Tumor Antigen Acrosin Binding Protein Normalizes Mitotic Spindle Function to Promote Cancer Cell Proliferation

Angelique W. Whitehurst1, Yang Xie5, Scott C. Purinton3, Kathryn M. Cappell1, Jackie T. Swanik1, Brittany Larson1, Luc Girard4, John O. Schorge6, and Michael A. White2

Abstract

Cancer cells manage to divide in the context of gross chromosomal abnormalities. These abnormalities can promote bypass of normal restraints on cell proliferation but at a cost of mitotic vulnerabilities that can be attacked by chemotherapy. Determining how cancer cells balance these issues may permit chemotherapeutic sensitivity to be leveraged more efficiently. From a pan-genomic small interfering RNA screen for modifiers of panitaxel sensitivity, we identified the tumor antigen acrosin binding protein (ACRBP)/OY-TES-1 as a specifier of panitaxel resistance. ACRBP expression is normally restricted to the testes but is detected in a wide variety of cancers, including most ovarian cancers. We found that ACRBP is both necessary and sufficient for panitaxel resistance in ovarian cancer cell lines and ovarian tumor explants. Moreover, high ACRBP expression correlated with reduced survival time and faster relapse among ovarian cancer patients. We identified the mitotic spindle protein NuMA as an ACRBP-interacting protein that could account for the effects of ACRBP on panitaxel sensitivity. In cancer cells, ACRBP restricted a NuMA-dependent abrogation of a mitotic spindle assembly that is otherwise pathologic. As a consequence, ACRBP depletion resulted in mitotic errors and reduced proliferative fitness that could be rescued by NuMA codepletion. We propose that the codependent relationship of ACRBP and NuMA in cancer cells reflects their passage through a selection bottleneck during tumor evolution, one which requires the acquisition of traits that normalize mitotic perturbations that originally drove the plasticity of a preneoplastic genome. The molecular definition of such traits as defined by the ACRBP-NuMA complex may represent conceptually ideal intervention targets based on the wide therapeutic windows they may offer. Cancer Res; 70(19); 7652–61. ©2010 AACR.
Materials and Methods

Cell culture
H1155 and ES-2 cells were obtained from the American Type Culture Collection. PEO1 and PEO4 cells were a gift from Hani Gabra (University of Edinburgh Cancer Research Center). H1155, PEO1, and PEO4 cell lines were validated by Powerplex genotyping before use.

Tumor tissue and primary tumor explants
Normal ovarian tissue RNA samples were obtained with consent from patients under IRB 092004-010 (University of Texas Southwestern Medical Center Tissue Resource). Patient ovarian tumor samples were isolated from ascites obtained during surgical removal of tumors (LCOV2 and LCOV17) or paracentesis (LCOV4) under appropriate HIPAA procedures [IRB 09-0412 at University of North Carolina (UNC) at Chapel Hill, "Identification of Linchpin Proteins Supporting Ovarian Tumorigenesis"]). All numbers used to refer to samples are dummy identifiers that cannot be traceable back to individual patients. LCOV2 was derived from a patient with serous, stage IIIC ovarian cancer who had received four cycles of paclitaxel and carboplatin. LCOV4 was derived from a patient with primary peritoneal carcinosarcoma who had received three cycles of ifosfamide/carboplatin, single-agent carboplatin, Taxotere, and Gemzar, followed by weekly paclitaxel. LCOV17 was from a newly diagnosed patient with Stage IIIC serous papillary ovarian cancer, who had not received prior treatment. Ascites were plated in flasks, and medium was changed weekly until cells were confluent. Cells were maintained in RPMI + 10% fetal bovine serum (FBS; PEO1, PEO4, and ES-2) or RPMI + 5% FBS (LCOV2, LCOV4, and LCOV17).

