Carcinoembryonic Antigen Interacts with TGF-β Receptor and Inhibits TGF-β Signaling in Colorectal Cancers

Ying Li1, Hong Cao1, Zhongxian Jiao1, Suresh B. Pakala2, Divijendra Natha Reddy Sirigiri2, Wenpin Li1, Rakesh Kumar2, and Lopa Mishra1

Abstract

As a tumor marker for colorectal cancers, carcinoembryonic antigen (CEA) enhances the metastatic potential of cancer cells. CEA functions as an intercellular adhesion molecule and is upregulated in a wide variety of human cancers. However, the molecular mechanisms by which CEA mediates metastasis remain to be understood. Transforming growth factor-β (TGF-β) signaling regulates both tumor suppression and metastasis, and also contributes to the stimulation of CEA transcription and secretion in colorectal cancer cells. However, it remains unknown whether CEA, in turn, influences TGF-β functions and if a regulatory cross-talk exists between CEA and the TGF-β signaling pathway. Here, we report that CEA directly interacts with TGF-β receptor and inhibits TGF-β signaling. Targeting CEA with either CEA-specific antibody or siRNA rescues TGF-β response in colorectal cancer cell lines with elevated CEA, thereby restoring the inhibitory effects of TGF-β signaling on proliferation. CEA also enhances the survival of colorectal cancer cells in both local colonization and liver metastasis in animal study. Our study provides novel insights into the interaction between CEA and TGF-β signaling pathway and establishes a negative feedback loop in amplifying the progression of colon cancer cells to more invasive phenotypes. These findings offer new therapeutic opportunities to inhibit colorectal cancer cell proliferation by cotargeting CEA in promoting tumor-inhibitory action of the TGF-β pathway. Cancer Res; 70(20); 8159-68. ©2010 AACR.

Introduction

Carcinoembryonic antigen (CEA) is a member of the immunoglobulin superfamily. In humans, the CEA family consists of 29 genes. CEA and CEACAM6 belong to the glycosyl-phosphatidylinositol (GPI)-anchored CEA family, and are normally predominantly expressed in the gastrointestinal tract but overexpressed in as many as 70% of all human cancers (1, 2). It has been shown that all CEA family members function as homotypic intercellular adhesion molecules (3–5). Currently, CEA is used as a tumor marker for the clinical management of colorectal cancer. Elevated blood levels of CEA indicate metastasis and poor prognosis (6, 7). There is increasing evidence that CEA is involved in multiple biological aspects of neoplasia such as cell adhesion, metastasis, suppression of cellular immune mechanisms, and inhibition of apoptosis (8–13). For instance, CEA increases the ability of weakly metastatic colorectal cancer to colonize in the liver and develop spontaneous hematogenous liver and lung metastasis (14–16). CEA expression also correlates well with resistance to cytotoxic chemotherapy (12) and to anoikis (10, 17). The inhibitory role of CEA in cell differentiation (9, 13, 18) and anoikis (17, 19) has been extensively documented. However, the molecular mechanism by which CEA enhances tumor metastasis continues to be poorly understood.

The transforming growth factor-β (TGF-β) signaling pathway is involved in the control of multiple biological processes, including cell proliferation, differentiation, migration, and apoptosis (20, 21). It is one of the most commonly altered cellular signaling pathways in human cancers (22). Three TGF-β isoforms (TGFβ1, TGFβ2, and TGFβ3) are expressed in mammalian epithelium, each encoded by a unique gene and expressed in both a tissue-specific and developmentally regulated manner. Among these, TGFβ1 is the most abundant and ubiquitously expressed isoform. TGF-β signaling is initiated by the binding of TGF-β ligand to the type II TGF-β receptors (TBRII). The ligand binds tightly to the ectodomain of the type II receptor first; this binding allows the subsequent incorporation of the TGF-β type I receptor (TBRI), forming a large ligand-receptor complex involving a ligand dimer and four receptor molecules. Binding to the extracellular domains of both types of the receptors by the dimeric ligand induces a close proximity and a productive
conformation for the intracellular kinase domains of the receptors, facilitating the phosphorylation and subsequent activation of the type I receptor (23).

