hnRNP A2/B1 Modulates Epithelial-Mesenchymal Transition in Lung Cancer Cell Lines

Jordi Tauler1, Enrique Zudaire2, Huaitian Liu3, Joanna Shih4, and James L. Mulshine1

Abstract

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) has been reported to be overexpressed in lung cancer and in other cancers such as breast, pancreas, and liver. However, a mechanism linking hnRNP A2/B1 overexpression and progression to cancer has not yet been definitively established. To elucidate this mechanism, we have silenced hnRNP A2/B1 mRNA in non–small-cell lung cancer cell lines A549, H1703, and H358. These cell lines present different levels of expression of epithelial-to-mesenchymal transition (EMT) markers such as E-cadherin, fibronectin, and vimentin. Microarray expression analysis was performed to evaluate the effect of silencing hnRNP A2/B1 in A549 cells. We identified a list of target genes, affected by silencing of hnRNP A2/B1, that are involved in regulation of migration, proliferation, survival, and apoptosis. Silencing hnRNP A2/B1 induced formation of cell clusters and increased proliferation. In the anchorage-independent assay, silencing hnRNP A2/B1 increased colony formation by 794% in A549 and 174% in H1703 compared with a 25% increase in proliferation, in both cell lines, in a two-dimensional proliferation assay. Silencing hnRNP A2/B1 decreased migration in intermediate cell line A549 and mesenchymal cell line H1703; however, no changes in proliferation were observed in epithelial cell line H358. Silencing hnRNP A2/B1 in A549 and H1703 cells correlated with an increase of E-cadherin expression and downregulation of the E-cadherin inhibitors Twist1 and Snai1. These data suggest that expression of hnRNP A2/B1 may play a role in EMT, in non–epithelial lung cancer cell lines A549 and H1703, through the regulation of E-cadherin expression. Cancer Res; 70(18); 7137–47. ©2010 AACR.

Introduction

Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a member of the hnRNP family of proteins. The hnRNPAs are a complex group of RNA-binding proteins that play a key role in mRNA processing and telomere biogenesis (1–4). hnRNP A2/B1 overexpression has been described in many cancers, including breast, pancreas, liver, and gastrointestinal cell lines (5–8). Recent reports have described a critical role of hnRNP A2/B1 in the regulation of fundamental biology especially related to cancer, such as migration (9) and aerobic glycolysis (10). We have previously reported that hnRNP A2/B1 is a marker for early lung cancer (11–15). Overexpression of hnRNP A2/B1 in exfoliated bronchial epithelial cells of archival sputum samples correlated with eventual development of lung cancer (16). High levels of hnRNP A2/B1 expression also colocalized with areas of genetic injury, as assessed by microsatellite instability and loss of heterozygosity (17). hnRNP A2/B1 has been consistently reported as an informative biomarker for lung cancer screening using a variety of analytic approaches, including expression studies and proteomic analysis (7, 8, 18, 19). We have also previously reported that hnRNP A2/B1 expression is tightly controlled during lung development (20). A recent article has shown the impact of cell density on hnRNP A2/B1 expression, reporting that mouse lung cell lines E9 and E10 both showed increase of hnRNP A2/B1 protein related to proliferation. At confluence, the nontumorigenic E10 cell line downregulated hnRNP A2/B1 mRNA production, whereas the tumorigenic E9 cell line showed an increase of total hnRNP A2/B1 production (21).

However, the contribution of hnRNP A2/B1 to the carcinogenic process is still poorly understood. Some reports have used silencing tools in different cancer cell lines to study the function of hnRNP A2/B1 (22–24). Silencing hnRNP A2/B1 in combination with hnRNP A1 reduced cell growth by inducing cell death in cancer cell lines (22). Silencing hnRNP A2/B1 alone in squamous carcinoma cell line, Colo16, regulated genes involved in cell cycle and proliferation; however, it had a modest effect in Colo16 proliferation (23, 24).