Live-cell imaging and quantitation
Green fluorescent protein (GFP)-histone H2B expressing lines were produced by transduction with pCLNCX-GFP-H2B retrovirus. Retrovirus was prepared by Fugene (Roche) transfection of 293gp cells with pCLNCX-GFP-H2B and VSVG vectors using Fugene according to the manufacturer’s instructions. At 24 hours posttransfection, the medium was replaced, and at 48 hours posttransfection, supernatant was collected, centrifuged, and filtered. H1155 cells were then transduced at 50% confluence in conjunction with 4 μg/mL polybrene. At 1 day of posttransduction, the cells were selected with 600 μg/mL geneticin (Life Technologies) until a homogenously expressing population was obtained. For imaging of siRNA-treated cells, the H1155-GFP-histone H2B line was reverse transfected as described below and plated in a 96-well format followed by carrier or paclitaxel treatment at 48 hours posttransfection. At 72 hours posttransfection, imaging began on a BD Pathway 855 bioimager using a 40x objective. Images were collected at 15-minute intervals for the next 48 hours. Image sequences were generated using ImageJ. Image sequences were then evaluated for indicated parameters manually.

siRNA transfections
All transfections were performed with 50 nmol/L final concentration of siGENOME SMART pools and individual siRNA oligonucleotides obtained from ThermoFisher. Reverse transfections were performed by mixing appropriate Dharmafect (ThermoFisher) with siRNA pools and incubating for 20 minutes followed by delivery of trypsin-derived single-cell suspensions. Cells were transfected for a minimum of 72 hours and a maximum of 96 hours before analysis, as indicated in figure legends. To optimize cell lines, cells were reverse transfected with control (DNLB14) or a toxic siGENOME pool (targeting ubiquitin B) using a panel of Dharmafect reagents and concentrations in 96-well format. At 96 hours posttransfection, cells were evaluated for viability using the Cell Titer Glo Assay (Promega). ACRBP off-target validation was performed by using six individual siRNAs representing two independent siRNA pools obtained from Dharmacon (siGENOME and ON-TARGETplus) in H1155 cells. Each individual siRNA from the original pool and one from the ON-TARGETplus pool effectively depleted ACRBP mRNA and resulted in paclitaxel-dependent mitotic delay. The target sequences for these siRNAs are GGAGGAAGCCTCTCATTATT, GTGAGATCTCTACAATCTT, CCAAGAGATCTGTGTTCTT, GCCAAAGGCTGGAAGTACATT, and TTATACGGGCTG-GATTGTATT. In subsequent assays, the siGENOME pool was used. An ACRBP depletion-induced phenotype was also validated in PEO1 cells using a lentivirus-based system (TRC clone set, OpenBiosystems catalog RHS4533). Clones TRCN00000115843 and TRCN0000115844 were effective.

cDNA transient transfections
H1155 or PEO1 cells were transfected with cDNA expression vectors using Fugene according to the manufacturer’s protocol for a 35 mm² dish format. At 24 hours posttransfection, medium was replaced with paclitaxel or vehicle-containing medium for an additional 24-hour incubation. Cells were then processed for immunofluorescence.

Quantitative real-time reverse transcription-PCR
Total RNA was isolated from tissue culture cells using the Sigma RNA isolation kit. The high-capacity cDNA reverse transcription kit (Applied Biosystems) was used to synthesize cDNA from 3 μg of total RNA. Real-time reverse transcription-PCR (RT-PCR) was performed on diluted cDNA using the Applied Biosystems 7500 Fast real-time PCR system (standard program) and inventoried TaqMan gene expression assays. Human β-actin served as an endogenous control, and “control transfected” was the calibrator for calculating differences in expression levels using the 2⁻ΔΔCT method. Glyceraldehyde-3-phosphate dehydrogenase was also used for normalization in many cases and consistently returned the same biological observation. Final results represent the pooling of two test experiments, and error bars represent average deviation from the mean.

Immunoblotting and immunofluorescence
Monoclonal antibody raised in mouse against ACRBP was a gift from Kunle Odunsi and is previously described. Anti-NuMA rabbit antibody was obtained from Novus Biologicals. A monoclonal antibody against bromodeoxyuridine (BrdUrd) was obtained from Becton Dickinson. β-Tubulin III, γ-tubulin, and ES-2 or RPMI + 5% FBS (LCOV2, LCOV4, and LCOV17).
and Aurora-A antibodies were obtained from Sigma. Anti-pericentrin was obtained from Abcam. Alexa 488 and Alexa 546 (Invitrogen) were used as secondary antibodies for fluorescent labeling. Immunoblot assays were performed with proteins transferred to polyvinylidene difluoride membrane according to the manufacturer’s protocol for each antibody. For BrdUrd visualization, cells were treated with 30 μmol/L BrdUrd for 14 hours and then fixed in 3.7% HCHO. Cells were permeabilized with acetone for 10 minutes at −20°C. DNA was denatured with 1 mmol/L HCl for 10 minutes and then blocked in PBS-5% bovine serum albumin-1% Tween for a minimum of 15 minutes. Anti-BrdUrd was used at a dilution of 1:4. For β-tubulin/pericentrin staining, cells were fixed as described above, permeabilized for 10 minutes with 0.5% Triton X-100, and blocked as above. Cells were stained with monoclonal β-tubulin III and pericentrin at a dilution of 1:100, and UA199 antibody was used at a 1:100 dilution. Cytokeratin-16 staining was performed using a monoclonal cytokeratin-16 antibody obtained from Dako Laboratories. All cells were visualized with an Axiovert or Axioimager upright microscope (Zeiss) equipped with a Hamamatsu or Zeiss CCD camera.