With the help of adaptor proteins such as SARA and β2SP (β2 spectrin), activated TBRI then recruits and phosphorylates two downstream transcription factors, Smad2 and Smad3, allowing them to bind to Smad4 (20, 21, 24, 25). The resulting Smad complexes translocate into the nucleus and interact with other transcription factors in a cell-specific manner to regulate the transcription of a multitude of TGF-β-responsive genes (26). Some of the downstream targets of TGF-β signaling are important cell cycle checkpoint genes, including p21, p27, and p15, and their activation leads to growth arrest (20). In normal and premalignant cells, TGF-β enforces homeostasis and suppresses tumor progression through cell-autonomous tumor-suppressive effects (cytostasis, differentiation, and apoptosis) or through effects on the stroma (suppression of inflammation and stroma-derived mitogens). However, when cancer cells lose TGF-β tumor-suppressive responses, they can use TGF-β to their advantage to initiate differentiation into an invasive phenotype and metastatic dissemination (24). Current data strongly support the notion that TGF-β signaling suppresses colorectal cancers. Many colorectal cancers escape the tumor-suppressor effects of TGF-β signaling and are resistant to TGF-β-induced growth inhibition (27).

Aberrant upregulation of CEA and alteration of TGF-β signaling are common features of colorectal cancers. Because both CEA and TGF-β signaling are involved in the development and progression of colorectal tumors, the possible interaction between them has been investigated by several groups. It is known that TGF-β induces CEA secretion in a dose-dependent manner (28). Also, CEA and CEACAM6 are identified as target genes for Smad3-mediated TGF-β signaling (29). However, little is known about the effects of CEA on the TGF-β signaling pathway. Our data show the interaction of CEA with TBRI, indicating the possible influence of CEA on TGF-β signaling.

In the current study, we focus on the effects of CEA on TGF-β signaling in both normal cells and in colorectal cancer cells. Our studies show that CEA directly binds to TBRI. Furthermore, overexpression of CEA inhibits TGF-β signaling. In colorectal cancer cells with elevated CEA, targeting CEA with specific antibody or siRNA rescues their response to TGF-β stimulation, thereby restoring the inhibitory effects of TGF-β on the proliferation of these cancer cells.

Materials and Methods

Reagents

TGF-β1 (Sigma T-1654), purified CEA protein (Abcam Ab742), and HA peptide (Sigma 12149) were purchased.

DNA constructs

The constructs for the expression of HA-TGFBR1, HA-TGFBR2, V5-Smad3, HA-Smad4, and V5-β2SP were previously described (25). Plasmid that expresses wild-type (wt) CEA was as described previously (17).

Tissue culture, transfections, and lentivirus infection

Human colorectal carcinoma cell lines (microsatellite instable cell lines: Lovo, HCT116, DLD-1,HT-15, LS174T, LS180, and HT-29; microsatellite stable cell lines: HT-29, Caco-2, SW480, SK-CO-1, and Colo205) and 293T cells were obtained and characterized by the American Type Culture Collection with PCR within 6 months. Clone A, a human metastatic colorectal cancer cell (17), was provided and characterized by Dr. Jessup's laboratory 2 years ago, and tested again by Radil Research Animal Diagnostic Laboratory with PCR 1 year ago. All colorectal cancer cell lines were maintained in DMEM or RPMI 1640 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37°C, 5% CO₂ in a humidifier chamber. 293T cells were grown in DMEM with 10% FBS and antibiotics at 37°C and at 5% CO₂. Transfections were performed with Lipofectamine 2000 (Invitrogen). Generation of stable clone A transfectants was described previously (17). GIPZ lentiviral shRNA particles targeting human CEA (ThermoFisher RHS4348) and control lentiviral shRNA particles were from Openbiosystems. Cells were infected with lentiviral shRNA particles according to the manufacturer’s instructions.