Recent evidence is showing a prominent role of hnRNP A2/B1 in fundamental biological functions such as regulation of cell metabolism (10), migration and invasion (9, 25, 26), proliferation (22–24), and cellular response to mitochondrial
stress (26). Moreover, hnRNP A2/B1 activation of invasion phenotype involves different mechanisms including activation of the CXCL-12/CXCR4 axis (25), alternative splicing of TP53INP2 (9), and activation of invasive behavior, after depletion of mitochondrial DNA, through hnRNP A2/B1-mediated cooperative effect of NF-κB, NFAT, CREB, and C/EBPβ (26). Interestingly, it has been reported that depletion of mitochondrial DNA in cancer cells promotes epithelial-mesenchymal transition (EMT; ref. 27). Moreover, it has also been proposed that changes in morphology, invasion, and metastasis potential could be the result of EMT (28, 29).

To investigate how the overexpression of hnRNP A2/B1 affects this important functional biology in lung cancer, we modified the expression of hnRNP A2/B1. Because hnRNP A2/B1 is playing a role in the regulation of migration activity, we used lung cancer cell lines with different levels of EMT phenotype markers such as mesenchymal H1703, intermediate A549, and epithelial H358 (30). We have, for the first time, noted significant changes in proliferation and migration in nonepithelial H1703 and A549 lung cancer cell lines associated with changes in cell morphology, suggesting that hnRNP A2/B1 may be an important regulator of EMT and could provide a mechanistic link between hnRNP A2/B1 overexpression and tumor progression.

Materials and Methods

Cell cultures

Cell lines used in this study include A549, H1703, and H358 non–small cell lung cancer (NSCLC) cell lines obtained from the American Type Culture Collection. These cell lines present different EMT phenotypes as determined by the expression of EMT markers. H1703 has been classified as mesenchymal, whereas A549 and H358 display a more epithelial phenotype (30). Cells were maintained in RPMI 1640 supplemented with 5% fetal bovine serum (FBS; Hyclone), in 95% air and 5% CO2 at 37°C. Cells were transfected with Fugene 6 (Roche), and transfected cells were selected using the protocol described above. Cell lines A549 EV-TC (Empty Vector TrueClone) and A549 A2B1rec (expressing hnRNP A2/B1) were obtained.

Microarray data generation

A549 EV and A549 siA cells were seeded at 1.5 × 10^6 in a T75 flask. At 60 hours postseeding, total RNA was extracted using RNeasy mini-kit (Qiagen). First-strand cDNA, double-strand cDNA, and cRNA were synthesized and processed according to the manufacturer’s protocol (Affymetrix). Microarray study was performed using Affymetrix HG U133 Plus 2.0. Protocol for data analysis can be found in Supplementary Materials (Supplementary Microarray Data Analysis and Legends, and Supplementary Figs. S1–S3).

Real-time PCR

For real-time PCR of samples depicted in Figs. 1A,B, 4A,B, and 5A to C, cells were seeded at 0.7 × 10^6 in a T25 flask. Total RNA was extracted after 24 hours postseeding (Figs. 1A,B, 4A,B, and 5D) and at 0, 2, 4, and 6 hours (Figs. 5A–C) with RNeasy MiniKit (Qiagen). Total RNA (0.8–2 μg) for each analyzed sample was reverse transcribed in a final volume of 25 μL using SuperScript First-Strand Synthesis kit (Invitrogen). Quantitative real-time PCR reaction was performed in a final volume of 25 μL containing 2 μL of cDNA (1:10 dilution) and 400 nmol/L of primers and SybrGreen PCR master mix (Applied Biosystems), and run in an Opticon Cycler (MJ Research) and in a 7300 Cycler (Applied Biosystems). All samples were amplified in triplicate using the following cycle scheme: 50°C for 2 minutes; 95°C for 10 minutes; and 45 cycles of 95°C for 30 seconds, 60°C for 30 seconds. Final mRNA levels were normalized to 18S rRNA levels. All results are plotted as columns (mean) and bars (SD), calculated with 7300 Real-Time PCR System SD Software (Applied Biosystems). Primer sequences can be found in Supplementary Table S1.