Immunoprecipitation

PEO4 cells grown to confluence on 100 mm² dishes were lysed in a buffer containing 0.5% Triton X-100, 150 mmol/L NaCl, and 0.5% deoxycholate. Soluble lyate was incubated overnight with anti-ACRBP monoclonal antibody UA199 or mouse IgG precoupled to cyanogen-bromide agarose beads. Beads were washed three times in lysis buffer with 500 mmol/L NaCl. Following washes, sample buffer was added, and lysates were boiled and separated by 10% SDS-PAGE. High-performance liquid chromatography (HPLC)–mediated tandem mass spectroscopy of ACRBP immunoprecipitates was performed by the University of Texas Southwestern Protein Chemistry Core Research Facility in Mass Spectrometry. Multiple peptides corresponding to NuMA were identified in a 180-kDa silver-stained band.

Gene expression association studies

Fresh tumor was collected from 29 advanced epithelial ovarian cancer patients between 2001 and 2006 as part of an ongoing Early Detection Research Network collaboration. All patients were treated with taxane/platinum-based chemotherapy. Specimens were immediately flash frozen and stored at −80°C. The clinical course and outcome of the patients were prospectively determined as sample collection was ongoing. Genomic mRNA expression profiles were generated using the Affy Plus2 GeneChip. The robust multiaarray averaging method was used to process microarray data, and expression values were log₂ transformed (14, 15). Patients were dichotomized to high ACRBP and low ACRBP groups based on a Gaussian mixture model (16). ACRBP and NuMA expression values were used to parse patient populations to high ACRBP-NuMA and low
ACRBP-NuMA groups based on a hierarchical clustering analysis. Similar results are observed if median values were used to dichotomize expression values. Disease-free survival time, defined as the time interval between chemotherapy conclusion and disease recurrence date or the last follow-up date, was used to measure the patient’s response to chemotherapy. Survival curves were estimated using the product limit method of Kaplan-Meier (17) and were compared using the log-rank test. Univariate cyclooxygenase (COX) proportional hazards model was also performed, with survival as the dependent variable (18).

Results

ACRBP copy number is amplified in tumors and confers paclitaxel resistance

The mechanisms driving the anomalous ACRBP expression in a variety of cancers are unknown (9). However, ACRBP genomic gain was recently detected in ovarian serous adenocarcinoma by The Cancer Genome Atlas (TCGA) consortium (Fig. 1A). Perhaps more clinically significant, gain of ACRBP/OY-TES-1 expression was reported in 69% of ovarian tumors (12). This relationship is iterated in ovarian tumor–derived...
Figure 3. ACRBP is required for high-fidelity mitotic progression in tumor cells. A, H1155 cells expressing GFP-histone H2B were transfected with indicated siRNAs. At 48 h posttransfection, cells were exposed to paclitaxel or carrier and imaged live by time-lapse microscopy for 48 h. Single-cell lineage tracing for each condition was performed to measure the length of mitosis as a function of the time from prometaphase to telophase in 50 cells over two independent experiments. Quartile ranges for the condition are shown. P values were calculated with the Mann-Whitney test. B, representative examples of time-lapse sequences illustrating the heterogeneity of fates exhibited by H1155 cells following ACRBP depletion and exposure to 10 nmol/L paclitaxel. C, radar plots indicating the population distributions of mitotic fates under the indicated conditions. D, single-cell mitotic fate profiles and associated time in mitosis for H1155 cells transfected with indicated siRNAs and exposed to indicated paclitaxel concentrations. Each bar indicates the time in mitosis and the outcome for a single cell.
cell lines and represents an attractive setting for the analysis of the ACRBP function in cancer. We examined the serous adenocarcinoma cell lines PEO1 and PEO4, which were sequentially derived from a chemotherapy-responsive tumor and a chemotherapy-resistant relapse from the same patient (19). Of note, whereas ACRBP expression is activated in both lines relative to normal tissue, it is highest in the chemoresistant PEO4 cells (Fig. 1B). Ectopic expression of ACRBP in PEO1 and in the original siRNA screen host non–small cell lung carcinoma line H1155 (8) was sufficient to confer resistance to paclitaxel-induced mitotic arrest relative to controls (Fig. 1C and D).