Antibodies and immunotechniques

Antibodies against CEA (Thermo MS-613-P0, MS-613-P1), Smad3 (Invitrogen 51-1500), phosphorylated Smad3 (Santa Cruz Sc-130218), TGFβRI (Santa Cruz Sc-398), TGFβRII (Upstate 06-318), V5 (Invitrogen R960-25), and HA (Sigma-Aldrich H3663) were purchased. Secondary antibodies conjugated with horseradish peroxidase (Chemicon) were purchased. Immunoprecipitation and immunoblotting procedures were described elsewhere (30). To avoid signal noise from IgG chains, Trueblot IP beads (00-8800, 00-8811) and Trueblot Western Blot Kit (88-8887, 88-8886) were used according to the manufacturer’s instruction.

Reverse transcriptase-PCR for TGF-β-regulated gene expression

The primers used for amplifications were as follows: c-myc F: 5′-TCAAGAGGCGAACACACAAC-3′, R: 5′-GGCCCCTTTCATGTTTTCCA-3′; glyceraldehyde-3-phosphate dehydrogenase (GAPDH) F: 5′-CATGACCTTCTACTACATGGT-3′, R: 5′-ACCCCTCAAGTGACCCCCAG-3′. Reverse transcriptase-PCR (RT-PCR) was performed as previously described (25).

Confocal and fluorescence microscopy

Cells were fixed in 4% formaldehyde and permeabilized in 0.1% Triton X-100. Then, cells were incubated with primary antibodies overnight at 4°C, followed by incubating with secondary antibodies conjugated with TR (Santa Cruz) and FITC (Santa Cruz) for 2 hours at room temperature. Confocal microscopy was carried out using an Olympus Fluoview confocal microscope in the Lombardi Comprehensive Cancer Center.
Smad3 DNA binding was performed using the annealed method. Electrophoretic mobility shift assay (EMSA) for CGCGCTTTGATCAA.

CATTCTAGGCATCGTTTTCCTC, R: GGGAAAGGGCG−GAGTTAGATAAAGCCCCGAAAA; region antibody-bound chromatin was eluted. The eluate was beads were washed to remove nonspecific binding, and the lysate to isolate the antibody-bound complexes. The proteins were incubated with purified CEA (2 μg) or HA-TBRI (2 μg) proteins were incubated with purified CEA (2 μg) protein in binding buffer [50 mmol/L Tris-HCl (pH 7.5), 100 mmol/L NaCl, 50 mmol/L NaF, 10 mmol/L okadaic acid, 0.1% Nonidet P40] for 60 minutes at 4°C. The reactions were then incubated with monoclonal anti-HA-Agrose beads (Sigma A2095) for an additional 1 hour. The beads were extensively washed with binding buffer, and associated proteins were analyzed by SDS-PAGE.

Reporter assay
C-myc-luciferase assay was performed according to the manufacturer's instructions (Promega), and the results were standardized against β-galactosidase activity.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) assays were performed as described previously (32). Briefly, cells were crosslinked with formaldehyde and sonicated on ice to fragment chromatin into an average length of 500 to 1 kb. Antibodies were used to immunoprecipitate the respective antigens at 4°C overnight. Protein A Sepharose beads saturated with bovine serum albumin and single-strand DNA were added to the lysate to isolate the antibody-bound complexes. The beads were washed to remove nonspecific binding, and the antibody-bound chromatin was eluted. The eluate was "de-crosslinked" by heating at 65°C for 6 hours, and then treated with RNase and proteinase K. DNA was extracted using the phenol chloroform method. PCR was performed by using the following primers for human c-myc promoter: region −5 to −233, F: TTTATAATGCGAGGGTCTGGACGGC, R: ACAGCGAGTTAGATAAAGCCCCGAAAA; region −607 to −751 F: ATCATTCTAGGCAATCGTTTCTCTC, R: GGGAAGGGCGCGCTTTTGATCAA.