Western blotting

Cells were seeded at 3 × 10^5 per well in a six-well plate for 24 hours. For each cell line, three wells were used. For cell density experiments, cells were seeded at described densities in T75 flask. To obtain whole-cell extracts, cells were washed with cold 1× PBS (Bio-Rad), scraped from a six-well plate or T75 flask, and disrupted with 150 μL of lysis buffer: 100 mmol/L Tris-HCl (pH 7.4), 150 mmol/L NaCl, 1% Triton X-100 (Bio-Rad) supplemented with 1× HALT protease inhibitor cocktail (Pierce), and 1× HALT phosphatase inhibitor cocktail (Pierce). After 30 minutes of incubation on ice, whole-cell extracts were cleared by centrifugation. Protein concentration was calculated with the BCA method (Pierce), and 10 to 60 μg of total protein were loaded on ReadyGel 4% to 15% Tris-HCl from Bio-Rad. Western

cDNA expression vectors

cDNA expression vector for hnRNP A2/B1, based on TrueORF cDNA clones system, was acquired from Origene. Cell line A549 was transfected with Fugene 6 (Roche), and transfected cells were selected using the protocol described above. Cell lines A549 EV-TC (Empty Vector TrueClone) and A549 A2B1rec (expressing hnRNP A2/B1) were obtained.
blotting was performed following standard conditions with primary antibody: diluted 1:1,000 for hnRNP A2/B1 (sc-10035; Santa Cruz), 1:1,000 for actin (sc1616; Santa Cruz), 1:1,000 for E-cadherin (3195; Cell Signaling), 1:250 for Snai1 (3879; Cell Signaling), 1:500 for fibronectin (sc-9068; Santa Cruz), and detected with ECL Plus Western blot detection system (GE Healthcare). Images were analyzed using a FluorChem SP system (Alphainnotech). Actin was used as a loading control. Relative optical density was calculated using ImageJ free software (31).

Figure 1. Validation of silenced hnRNP A2/B1. A, top, comparison of siRNA efficiency of siA and siD constructs in A549-transfected cells. Bottom, expression of hnRNP A2/B1 and hnRNP A1 in A549 after silencing hnRNP A2/B1. B, top, expression of hnRNP A2/B1 in transfected cells with a siA silencing construct. Middle, hnRNP A2/B1 silencing in whole-cell extracts of A549 siA, H1703 siA, and H358 siA by Western blot. Bottom, relative optical density of hnRNP A2/B1 normalized to actin. C, top, effect of cell density on expression of hnRNP A2/B1 in A549 cells seeded at increasing density. Whole-cell extracts were obtained after 60 hours postseeding. Bottom, silencing efficiency is affected by cell density in A549 cells. A549 EV and A549 siA cells were seeded at increasing cell density. Whole-cell extracts were obtained after 72 hours postseeding. D, selection of optimal conditions for hnRNP A2/B1 silencing to be used in microarray analysis. RNA from A549 EV and A549 siA was extracted in cells growing in exponential phase at 18 and 36 hours, and confluent cells at 60 and 84 hours postseeding. Experiments were repeated three times.
Advanced v.4.6 software (Diagnostic Instruments). Olympus America), and images were processed using a fluorescence microscope (Olympus BX41, Diamidino-2-phenylindole (Vector Laboratories). Cells were filled with RPMI slides with Vectashield mounting medium containing 4′,6-diamidino-2-phenylindole (Vector Laboratories). Cells were permeabilized with 100% ice-cold methanol at −20°C for 10 minutes, and washed with PBS and blocked with PBS containing 5% of normal goat serum and 0.1% Triton X-100. Cells were incubated with primary antibody to E-cadherin (1:100) overnight at 4°C, washed with PBS, and then incubated with secondary antibody conjugated with TRITC (1:100; Pierce) for 1.5 hours. After washing, coverslips were attached to glass slides with Vectashield mounting medium containing 4′,6-diamidino-2-phenylindole (Vector Laboratories). Cells were imaged using a fluorescence microscope (Olympus BX41, Olympus America), and images were processed using Spot Advanced v.4.6 software (Diagnostic Instruments).