ACRBP physically and functionally interacts with NuMA

The gain-of-function activity of ACRBP indicates that this molecule likely interacts with cellular components that otherwise promote paclitaxel responsiveness. To explore this, we examined ACRBP-associated proteins by nano-HPLC mass spectrometry analysis of endogenous ACRBP complexes. A number of candidates were returned including the nuclear and mitotic apparatus protein NuMA, which was validated by immunoblotting anti-ACRBP immunoprecipitates from PEO4 cells with an anti-NuMA antibody (Fig. 2A). In normal cells, NuMA is an essential component of the mitotic spindle, promoting spindle pole focusing and, when overexpressed, microtubule bundling (20–28). The NuMA locus is in the 11q13 chromosomal band, which is frequently amplified in many tumors and includes tumor-promoting genes such as cyclin D1, EMSY, and MEN1. The overexpression of NuMA in cancers disrupts centrosome integrity and increases genomic instability (21). The manifestation of spindle defects upon either loss or gain of NuMA strongly suggests that a balance of effective NuMA concentrations must be maintained for robust mitotic progression (20–22). Upon depletion of ACRBP, we found that NuMA protein levels were significantly elevated, suggesting that ACRBP expression restrains NuMA protein accumulation (Fig. 2B). Remarkably, codepletion of ACRBP and NuMA rescued the enhanced sensitivity to paclitaxel observed upon ACRBP depletion alone (Fig. 2C). This effect was not observed upon codepletion of other modulators of microtubule dynamics, including the microtubule stabilizing protein mitogen-activated protein 4 (MAP4) and the microtubule tip-binding protein EB1 (Fig. 2C), indicating that ACRBP perturbation of paclitaxel sensitivity is NuMA dependent (22, 23).

ACRBP supports high-fidelity mitosis

Given the role of NuMA in mitotic spindle assembly and function (20, 24–27), we directly assessed the consequence of ACRBP depletion on mitotic progression in real time at single-cell resolution using stable expression of GFP-histone H2B. Consistent with previous observations in H1155 cells, depletion of ACRBP or exposure to 10 nmol/L paclitaxel had no measurable consequence on the timing and only slight consequences on the outcome of mitosis (Fig. 3; ref. 8). In contrast, depletion of ACRBP together with 10 nmol/L paclitaxel

Figure 4. ACRBP supports spindle-pole congression and proliferation in ovarian cancer cells. H1155 (A) and ES-2 (B) cells were transfected with the indicated siRNAs, incubated for 48 h, and then exposed to 10 nmol/L paclitaxel for 24 h. Following immunostaining with the indicated probes, mitotic figures were scored microscopically for fragmented centrosomes and are expressed as the percentage of total cells counted. Error bars represent the average deviation from two independent experiments.
paclitaxel resulted in a significant mitotic delay compared
with controls (Fig. 3A). The delay is consistent with the spindle
assembly checkpoint response, as kinetochores in ACRBP-
depleted cells exposed to paclitaxel are MAD2 and BUBR1
positive (Fig. 2C). Real-time single-cell lineage tracing indic-
ated that this delay was coupled to an aberrant resolution
of mitosis, which included apoptosis, micronucleation/nuclear
fragmentation, premature exit to interphase, and tripolar