Electrophoretic mobility shift assay
Nuclear extracts were prepared using a Nonidet P40 lysis method. Electrophoretic mobility shift assay (EMSA) for Smad3 DNA binding was performed using the annealed and [γ-32P]ATP end-labeled PCR product of human c-myc promoter region (−5 to −233) for 15 minutes at 20°C. Samples were run on a nondenaturing 5% polyacrylamide gel and imaged by autoradiography. Specific competitions were performed by adding a 100 mol/L excess of the competitor to the incubation mixture, and supershift EMSAs were performed by adding 200 ng of the Smad3 antibody.

Cell proliferation assay
Trypan blue−negative live cells (10,000 per well) were seeded into 96-well plates. Cell proliferation was assessed by using a colorimetric WST-1 cell proliferation kit (Roche) according to the manufacturer's recommendations.

Results

CEA interacts with TGF-β receptor I

It has been reported that TGF-β regulates CEA expression and secretion (28, 29). However, little is known about the influence of CEA on TGF-β signaling. We first examined whether there was a direct interaction between CEA and the components of the TGF-β signaling pathway by coimmunoprecipitation assays. WT CEA was cotransfected with one of the five elements of the TGF-β signaling pathway as indicated in Fig. 1A. Reciprocal coimmunoprecipitation experiments were performed to examine the interaction between CEA and these five elements. We found that, indeed, CEA could be effectively coimmunoprecipitated with TBRI but not with other elements. We also noticed the endogenous interaction between CEA and TBRI but not TBRII in two colorectal cancer cell lines (Fig. 1B). To evaluate whether the noticed interaction between CEA and TBRI was direct, we performed an in vitro binding assay. Recombinant HA-TBRI and HA-TBRII proteins purified from 293T cells were incubated with CEA protein. Association between CEA with TBRI but not TBRII was observed (Fig. 1C). These findings showed that the interaction between CEA and TBRI was direct and did not require the presence of other proteins. We next assessed where these two proteins interacted with each other in situ by immunofluorescence staining. Cells were transfected with or without CEA. Twenty-four hours later, cells were fixed and stained for CEA and TBRI. The results showed the colocalization of CEA and TBRI in the cell membrane (Fig. 1D). These data indicate that CEA may regulate TGF-β signaling by binding to TBRI at the membrane. Together, for the first time, these findings establish the physical interaction of CEA and TBRI in physiologically relevant settings.

CEA inhibits TGF-β signaling

Next, we investigated whether the noticed association of CEA and TBRI modulates TGF-β signaling. TGF-β signals through a heterodimeric receptor complex consisting of both TBRI and TBRII. Activated TBRI recruits and phosphorylates R-Smads, and enables the resulting complex to bind to Smad4. Following binding to Smad4, the complex translocates into the nucleus to activate transcription of various target genes. First, we examined the impact of CEA overexpression on the recruitment of Smad3 to TBRI. 293T cells were cotransfected with TBRI, Smad3, and CEA, treated with TGF-β for 1 hour, and total cell lysates were subjected to coimmunoprecipitation assays. As shown in Fig. 2A, association of TBRI with Smad3 was attenuated in the presence of CEA compared with in the absence of CEA. We then sought to determine if Smad3 phosphorylation was modified by CEA. 293T cells were transfected with or without CEA for 24 hours, and then stimulated with TGF-β for different time periods. Cells were harvested and the levels of p-Smad3 and Smad3 proteins were evaluated by Western blotting.
Increase of Smad3 phosphorylation was observed in the cells without CEA expression. In contrast, the levels of phosphorylated Smad3 were constant in the cells with overexpressed CEA (Fig. 2B). We subsequently examined the influence of CEA on the nuclear translocation of Smad3. 293T cells were transfected with or without CEA, stimulated with TGF-β for 1 hour, and fixed cells were stained for Smad3. Indeed, Smad3 nuclear translocation was reduced in the cells transfected with CEA (Fig. 2C). To independently verify these results from confocal microscopy, total cell lysates were fractionated into the cytoplasmic and nuclear fractions. As expected from the preceding results, we found a substantial decrease in the levels of nuclear Smad3 in the cells with overexpressed CEA.
CEA after TGF-β treatment (Fig. 2D). To establish a modulating effect of CEA on the functionality of Smad3, we next examined the level of c-myc mRNA, one of the targets of the TGF-β signaling pathway. Although TGF-β induced downregulation of c-myc transcription in control cells, overexpression of CEA blocked the inhibitory effects of TGF-β on c-myc transcription (Fig. 2E). The observed inhibitory effects of CEA on TGF-β target genes was not restricted to c-myc, as the level of other target genes such as p21 also followed a similar pattern (data not shown).