Results

Silencing hnRNP A2/B1 in lung cancer cell lines

Although sIA and sID sequences are separated by only 12 nucleotides, the silencing effects observed with these oligonucleotides are very different. sID was able to show a moderate but not consistent silencing of hnRNP A2/B1. sIA had no effect in silencing hnRNP A2/B1 (data not shown). sIA was the only construct that showed consistent and significant silencing of hnRNP A2/B1 compared with EV (Fig. 1A). Because previous observations have suggested a cooperative interaction between hnRNP A2/B1 and hnRNP A1, we evaluated expression of hnRNP A1 after silencing hnRNP A2/B1. We did not observe changes in hnRNP A1 mRNA expression (Fig. 1A). Downregulation of hnRNP A2/B1 at the mRNA and protein levels was confirmed in A549, H1703, and H358 cell lines (Fig. 1B).

We and others have reported that cell density affects hnRNP A2/B1 expression (11, 21) in several lung cancer cell lines. Cell density at seeding affects hnRNP A2/B1 expression and predictably determines the timing of hnRNP A2/B1 peak of expression in A549 cell line (Fig. 1C). We examined the influence of cell density in silencing of hnRNP A2/B1 in A549. At 72 hours postseeding, A549 EV cells seeded at 1.25 × 10⁶ per flask were 90% confluent, and cells seeded at 2.5 × 10⁶ per flask were at confluency. Maximal differences in hnRNP A2/B1 protein levels between A549 EV and A549 sIA cells were detected just as cells reached confluency (Fig. 1C).

Effects of hnRNP A2/B1 silencing on gene expression in A549 cell line

We extracted RNA from A549 EV and sIA cells at four different time points to evaluate conditions for optimal silencing. At 60 hours postseeding, expression of hnRNP A2/B1 mRNA in A549 EV was still near maximum. At this time point, mRNA levels of hnRNP A2/B1 in A549 EV compared with A549 sIA showed an efficiency of silencing around 50% (Fig. 1D). Microarray analysis was performed under these conditions. We obtained a list of 173 differentially expressed genes between A549 EV and A549 sIA cells (see list in Supplementary Materials; Supplementary Table S2). Network association analysis resulted in these 173 genes being categorized into nine clusters according to their known functional relationship as described in the Ingenuity Pathway Knowledge Base (Table 1). Different significant biological functions were revealed by this method as reported in Supplementary Table S3. The most relevant functions affected by silencing hnRNP A2/B1 in A549 cell line were cellular movement, cellular development, amino acid metabolism, and cell death. Interestingly, pathways central to embryonic development also were found in the nine clusters. These results, in combination with 64 genes involved in cancer (see list Supplementary Materials; Supplementary Table S4), are consistent with a role for hnRNP A2/B1 in cancer that could represent a modification of developmental programs as we have reported previously (20). Moreover, we have validated the microarray results by real-time PCR, using 27 of the 173 genes, and reported that 25 (93%) show similar results after microarray and real-time PCR analyses (see table and figure in Supplementary Materials, Supplementary Fig. S4).
Table 1. Results from microarray study