Figure 5. ACRBP depletion inhibits DNA synthesis. A, line graph represents paclitaxel dose-response curves generated for three ovarian cancer cell lines as indicated. Bar graphs represent cell biological responses following a 48-hr exposure to the indicated paclitaxel concentrations in three different ovarian cell lines. Bars represent SD from triplicate analyses. Cells were immunostained for chromosomes, microtubules, and centrosomes and scored for the percentage of interphase cells (white bars), mitotic figures (black bars), micronucleated cells (cyan bars), and apoptotic bodies (gray bars). Over 100 cells were counted for each condition, and means are shown from 2 independent experiments. B, the indicated ovarian cancer cell lines were transfected with the indicated siRNAs. 72 h posttransfection, BrdU was added to the culture medium for 14 h. BrdU incorporation was detected with an anti-BrdU antibody, nuclei were counterstained with DAPI, and the percentage of BrdU-positive cells was quantified by microscopic observation. At least 100 cells were analyzed for each condition for each experiment across a minimum of 3 different fields of view. Values are normalized to the BrdU-incorporation frequency observed in control-transfected cells, which was set to 100%. Error bars indicate SD of 2 independent experiments each with 2 replicates. Quantitative rtPCR was performed on parallel samples to validate knockdown of ACRBP (bottom).
Figure 6. ACRBP correlates with aggressive disease and paclitaxel resistance in tumor explants. A, Kaplan-Meier plots of disease-free survival association with ACRBP expression (left) or ACRBP and NuMA expression (right). B, primary tumor cultures derived from patient samples were immunostained with cytokeratin-16 (green) and DAPI (blue). C, siRNA transfection efficiency was monitored by measuring viability following transfection of siRNAs targeting an essential gene product (UBB). ALU, arbitrary light units (right). D, primary tumor cultures were transfected with indicated siRNAs for 48 h and then exposed to the indicated paclitaxel concentrations for 24 h. For LCOV2 and LCOV4, paclitaxel doses were chosen as those which were at least 10-fold below that required to significantly increase the mitotic index of the parental cultures. For LCOV17, 30 nmol/L was the lowest dose at which any defect, in control or ACRBP-transfected cells, was detected. Following immunostaining with anti-β-tubulin and DAPI, mitotic figures were scored microscopically and are expressed as the percentage of total cells counted. A minimum of 200 cells were counted for each condition in each of the two independent experiments. Error bars represent SEM from the mean from multiple, different fields of view. Quantitative RT-PCR was performed to validate ACRBP mRNA depletion. E, cartoon representation of epithelial tumor evolution indicating the selection bottleneck that can promote acquisition of anomalous components that normalize mitotic dysfunction and thus support clonal expansion.
mitosis (Fig. 3B–D). Taken together, these observations indicate that ACRBP-expressing cancer cells require this protein to support robust proper bipolar spindle formation.

ACRBP restrains NuMA-driven mitotic pathology to enhance proliferative capacity

The overexpression of NuMA can promote multipolar spindle formation characterized by the presence of multiple γ-tubulin–positive spindle poles in mitotic cells. This observation has led to the hypothesis that aberrant accumulation of NuMA in cancers may promote genomic instability through inhibition of centrosomal coalescence (21, 28, 29). Close examination of mitotic spindle components in lung and ovarian cancer cell lines revealed that ACRBP depletion increased the frequency of spindle pole fragmentation upon exposure to low-dose paclitaxel, as indicated by noncolocalized supernumerary γ-tubulin and pericentrin foci (Fig. 4A and B). This phenotype is reminiscent of pathologic NuMA activity first described in esophageal cancer lines (21) and was reversed upon NuMA codepletion (Fig. 4A and B). These observations suggest that ACRBP antagonizes NuMA in cancer cells to normalize defects that would otherwise lead to aberrant spindle assembly and consequent mitotic catastrophe.

As mitotic spindle dysfunction can result in the production of daughter cells with incomplete genomes and thus reduced fecundity, we next examined the contribution of ACRBP to cell cycle progression in three different ovarian cancer cell lines. Each of these lines has a unique response to paclitaxel representing a diverse response to antimitic agents frequently observed in culture and patient populations (Fig. 5A). As shown in Fig. 5B, ACRBP depletion resulted in a NuMA-dependent inhibition of BrdUrd incorporation in all lines tested. This occurred in the absence of paclitaxel challenge, indicating that the gain of ACRBP expression confers proliferative fitness to ovarian cancer cells.

