4
 .84–2.34) 0.33

e intensity (ppm)

76 33 (4.0) 43 (3.6) 1.01 (0.62–1.63) 16 (2.0) 30 (2.6) 0.71 (0.38–1.33)
76 43 (5.2) 33 (2.8) 1.75 (1.09–2.81) 0.04 36 (4.5) 31 (2.7) 1.52 (0.92–2.50) 0.26
777 (94.2) 1,144 (96.6) 1.00 Reference 777 (96.4) 1,144 (98.4) 1.00 Reference

48
 .8) 40 (
 .4) 1.63
 .04–2.54) 0.03
 29
 .6) 19
 .6) 2.05
 .13–3.73) 0.02
.5 22 (2.7) 20 (1.7) 1.44 (0.77–2.69) 15 (1.9) 10 (0.9) 1.89 (0.84–4.28)
.5 26
 .2) 20 (
 .7) 1.82
 .99–3.34) 0.03
 14
 .7) 9
 .8) 2.25
 .95–5.29) 0.02
80 17 (2.1) 20 (1.7) 1.07 (0.55–2.09) 9 (1.1) 9 (0.8) 1.22 (0.48–3.12)

80 31
 .8) 20 (
 .7) 2.22
 .24–3.99) 0.01
 20
 .5) 10
 .9) 2.86
 .31–6.23) 0.01

ative (ppm-years)**
8 17 (2.1) 19 (1.6) 1.19 (0.61–2.35) 9 (1.1) 7 (0.6) 1.77 (0.64–4.80)
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CE were calculated for any occupational exposure, as
s duration (in years and hours of exposure), cumula-
posure (ppm-years), and average intensity (ppm). Du-
in hours was calculated for each subject using the
ing formula, and summing over all jobs: duration
) × 50 (wk/y) × 40 (h/wk) × frequency weight. Cumu-
exposure (ppm-years) was calculated for each subject
the following formula, summing over all jobs: intensity
t (ppm) × frequency weight × duration (y). The average
ure intensity (ppm) estimate derived by dividing the
lative exposure as assessed above [intensity weight
× frequency weight × duration (years)], by the total

er of years exposed. Correlation analyses (Spearman)
onducted to identify agents or groups of agents that
ssociated with solvent exposures in this study. No sig-
t coexposures were identified that were associated
CE exposure except for chlorinated and organic sol-
groups, as would be expected because TCE is both a
ated and an organic solvent (r2 >0.30). Because organic
t and chlorinated solvent exposures were evaluated as
ed exposures, it was not possible to control for other
ual solvents in our analysis of TCE.
group analyses among subjects with the highest confi-
of each solvent exposure category were conducted by
ting analyses to jobs with a confidence rating of cer-
r probable. To determine if variation in genes impor-
n the reductive pathway of TCE metabolism would

e IQRamongcontrols (25th, 75thpercentile) was 0.08 to 0.16ppm.A
y exposure-disease relationships, analyses stratified by
TT1 genotype were evaluated. Genotypes were consid-

a large
first-d
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active” if subjects had at least one intact GSTT1 allele
t and “inactive” (or null) if they had none. The associ-
between CCBL1 tagging SNPs and RCC risk was esti-
using unconditional logistic regression models,

ed for age, sex, country, and GSTT1 genotype. Unlike
her characteristics evaluated, inclusion of the GSTT1
pe altered ORs by at least 10% and therefore was in-
in final regression models. Linear tests for trend were
cted by including a variable coded 0 (reference), 1, and
esponding to the number of minor alleles. Interaction
en TCE exposure (ever/never) and SNPs using additive
minant models were evaluated using the likelihood ra-
st to compare models with and without interaction
. Multiplicative interactions evaluated using the likeli-
ratio test were considered statistically significant at an
.05. All analyses were conducted in STATA 9.0 unless
ise specified (STATA Corp.).

lts

ong the 1,097 RCC cases and 1,476 controls included in
udy, there was a higher proportion of female cases than
ls. A higher proportion of cases had a high BMI (BMI ≥
d self-reported hypertension than controls (Supple-
ry Table S1). As previously described, the prevalence
king among cases and controls did not differ after ad-
nt for age, BMI, hypertension, center, and sex (14), and
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 .5) 12
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e Intensity-(ppm)††
rag