<table>
<thead>
<tr>
<th>ID</th>
<th>Molecules in network</th>
<th>Score</th>
<th>Focus molecules</th>
<th>Top functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CACNB2, collagen(s), CP, ELOVL2, ENTPD1, ERK, Fascin, FH1L, FN1, FSCN1, GDF15, GJA1, GCJ1, GSN, H19, hCG, IGBP2, INHBB, LPAR1, Nfat, NFR3, NT5, PAPPA, Pdgf, PdgfB, PGDFC, PGM2L1, Pkcs, PLC, PLCB4, Rac, S1PR3, SLC1A1, TGFB2, VCAN</td>
<td>44</td>
<td>25</td>
<td>Cancer, amino acid metabolism, small-molecule biochemistry</td>
</tr>
<tr>
<td>2</td>
<td>ABCB1, Akt, AKT3, Ap1, CD24, DNER, EDAR, ERRB3, HIPK2, INR3, IL1, ILBST, insulin, Jnk, LDL, LEPR, Mapk, MFHAS1, NF-kB (complex), NR2F1, OAS1, P38 MAPK, PCSK9, PI3K, PPARGC1A, PRS31, PRR33, SERPINA1, TFF1, TLE1, TNS3, Trypsin, VEGF, WNT4</td>
<td>40</td>
<td>22</td>
<td>Cancer, cell death, neurologic disease</td>
</tr>
<tr>
<td>3</td>
<td>Actin, CA12, CACNA1A, caspase, CK2, CPLX1, CUX1, DSG1, DSG3, F-actin, FSH, GPRC5B, HNRNPA2B1, HOXB8, JUP, MEIS2, MIRN346, NOVA1, NR3C2, NRCAM, NRXN1, NTRK3, PBX1, Pka, PKN2, PSEN1, RAB8, S100A13, SLC1A2, SNAP25, Snare, SYT1, SYT3, VIL1, ZDHHC17</td>
<td>24</td>
<td>15</td>
<td>Nervous system development and function, small-molecule biochemistry, behavior</td>
</tr>
<tr>
<td>4</td>
<td>ATG12, CASP3, CDC37, CIDE, corticosterone, CPS1, CPVL, DSP, HYAL1, hyaluronic acid, KCTD12, L-dopa, MAPK3, MMD, MIRN34, MYCN, MYO1A, PKN2, PPARA, PRR3C, PSEN1, RAF1, SF1, SLC1A2, SRRX, TGFA, TGFa, TGFb, TGFa b, VEGF, WNT10, VCP, VIP, WOXO, YWHAG, YWHAG2, ZFP36</td>
<td>22</td>
<td>14</td>
<td>Cell death, cellular development, hair and skin development and function</td>
</tr>
<tr>
<td>5</td>
<td>ACSL5, ALB, AMBP, ATG3, CD302, CEBPA, CLDN1, CRB1, CRIP1, ELOVL7, HIST2H4A, HNF1A, HNF4a dimer, HNF4A, HNMT, HPX, LEF1, LEP, LGALS3, LUC7L2, MIRN31, MOCOS, PDX1, PEG10, PPARA, PZP, SFRS1, SREBF1, SRI, SSFA2, TCF1L2, TLR2, TRIM31, UBE2I, YWHAG</td>
<td>20</td>
<td>13</td>
<td>Lipid metabolism, small-molecule biochemistry, carbohydrate metabolism</td>
</tr>
<tr>
<td>6</td>
<td>ADORA2B, aryl sulfotransferase, BDNF, βestradiol, CEBPA, CHST7, cyclic AMP, DLG4, DRD1, GABAR-A, GABRA5, GABRB1, GABRB2, GABRG3, HTR1A, MIRN196A1, MIRN196A2, MIRN196B, PDE1A, PKIB, potassium, pregnenolone, RAF1, SET, SETBP1, SLC6A14, STK32B, sulfotransferase, SULT1A1, SULT1A2, SULT1A3, TOX3</td>
<td>20</td>
<td>13</td>
<td>Genetic disorder, nutritional disease, psychological disorders</td>
</tr>
<tr>
<td>7</td>
<td>ALX1, ANX5, ATRX, calpain, CBX5, CDKN1A, CEBPA, CTTNB1, P-PGlu, DCLK1, DSE, EP300, EYA4, HMGB3, KLF6, KRT4, LEF1, LEP, MBP, MIRN124, MIRN1608, NR3C1, PDX1, PPARA, PRR3C, PSMD4, RASSF8, RIMKLB, SCN9A, ST8SIA4, STOM, TGFA, TM4SF18, TP53INP1, YY1</td>
<td>20</td>
<td>13</td>
<td>Gene expression, organ development, carbohydrate metabolism, development</td>
</tr>
<tr>
<td>8</td>
<td>ABCC6, ANX2A, AXIN1, BDNF, CADM1, CEBPA, CREB1, cyclic AMP, HRAS, ITGA5, KIAA1199, LEPI, LETM2, MEST, MUC13, NFK2-1, P4HA1, phosphatidylinositol, PITPN1, PLD1, PLD2, PML, PRR3C, PSEN1, PTEN, ROR1, SEMA3B, SKI, SPAG4, talin, TGFA, TFGF1, VCL, VIP, ZFP36</td>
<td>18</td>
<td>12</td>
<td>Cancer cell cycle, cellular growth and proliferation</td>
</tr>
<tr>
<td>9</td>
<td>AP2A2, ARS1, CDH23, CECAM7, CTNNB1, EGFR, ERBB2IP, FZD8, GPR64, GRB2, HIPK2, ICS, JAK2, JUP, LEF1, MAST4, MYO7A, PHACTR2, PKO1, PSEN1, PTPrF, RAF1, SKI, SMAD1, SMAD3, SUMF1, SVEP1, TCF7L2 (includes EQ:6934), TGFA, UBAHSB3, USH1C, USH1G, VIP, ZFP36, ZFYVE9</td>
<td>17</td>
<td>12</td>
<td>Genetic disorder, neurologic disease, cellular development</td>
</tr>
</tbody>
</table>