Figure 2. Inhibition of TGF-β signaling by CEA. A, 293T cells were cotransfected with HA-TBRI, V5-Smad3, and CEA as indicated. Twenty-four hours after transfection, cells were treated with TGF-β (100 pmol/L) for 1 h. Coimmunoprecipitation was carried out to evaluate the association of TBRI with Smad3. B, 293T cells were transfected with CEA or vector plasmid for 24 h, and then stimulated with TGF-β (100 pmol/L) for different time periods as indicated. Cells were harvested and p-Smad3 and Smad3 protein levels were evaluated by Western blotting. Histogram shows the fold increase of p-Smad3 intensity compared with that at time point 0. C, 293T cells were transfected as in B, then stimulated with TGF-β (100 pmol/L) for 1 h. Cells were then fixed and stained for Smad3 and CEA. Counterstain, 4′,6-diamidino-2-phenylindole (DAPI). D, cells were transfected and stimulated with TGF-β (100 pmol/L) for 1 h. Cells were lysed, and cytoplasmic and nuclear fractions were separated. Smad3 levels in different fractions were evaluated by immunoblotting. Actin served as loading control. E, 293T cells were treated as in C. c-myc mRNA levels were assessed by RT-PCR. GAPDH served as loading control.
Figure 3. TGF-β signaling is impaired in colorectal cancer cells with elevated CEA. A, CEA expression and TGF-β–induced Smad3 phosphorylation were evaluated in 12 colorectal cancer cell lines by immunoblotting. The extent of Smad3 phosphorylation was measured by the fold increase of p-Smad3 (ratio of p-Smad3 with TGF-β stimulation to p-Smad3 without TGF-β stimulation). According to CEA expression levels, the cell lines were classified into three groups. The scatter plot graph shows an inverse correlation between CEA expression levels and extent of Smad3 phosphorylation. Blue circles, cell lines 1, 2, 3, and 8. Yellow squares, cell lines 4, 6, 7, and 12. Red diamonds, cell lines 5, 9, 10, and 11. Broken lines represent average levels of p-Smad3 fold increase in each group. Bars, SEM. 1, SK-CO-1; 2, LS180; 3, LS174T; 4, Caco-2; 5, HCT-6; 6, Colo205; 7, HT-29; 8, Lovo; 9, HCT116; 10, SW480; 11, HCT-15; 12, DLD-1. B, LS174T cells were treated with anti-CEA antibody (3 μg/mL) or naïve IgG for 24 h to block CEA and then treated with or without TGF-β (100 pmol/L) for 1 h. Nuclear translocation of Smad3 was determined as in Fig. 2C. C, five colorectal cancer cell lines were treated with or without anti-CEA antibody for 24 h as indicated, then treated with TGF-β (100 pmol/L) for 1 h. Transcription levels of c-myc were assessed as in Fig. 2E. D to F, anti-CEA antibody (Ab) promotes Smad3-dependent repression of c-Myc expression by TGF-β. D, effect of IgG or CEA antibody on the c-Myc-luc promoter activity (bottom) and on the c-Myc protein in the HCT116 cells treated with or without TGF-β. *, P < 0.05. Western blot analysis was performed with the cell lysates obtained from the luciferase assay samples. E, ChIP analysis showing the recruitment of Smad3 but not β-spectrin onto human c-myc promoter in the HCT116 cells treated with IgG or CEA antibody in the presence or absence of TGF-β treatment. F, EMSA analysis of the Smad3 binding in the human c-Myc promoter using the PCR product encompassing region –5 to –233 in HCT116 cells treated with TGF-β in the presence of either IgG or CEA antibody.
Impairment of TGF-β signaling in colorectal cancer cells with elevated CEA