0.076 31 (3.8) 30 (2.5) 1.38 (0.81–2.35) 13 (1.6) 10 (0.9) 1.73 (0.75–4.02)
0.076 17 (2.1) 10 (0.8) 2.34 (1.05–5.21) 0.02 16 (2.0) 9 (0.8) 2.41 (1.05–5.56) 0.02

osure metric cut points equal to the 50th percentile among exposed controls for years, hours, cumulative, and average
nsity exposure metrics.
alyses conducted for jobs classified as having probable or certain exposure (i.e., at least 40% of workers expected to be
osed).
and 95% CI adjusted for age, sex, and center.
alue for trend given for years, hours, cumulative and average intensity of exposure.
e interquartile range (IQR) among controls (25th, 75th percentile) was 6.3 to 26.3 y. Among cases, the median exposure and
were 19.5 (5.8–31.0) y.
e IQR among controls (25th, 75th percentile) was 420 to 1920 h. Among cases, the median exposure and IQR were 1470
–3700) h.
e IQR among controls (25th, 75th percentile) was 0.77 to 2.87 ppm-years. Among cases, the median exposure and IQR were
and (0.83–7.25) ppm-years.
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ated with occupational exposure to organic solvents,
nated solvents, and TCE are presented in Table 1.
ation with occupational exposure to organic solvents
CC was not observed before or after analyses were
ted to high-confidence assessments. An association
uration and average intensity of exposure to chlorinat-
vents was observed but was no longer elevated after
alysis was restricted to high-confidence assessments.
CE exposure, ORs were significantly elevated for all

osure category and GSTT1 genotype.
re indices (OR = 1.63–2.34) and were strengthened af-
alyses were restricted to high confidence assessments

differ
not sh

r Res; 70(16) August 15, 2010
2.05–2.86). Almost all TCE exposure occurred at least
rs before the onset of disease among cases; therefore,
r relationships between exposure indices and RCC
ere observed in analyses restricted to exposures that
red at least 20 years before disease diagnosis (data
own).
le 2 presents associations between TCE exposure and
isk after stratification by GSTT1 genotype. The percent-
f cases and controls genotyped did not significantly
2. Renal can
al and eastern
sociated
1999 to 2
pational TCE exposure, by GST θ (GSTT1) genotype in
among
own). O
TCE-exposed and unexpose
verall, the active GSTT1 g

C

d subjects (data
enotype was no

ancer Research
xposure* n (%) n (%) OR† (95% CI) P‡ Pint
§
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.5 7 (70.0) 6 (54.5) 1.30 (0.40–4.23)
.5
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 5.5)
 .11–2.45)
80 4 (40.0) 6 (54.5) 0.70 (0.18–2.70)
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8
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e intensity (ppm)
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 .1)
 .06–3.33)
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8
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e intensity (ppm)
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0.076 20 (62.5) 17 (73.9) 1.56 (0.79–3.10)
0.076 12 (37.5) 6 (26.1) 2.77 (1.01–7.58) 0.02 0.34

t points at the 50th percentile among exposed controls for years, hours, and cumulative and average intensity exposure metrics.
, 95% CI calculated using logistic regression models adjusted for age, sex, and center.
alues for trend are given for years, hours, and cumulative and average exposure analyses.
alue calculated from the likelihood ratio test comparing logistic regression models with and without an interaction term for TCE
t
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cance.
ther evidence of heterogeneity was observed for partic-
agging SNPs of the renal CCBL1 gene, which encodes
zyme known to bioactivate TCE in the kidney. Supple-
ry Fig. S1 shows the correlation (r2) values between re-
BL1–tagging SNP minor alleles. Elevated ORs were
ed among TCE-exposed individuals with at least one
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egion (Table 3). Significant interactions were observed
en TCE exposure (ever/never) and CCBL1 gene minor
s using both additive and dominant models for
968 [Pint (additive) = 0.03 and P-int (dominant) = 0.05),
841 (P-int (additive) = 0.03 and P-int (dominant) = 0.03),
2259043 (P-int (additive) = 0.02 and P-int (dominant) =
fter examination of correlation (r2) values between re-
BL1 gene tag SNPs in Haploview in this population, we
ed that rs2293968 (IVS8 + 16A > G), rs2280841 (IVS5-
T), and rs2259043 (IVS1-231G > A) were highly correlat-
= 0.98), and r2 values were greater than those observed
en tagging SNPs in HapMap at the time of SNP selec-
hich ranged from 83% to 92% (Supplementary Fig. S1).