NOTE: After analysis through Ingenuity Pathways, we identified nine main gene networks. Genes affected by silencing of hnRNP A2/B1, focus molecules, are shown in bold italics.
clustered small cells together with foci of bigger cells (Fig. 2). After 96 hours postseeding, A549 siA cells were not fully confluent but showed very compact regions of smaller cells where cells were piling up. Similar results were observed in mesenchymal H1703 cells. Confluent H1703 EV cells did not attach to each other and did not cluster. H1703 siA cells formed clusters of more compact cells with increased cell-cell contact compared with H1703 EV cells (Fig. 2). In contrast, no changes were observed in the epithelial H358 cell line after silencing hnRNP A2/B1 (data not shown).

Silencing hnRNP A2/B1 increases proliferation and colony formation in nonepithelial cell lines

To further investigate hnRNP A2/B1 function in lung cancer cell lines, we evaluated proliferation by cell growth assay (MTS). After 4 days, A549 siA cells showed a significant increase in proliferation compared with A549 EV cells. A similar result was obtained with H1703 siA cells compared with H1703 EV cells (Fig. 3A). Moreover, silencing hnRNP A2/B1 enhanced the ability to form colonies on the anchorage-independent clonogenic assay. A549 siA showed a 794% increase in the number of colonies compared with A549 EV. H1703 siA showed a 174% increase over H1703 EV in the number of colonies counted per field (Fig. 3B). These changes in number of colonies correlated with changes in the size and morphology of the colonies. A549 siA produced bigger colonies than A549 EV (Fig. 3B). H1703 siA formed bigger and more compact colonies than H1703 EV (Fig. 3B). H358 siA cells did not show any differences in growth compared with

Figure 2. Morphologic changes after silencing hnRNP A2/B1. Cells were seeded at 1×10^5 per flask in T75 flask. Images at 10× and 40× magnification. Scale bar at 10×, 40 μm; at 40×, 10 μm.
H358 EV, and both cell lines did not form colonies in clonogenic assay (data not shown).

Silencing hnRNP A2/B1 inhibits migration in lung cancer cell lines

In addition, we evaluated the effect of hnRNP A2/B1 in migration. A549 EV and H1703 EV migration activity was similar, whereas H358 EV showed less migration (Fig. 3C). H1703 siA showed less migration (4.45-fold) compared with H1703 EV. A549 siA showed 2.65-fold less migration compared with A549 EV. H358 siA also exhibited less migration than H358 EV (1.6-fold decrease). Therefore, all cell lines showed a decrease in migration after silencing hnRNP A2/B1, although the effect was only significant in nonepithelial cell lines H1703 and in A549.