To determine the functional significance of the interaction between CEA and TGF-β signaling in colorectal tumorigenesis, we first assessed the possible existence of a correlation between the levels of CEA and TGF-β–induced Smad3 phosphorylation in 12 colorectal cancer cell lines. The extent of Smad3 phosphorylation was measured by the fold increase of p-Smad3 (ratio of p-Smad3 on TGF-β stimulation to the basal p-Smad3 levels). The cell lines were classified into three groups based on the levels of CEA expression. As seen in Fig. 3A, there was an inverse correlation between the levels of CEA and the degree of Smad3 phosphorylation (P < 0.05).

To corroborate these findings, we treated colorectal cancer cells LS180 with anti-CEA antibody to block CEA before stimulating the cells with TGF-β. As shown in Fig. 3B, nuclear translocation of Smad3 was enhanced in cells treated with the anti-CEA antibody. Consistent with these results, we found that blocking CEA action with antibody also restored the inhibitory effects of TGF-β on c-myc transcription (Fig. 3C).

Finally, we showed that the anti-CEA antibody was also able to block transcription from a c-myc-promoter-luc reporter system (Fig. 3D), presumably due to an enhanced recruitment of Smad-3 to the c-myc-gene chromatin (Fig. 3E) in TGF-β–stimulated HCT116 cells. To show a potential direct binding of Smad3 to the human c-myc promoter, we next performed EMSA using a PCR product encompassing the −5 to −233 region of the c-myc promoter and nuclear extracts from HCT 116 cells with or without TGF-β stimulation in the presence of either IgG or CEA antibody. As expected from the preceding results, TGF-β stimulation of HCT116 cells in the presence of CEA antibody promoted Smad3/DNA complex formation (Fig. 3F, lanes 11–13) compared with those in the presence of IgG antibody (Fig. 3F, lanes 5–7). The specificity of the noted complex was further verified by supershift experiments using anti-Samd3 (Fig. 3F, lane 12) or control IgG (Fig. 3F, lane 13). Collectively, these findings suggest that elevated levels of CEA may counteract...
spleens and livers. Arrows indicate the colonies formed by different cell types. A, representative pictures showing tumor colonies in the spleens and livers. Mice were autopsied to determine spleen and liver colonization 30 d after injection. A, representative pictures showing tumor colonies in the spleens and livers. Arrows indicate the colonies formed by different cell types. B, graph showing the percentage of mice with liver colonies.

Figure 5. CEA enhances liver metastasis of colorectal cancer cells. Clone A cells were stably transfected either with pcDNA vector or with plasmids encoding wt CEA, and then injected intrasplenically into nude mice. Viable cells (2 × 10^6) were injected for each of the 10 mice per group. Mice were autopsied to determine spleen and liver colonization 30 d after injection. A, representative pictures showing tumor colonies in the spleens and livers. Arrows indicate the colonies formed by different cell types. B, graph showing the percentage of mice with liver colonies.

the inhibitory activity of TGF-β, leading to a possible functional inactivation of TGF-β signaling in colorectal cancer cells.