ssion

s study provides notable epidemiologic evidence to
rt an association between occupational TCE exposure
CC risk. Specifically, risk associated with TCE expo-
as increased among individuals with a functionally
GSTT1 genotype and particularly among those with
alleles in SNPs spanning the CCBL1 gene region. Sev-
pidemiologic studies of occupational TCE exposure
dney cancer have been conducted but only one study
nalyzed (and reanalyzed) the modification of TCE-
ated risk and common variation in GST genes (21, 22).
dies to date have examined modification in risk asso-
specifically with both GSTT1 and renal-CCBL1, key
es involved in the conjugation, reduction, and subse-
bioactivation of TCE in the kidney. The findings from
udy were consistent with several case-control studies
pecifically assessed TCE exposure and kidney cancer
) and a meta-analysis of cohort studies assessing oc-
onal TCE exposure in which studies were grouped by
ality of exposure assessments used, in attempt to re-
xposure misclassification (6). Other case-control stud-
ve not reported positive associations between RCC
nd TCE exposure (31–34). Each of these case-control
s used less detailed exposure assessment methods
he current study, which may have lead to exposure
ssification and insufficient variability in exposure le-
mong subjects. Other factors such as disease misclas-
ion (inclusion of all kidney cancers versus exclusively
and low power to detect the ORs observed may also
layed a role, as very few exposed cases were identified
h study. In the current study, we observed a positive,
ure-dependent association for all TCE exposure me-
hich were strengthened when analyses were restrict-

high-confidence assessments. In contrast, the positive
ations that were observed with chlorinated solvents
all subjects were no longer observed after exclusion

-confidence assessments from the analysis.
results of this study agree with a wealth of experimen-
dence supporting involvement of reductive metabolism
nephrocarcinogenicity of TCE; however, the evidence
unclear at which exposure levels the oxidative pathway

es saturated and reductive metabolism begins to oc-
nd also whether common genetic variation in the en-

Our
of the

r Res; 70(16) August 15, 2010
involved could modify metabolism, bioactivation,
ncer susceptibility in humans (9, 35, 36). As hypothe-
risk was elevated only among individuals with at least
tact GSTT1 allele, supporting experimental evidence
lutathione conjugation is necessary to form substrate
renal-CCBL1 enzyme. Further evidence of heterogene-
s observed among subgroups defined by their renal
genotypes. Because the specific functional SNPs that

y CCBL1 splicing and activity are currently unknown,
ed a comprehensive tagging SNP approach with high
ic coverage to capture common genetic variation
the entire gene region. Elevated ORs were observed

g TCE-exposed subjects that had at least one minor
allele for SNPs: rs2293968, rs2280841, rs2259043, or
60. Although these SNPs are intronic and not known
functional, each is a marker of regional genomic vari-
across an area to which it is highly correlated, and can
d to further define a region of interest. Although not
yped in this study, one potentially functional SNP to
the high-risk region is highly correlated includes
8134 (r2 = 0.95), a C > T transition in the 3′ untransla-
gion of the CCBL1 gene, which could affect CCBL1 tran-
stability. Several CCBL1 gene transcript variants have
dentified that are known to influence substrate speci-
37). The significant interactions observed between TCE
ure and several highly correlated CCBL1 gene minor
might indicate that particular isoforms of this enzyme
hat may have different affinities to the glutathione con-
or that could modify the rate at which TCE metabolites
oactivated in the kidney. Fine mapping and functional
s will be required to elucidate these hypotheses.
as been contended that TCE is a weak, indirect mutagen
kidney, and the relevance of the reductive pathway in
ns could be exposure dependent (38, 39). Our results
rt experimental evidence that this pathway does modify
carcinogenesis in humans exposed to TCE at the doses
ted in this study, and that genetically susceptible sub-
ations exist. This mechanism is biologically plausible in
ns as follows: (a) GSTT1 is the most active, highly
sed GST in the kidney (40, 41); (b) GST θ enzyme expres-
directly related to GSTT1 genotype (42); (c) the GST θ
e metabolizes small halogenated compounds such as
40); (d) the renal CCBL1 enzyme is expressed primarily
kidney; and (e) GST conjugation is required before for-
n of mutagenic isomers in the kidney. The major isomer,
,-dichlorovinyl)-L-cysteine is significantly more toxic
-(2,2,-dichlorovinyl)-L-cysteine (12, 13). The importance
se genetic polymorphisms in the general public with re-
o activation of small halogenated compounds such as
ould have public health importance because both alleles
ated with increased risk in the presence of TCE exposure
t uncommon. Approximately 80% of Caucasians harbor
one intact GSTT1 allele, and the minor allele prevalence
renal CCBL1 SNPs associated with elevated ORs associ-
ith increased renal cancer risk among exposed subjects
from 14% to 30% in this particular population.