hnRNP A2/B1 affects expression of EMT markers in A549 and H1703 cell lines

Microarray analysis showed downregulation of fibronectin, an EMT marker, after silencing hnRNP A2/B1 in A549. We have confirmed downregulation of fibronectin in A549 siA cell line compared with A549 EV (Fig. 4A and B). However, expression of fibronectin in mesenchymal H1703 was very low, and we were not able to detect changes (Fig. 4A). Given the central role of E-cadherin in EMT control, we explored how hnRNP A2/B1 silencing affected E-cadherin expression (28, 29). Although E-cadherin expression was not detected by the microarray analysis, we evaluated changes in E-cadherin expression at the mRNA and protein levels in A549 and H1703 cell lines. We have observed upregulation of E-cadherin expression in A549 siA and H1703 siA cell lines compared with their EV counterparts at the mRNA level (Fig. 4A). Also, we found a modest increase in E-cadherin protein expression in A549 siA and an important increase in H1703 siA compared with H1703 EV (Fig. 4B). Through immunofluorescence, we have shown that E-cadherin expression in A549 EV is present in the membrane. There was also a diffuse staining in the cytoplasm, whereas there was a more abundant E-cadherin signal in the membrane of A549 siA cells along areas of cell-cell contacts. H1703 EV cells were negative for E-cadherin expression, but H1703 siA cells showed clusters of E-cadherin-positive cells. In the same field, nonclustered cells without cell-cell contacts were E-cadherin negative (Fig. 4C).
Expression of E-cadherin inhibitors Snai1 and Twist, but not ZEB-1, is affected by silencing hnRNP A2/B1 in nonepithelial cell lines

To further study the effect of hnRNP A2/B1 in modulation of EMT and regulation of E-cadherin expression, we have explored the effect of hnRNP A2/B1 in E-cadherin inhibitors Twist, Snai1, and ZEB-1 (32, 33). We have observed that A549 siA cells showed a higher and constant level of expression of E-cadherin mRNA, whereas A549 EV had lower and downregulated expression of E-cadherin (Fig. 5A). We examined Snai1 expression and found that at 2 hours postseeding, Snai1 mRNA peaked in A549 EV cells. This peak was more attenuated in A549 siA cells. After 4 hours postseeding, Snai1 mRNA was downregulated in both cell lines (Fig. 5B). Snai1 protein expression followed the same pattern but was slightly delayed in time (Fig. 5B). However, H1703 cell line did not show this peak of expression after 2 hours postseeding in Snai1 mRNA expression (data not shown). Twist was downregulated in both A549 siA and H1703 siA cells (Fig. 5C). Another E-cadherin inhibitor, ZEB-1, was not affected by
silencing of hnRNP A2/B1 in A549 and H1703 cell lines (data not shown).

To confirm the role of hnRNP A2/B1 in the regulation of E-cadherin and E-cadherin inhibitors, we overexpressed hnRNP A2/B1 in A549 by stable transfection. Overexpression of hnRNP A2/B1 in A549 A2B1rec correlated with an increase of Snai1 and Twist expression. Changes in E-cadherin expression were also observable (Fig. 5D).

Discussion

We and others have reported hnRNP A2/B1 as an early lung cancer marker (11–15). However, despite increasing evidence of a prominent role for hnRNP A2/B1 in the regulation of mRNA processing (1, 2, 4), telomere maintenance (3), cell metabolism (10), migration and invasion (9, 25, 26), proliferation (22–24), and cellular response to mitochondrial stress (26), there is no described mechanistic link for the contribution of hnRNP A2/B1 overexpression and the pathogenesis of lung cancer. To approach this question, we have silenced hnRNP A2/B1 in a panel of lung cancer cell lines that present a different EMT phenotype: mesenchymal H1703, intermediate A549, and epithelial H358 (30). EMT differentiation has been reported to affect migration and proliferation (28, 29), and EMT induction has been observed as part of a response to mitochondrial stress (27).

Results of silencing hnRNP A2/B1 have been reported in a number of human cancer cell lines but not in lung cancer cell lines (22–24). In this study, we have analyzed, for the first time, the effect of silencing hnRNP A2/B1 in lung cancer cell lines. Our results lead to four main observations: (a) microarray analysis expression in A549 reveals that silencing of hnRNP A2/B1 alone has a strong effect on genes that are fundamental to several hallmarks of cancer (34). Several affected genes are known to play a role during development and affect motility, migration, and proliferation. (b) hnRNP A2/B1 regulates morphology and cell growth in nonepithelial cell lines. Morphologic changes correlate with a different growth pattern.