Targeting CEA restores the inhibitory effects of TGF-β signaling on proliferation of colorectal cancer cells

TGF-β signaling plays an important role in suppressing cell proliferation and tumorigenesis (24). However, some cancer cells lose their responses to the proliferation-inhibiting effects of TGF-β signaling during development. In addition to the mutations of TGF-β receptors or Smads, we assume that increased CEA may also contribute to the loss of response to TGF-β signaling as supported by data in the preceding paragraph. To test this hypothesis, we next carried out proliferation assay using colorectal cells stably transfected either with the control pcDNA vector or with plasmid encoding CEA (17). We assessed the effects of CEA on the inhibition of proliferation induced by TGF-β in the presence or absence of anti-CEA antibody. In cells transfected with vector, TGF-β treatment led to ~20% proliferation inhibition. Interestingly, the combination of TGF-β and anti-CEA antibody had similar effects as using TGF-β alone. In contrast, in cells transfected with CEA, TGF-β treatment had little effect on cell proliferation. However, when combined with the anti-CEA antibody, TGF-β remarkably reduced cell proliferation (P < 0.05; Fig. 4A). This result strongly suggests that targeting CEA may restore the tumor-suppressing effects of TGF-β in some colorectal cancer cells. To confirm this finding, three colorectal cancer cell lines with augmented CEA levels were treated with TGF-β and different doses of anti-CEA antibody as indicated. Anti-CEA antibody enhanced TGF-β-mediated growth inhibition of target cells in a dose-dependent manner (Fig. 4B). For further confirmation, we suppressed CEA expression with specific siRNA, and then treated the cells with TGF-β. As shown in Fig. 4C, treating cells with siRNA targeting CEA rescued the inhibitory effects of TGF-β on the proliferation of colorectal cancer cells.

CEA enhances liver metastasis of colorectal cancer cells

Previous studies have shown that CEA enhances liver metastasis of colorectal cancer cells in animal experiments (16, 17, 33). To corroborate the role of CEA in liver metastasis, colorectal cancer cells stably transfected with CEA expression plasmid or pcDNA were injected intrasplenically into nude mice (2 × 10^6 viable cells per animal, n = 10 animal each group). Mice were autopsied to determine spleen and liver colonization 30 days postinjection. As shown in Fig. 5, CEA enhanced both liver and spleen colonization of the cancer cells. Liver metastasis was detected in 50% of recipients of cells transfected with CEA. In contrast, liver colonies were found in only 10% of recipients of control cells (P < 0.05).

Discussion

Increased CEA levels are observed in a wide variety of human cancers such as colon, breast, and lung cancers. Previous studies have shown that CEA contributes to tumorigenesis by inhibiting cell differentiation and anoikis (8–13, 17, 19). Interestingly, CEA is a GPI-linked protein that lacks transmembrane and cytoplasmic domains (34–36), which suggests that CEA has to exert these effects by modulating other signaling pathways. It was reported that CEA mediates anoikis inhibition through integrin (37, 38) and DR5 signaling (17, 39). Here, we report that CEA directly binds to TBRI and inhibits the TGF-β signaling pathway.