findings are similar to one genetic susceptibility study
GSTT1 genotype and RCC risk among workers with
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erm high-level occupational exposure to TCE (29), but
ilar to a more recent reassessment of the same TCE-
d cases (20 exposed and 78 nonexposed) and 324 con-
fter the addition of 445 controls from various sources
lthough the reassessment study was sufficiently pow-
detect an OR of at least 2.0, the results of this analysis
ot adjusted for possible confounders, as they were in
udy.
ngths of this study include a large sample size of cases
ntrols that were well characterized with respect to RCC
ctors, a high participation rate, histologic confirmation
ases, availability of genomic DNA from a high propor-
f subjects, and use of high-quality laboratory methods
notyping, which resulted in very high completion and
rdance rates for all genotypes of interest. Moreover,
job-specific questionnaire modules to collect individual,
d exposure information, and local expert-based expo-
ssessments to evaluate and independently reassess sol-
xposure histories of study subjects are considered a
or approach for retrospective assessment of occupa-
exposures in community-based studies (43). Moreover,
udy determined that exposure misclassification (ob-
as low interteam agreement) consistently attenuated

stimates observed, and attenuation was greatest for
with low-exposure prevalence in the study population.
same time, data on jobs and exposures obtained
h interview and subsequent expert assessment should
ically evaluated as the likelihood of exposure misclassi-
n is higher than for studies with actual exposure mea-
ents. For this reason, we included ameasure of exposure
ence for each job to reflect the likelihood of exposure,
cted analyses restricted to high-confidence assess-
, and reassessed all subjects exposed to organic solvents,
as assessors were blinded to the original assessment and
e status. Although exposure misclassification is always
cern, the result of misclassification would likely dimin-
elevated risks and significant trends observed toward
ll if they were nondifferential. This result has been
previously in an analysis conducted in these centers,

he same exposure assessment teams (16). Recall bias is
concern when occupational exposures are assessed
pectively; however in this study, controls were also
alized patients, and systematic bias introduced from
would likely be nondifferential with respect to exposure.
ntial limitations of the study include the use of hospital-
controls that may not represent the general population
h study region. To avoid selection bias from control

ion, those recruited had diseases unrelated to RCC Rece
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f the group as a whole. Nonetheless, that selection bias
ave occurred is suggested by the lack of association
ed between tobacco smoking and RCC risk as previ-
reported (14). In a comparative study across different
of epidemiologic study designs and associations be-
tobacco and kidney cancer, the strength of association
nerally been weaker in hospital-based case-control
s, compared with population-based case-control and
t studies (44). Another limitation of this study is that
nmental exposure to solvents in drinking water or air
ion was not assessed. Although environmental solvent
ure could have resulted in some exposure misclassifica-
t would tend to be nondifferential. Adjustment for pri-
place of residence (urban/rural) was not found to alter
ks observed. Due to limited resources, with the excep-
f TCE, we were unable to assess exposure to each spe-
rganic or chlorinated solvent used occupationally, and
chlorinated solvents were used in combination or use
verlapped while being phased into or out of the work-
Because other solvents with the exception of TCE were
aluated, we were unable to assess and adjust for other
ual solvent exposures.
onclusion, the current study provides evidence to sup-
n association between occupational TCE exposure and
isk that was limited to individuals with an active GSTT1
pe and certain variants within the renal CCBL1 gene.
gh use of TCE has declined in the United States and
high-resource countries (45), it remains a common oc-
onal exposure elsewhere. TCE exposures also occur at
levels through environmental sources such as contam-
n of public water supplies and releases from toxic
sites. Therefore, studies of potential health effects
ated with low-dose exposures and consideration of
ans are warranted.
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