Figure 5. E-cadherin regulation. A, real-time PCR of E-cadherin, A549. B, top, real-time PCR of Snai1, A549. Bottom, Snai1 protein expression in A549. C, real-time PCR for Twist. Left, A549. Right, H1703. D, real-time PCR of Snai1, Twist, and E-cadherin after overexpression of hnRNP A2/B1 in A549. Results are representative of three experiments.
Detached cells, which may be conditions, E-cadherin is downregulated, favoring EMT. Under these conditions, E-cadherin inhibitors although the fact that Twist is downregulated in both cell lines but not Snai1 may indicate a predominant role for Twist in the Twist-Snai1 axis as it has been suggested previously (35). Although previous reports have linked suppression of EMT by silencing Snai1 and/or Twist with decrease in cell proliferation (35, 36), in our study, reversion of EMT increases cell proliferation. This could be explained by the fact that in our microarray, we detected upregulation of ErbB3 and versican (37) and downregulation of TGF-β2, tumor suppressor HIPK2 (38–40), and GDF15 (41).

We have also shown that there is a correlation between cell density and hnRNP A2/B1 expression. Previous reports have indicated that VHL affects hnRNP A2/B1 expression, and VHL is also regulated by cell density (42, 43). According to the reported observations, we suggest a link between cell density, hnRNP A2/B1 expression, and EMT regulation in nonepithelial cancer cells. Tumor cell growth increases cell density and levels of hnRNP A2/B1 protein. Under these conditions, E-cadherin is downregulated, favoring EMT. Detached cells, which may be in vitro analogues of metastatic cells at low density, may show low levels of hnRNP A2/B1. This could increase proliferation and upregulation of E-cadherin that would permit cells to attach to a new site. However, epithelial-like cells with high expression of E-cadherin, such as H358, would not be expected to respond to silencing of hnRNP A2/B1 in a significant way. A consequence of this hypothesis is that an increase of hnRNP A2/B1 expression may be regulating EMT. Our results support this possibility because we have shown that overexpression of hnRNP A2/B1 in A549 correlates with an upregulation of Snai1 and Twist expression.

In our results, epithelial H358 cell line was not affected by silencing of hnRNP A2/B1. We suggest that cell lines from previous reports (22–24) may have a different status of EMT-MET differentiation that could explain these different results reported after hnRNP A2/B1 silencing. Alternatively, cell line–specific differences in regulation of hnRNP A2/B1 related to cell density may affect the functional effects observed after silencing hnRNP A2/B1.

The fact that hnRNP A2/B1 has a role in the control of cell metabolism by regulating alternative splicing of M1/M2 pyruvate kinase isozymes (10) may explain the integration of cell density and regulation of hnRNP A2/B1 expression. This suggests a complex network of interaction between cell metabolism, cell density, cellular stress, and EMT differentiation in which hnRNP A2/B1 may play a regulatory role. An important consequence of the relationship between cell density and hnRNP A2/B1 expression status is that to obtain consistent experimental results while studying hnRNP A2/B1 function, cell handling, cell density at the time of splitting flasks, and seeding density, all need to be carefully defined and standardized.

In light of our preliminary description of the regulatory influence of hnRNP A2/B1 and its effect on clonogenic growth, cell migration, and proliferation, coupled with other recent reports on hnRNP A2/B1 regulation of core biology, further studies are needed to understand the underlying mechanism of regulation of EMT/MET linked to hnRNP A2/B1 expression and cell density in lung cancer, relative to its contribution to lung carcinogenesis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

This research was supported in part by intramural NCI funds, Rush University, and the Charles J. & Margaret Roberts Fund.

Received 03/10/2010; revised 06/30/2010; accepted 07/14/2010; published OnlineFirst 08/31/2010.

References

6. Yan-Sanders Y, Hammond GJ, Lyn-Cook BD. Increased expression

hnRNP A2/B1 Modulates Epithelial-Mesenchymal Transition in Lung Cancer Cell Lines

Jordi Tauler, Enrique Zudaire, Huaitian Liu, et al.

Cancer Res 2010;70:7137-7147. Published OnlineFirst August 31, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-0860

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/08/27/0008-5472.CAN-10-0860.DC1

Cited articles
This article cites 42 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/18/7137.full.html#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/70/18/7137.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.