Our data show that CEA binds to TBRI but not TBRII, and that these two molecules colocalize on the plasma membrane (Fig. 1). Our findings that CEA overexpression attenuates TGF-β signaling (Fig. 2) are significant as they imply that CEA can contribute to tumor development and progress by downregulating the TGF-β signaling pathway. Although a dual role of TGF-β in cancers has been noted, the genetic and mechanistic basis for gastrointestinal cancers has remained elusive. There is considerable genetic evidence that the TGF-β signaling pathway is a tumor suppressor in gastrointestinal epithelial cells. First, the TGF-β signaling pathway has a major influence on cell lineage determination and terminal differentiation, and suppresses tumorigenesis by driving precursor cells into a less proliferative state (40). Second, TGF-β can induce apoptosis through both Smad-dependent and Smad-independent mechanisms (41). These mechanisms include the induction of multiple proapoptotic factors, such as the signaling factor GADD45b, the death-associated protein kinase DAPK, the death receptor FAS, and the proapoptotic effector BIM. Moreover, Smad interaction with the Akt pathway and TGF-β receptor interaction with the p38 signaling pathway.
mitogen-activated protein kinase activator DAXX have also been proposed as alternative mechanisms of the proapoptotic effects of TGF-β (24). Given these tumor-suppressing effects of TGF-β, inhibition of TGF-β signaling by augmented CEA may be of high significance in colorectal tumorigenesis. The role of TGF-β signaling in colorectal tumorigenesis has been recognized over the past decade. There is growing evidence that TGF-β signaling alterations mediated by microsatellite instability (MSI) contribute to colon cancer development and progression. MSI contributes to the TGF-β signaling resistance of colorectal cancer by resultant mutations of TGF-β receptors or Smads. Here, we provide evidence that TGF-β signaling alterations may also be mediated by enhanced CEA level. This can explain why some colorectal cancer cells can still escape the inhibitory effects of TGF-β signaling without detectable mutations or polymorphisms of TGF-β receptors or Smads. Around 80% of all microsatellite instable colorectal cancers contain mutations in TBR11. In these cases, targeting CEA will not be able to rescue TGF-β response due to the impaired TGF-β signaling. However, for some microsatellite instable cells in which the components of TGF-β signaling pathway are not mutated, targeting CEA can also rescue TGF-β response.

Development of liver metastasis is a frequent complication in the course of gastrointestinal malignancies. In support of a role of CEA in the process of liver metastasis, we provide experimental data supporting the notion that CEA increases the survival of cancer cells in both local colonization and distant metastasis (Fig. 5). After entering the liver via portal circulation, cancer cells are encountered by Kupffer cells in the liver sinusoids (42). Kupffer cells represent 10% of all liver cells, and have the ability to kill tumor cells. As such, these cells may have an intrinsic role in the protection against outgrowth of hepatic metastasis. The cytotoxic function of Kupffer cells is regulated by multiple cytokines. Functionally, TGF-β was found to be chemotactic for Kupffer cells and to regulate Kupffer cell functions (43). In addition to inhibiting TGF-β signaling in cancer cells, it is possible that CEA produced by cancer cells may also affect TGF-β signaling in Kupffer cells and thereby enhance the metastatic potential of tumor cells. However, this possibility needs to be experimentally tested.

In colorectal cancer cells with augmented CEA expression, targeting CEA with specific antibody or siRNA can rescue TGF-β response. Increase of CEA expression and alteration of TGF-β signaling are commonly observed in colorectal cancers. Our study provides insight into understanding how these two important events interact with each other during tumorigenesis. Because CEA is a frequently overexpressed tumor-associated antigen in tumors, specific antibodies targeting CEA have been developed as a novel therapeutic approach for treatment of tumors expressing CEA on their surface (44–47). In this context, the results presented here offer new opportunity to combine CEA antibody and TGF-β to inhibit the proliferation and metastasis of colorectal cancer.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

NIH grants CA106614-01A2 and CA4285718A1 (L. Mishra). Work in R. Kumar’s laboratory is supported by NIH CA98823.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 03/29/2010; revised 07/26/2010; accepted 07/27/2010; published OnlineFirst 10/01/2010.

References

Carcinoembryonic Antigen Interacts with TGF-β Receptor and Inhibits TGF-β Signaling in Colorectal Cancers

Ying Li, Hong Cao, Zhongxian Jiao, et al.

Cancer Res 2010;70:8159-8168. Published OnlineFirst October 1, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-1073

Cited articles
This article cites 46 articles, 21 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/20/8159.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/70/20/8159.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.