ACRBP is a marker of clinically aggressive disease

Ovarian cancer is typically treated by surgical debulking of the tumor mass, followed by taxane and platinum-based chemotherapeutic regimens (30). Although the majority of patients respond, nearly all will relapse within 2 to 5 years, and the overall 5-year survival rate is <45% (30). To examine the correlation of ACRBP expression with patient outcome, we queried whole-genome expression array data from tumors isolated from a cohort of 29 ovarian cancer patients with associated disease histories. We found that high ACRBP expression is significantly correlated with poor prognosis, both with respect to overall survival (hazard ratio = 9.18, for high ACRBP group versus low ACRBP group; \(P = 0.0059 \), from Cox regression model) and time to disease recurrence (hazard ratio = 3.87; \(P = 0.0064 \), from Cox regression model; Fig. 6A). Remarkably, the most aggressive disease was associated with both high ACRBP and high NuMA expression (Fig. 6B). This correlation is consistent with the notion that ACRBP expression may be selected to counter the consequence of aberrantly high NuMA activity.

Given the capacity of anomalous ACRBP expression to support robust mitotic progression in tumor-derived ovarian cancer cell lines, we next examined the consequence of ACRBP depletion on the mitotic progression of minimally cultured ascites-derived tumor explant cultures. Samples were obtained at the UNC Lineberger Cancer Hospital from the ascites of three patients: two had previously undergone multiple rounds of taxane-based chemotherapeutic regimens (LCOV2 and LCOV4) and one was chemonaive (LCOV17; see Materials and Methods). The derivation of epithelial tumor cells from these samples was validated by cytokeratin 16 staining (Fig. 6C), and high-efficiency siRNA transfection protocols were derived using cytotoxic siRNAs targeting ubiquitin B (UBB; Fig. 6D). Upon ACRBP depletion, LCOV2 and LCOV4 displayed a significant increase in mitotic figures following exposure to doses of paclitaxel that had little to no effect on controls (Fig. 6E). LCOV17s respond to paclitaxel by micronucleation, as we have previously observed in ES-2 cells (Fig. 4C). This response was also sensitized upon ACRBP depletion (Fig. 6D). Thus, inhibition of ACRBP expression increased the sensitivity of all samples to paclitaxel-induced mitotic defects.

Discussion

Here, we have uncovered a selective dependency of ovarian cancer cells on ACRBP for robust mitotic progression. Of note, the ACRBP locus is predominantly expressed in the spermatocyte lineage and is not detected in normal lung or ovarian epithelia. As a consequence of expression in a sex-specific immune-privileged site, the gene product is not recognized as a “self” antigen and can evoke a humoral response when displayed by cancer cells (13). The activation of ACRBP expression seems to counter what would otherwise be a NuMA-dependent pathologic perturbation of microtubule dynamics and centrosome function. The detection of native ACRBP/NuMA complexes suggests that this antagonistic relationship is relatively direct. Centrosome overduplication is a common characteristic of tumors that can be normalized by a centrosome coalescence process that occurs in metaphase. Aberrant accumulation of NuMA impairs centrosome coalescence and can therefore promote gross chromosomal instability. This type of spindle malfunction has been assigned as an early lesion in many tumor settings and is a source of “heritable” variation that can both drive the emergence of adaptive traits as well as restrict population expansion through high-frequency mitotic death (31–34). This intermediate state in tumor evolution likely selects for acquisition of traits, such as ACRBP expression, that restore mitotic fidelity and allow clonal expansion of variants with robust proliferative and survival capacity (35, 36). We suggest that the antagonistic relationship uncovered here is a consequence of the historical genomic instability that promotes stochastic acquisition of tumorigenic traits during the evolution of disease (Fig. 6E). Thus, ACRBP is a member of a class of tumor-specific vulnerabilities that emerge as a consequence of tumor evolution, not as components that drive disrespect of proliferation or survival checkpoints but rather as components that normalize the perturbed mitotic infrastructure responsible for disease-promoting genetic variation. Such “emergent dependencies,” if druggable, likely represent therapeutic intervention targets with large therapeutic windows.
Acknowledgments

We thank Paula Gehrig (Division of Gynecological Oncology) for aid in obtaining live tumor explants, Kunle Odunsi for ACRBP monoclonal antibody, and Ben Neel for helpful discussions.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

19. Langdon SP, Lawrie SS, Hsy FG, et al. Characterization and proper-
Tumor Antigen Acrosin Binding Protein Normalizes Mitotic Spindle Function to Promote Cancer Cell Proliferation

Cancer Res 2010;70:7652-7661. Published OnlineFirst September 29, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-0840

Cited articles
This article cites 35 articles, 15 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/19/7652.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/70/19/7652.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.