Microenvironment and Immunology

Melanoma Cells Express ICOS Ligand to Promote the Activation and Expansion of T-Regulatory Cells

Natalia Martin-Orozco, Yufeng Li, Yijun Wang, Shijuan Liu, Patrick Hwu, Yong-Jun Liu, Chen Dong, and Laszlo Radvanyi

Abstract

CD4⁺CD25⁺Foxp3⁺ T-regulatory cells (Tregs) accumulate in tumors; however, little is known about how the tumor environment influences this process. Here we show that human melanomas express inductive T-cell costimulator ligand (ICOS-L/B7H1) that can provide costimulation through ICOS for the expansion of activated Tregs maintaining high Foxp3 and CD25 expression as well as a suppressive function. Thus, ICOS-L expression by melanoma tumor cells may directly drive Treg activation and expansion in the tumor microenvironment as another mechanism of immune evasion. *Cancer Res; 70(23); 9581–90. ©2010 AACR.*

Introduction

CD4⁺CD25⁺Foxp3⁺ T regulatory cells (Tregs) mediate immune suppression to control unfavorable immune responses against self-antigens or pathogens (1, 2). Tregs are found in high numbers in tumors of different tissue origin, and their presence correlates with poor antitumor immune response and poor prognosis (3–6). In melanomas, it has been reported that 25% of the CD4⁺ T cells found in tumors are Foxp3⁺, with only about 7% found in the peripheral blood of the same patients (7, 8). These results indicate that melanomas attract and retain Tregs in the tumor, or that tumor-infiltrating Tregs can expand in the tumor microenvironment. In addition, it has been reported that the tumor microenvironment can generate inducible Tregs from CD4⁺CD25⁺ T cells (9, 10), with the total pool of Tregs being composed, therefore, of both natural Tregs and newly arising induced peripheral Tregs (10–12).

Tregs, like other T cells, respond to T-cell receptor (TCR) stimulation and can be induced to expand with cytokines such as IL-2 (13, 14). Upon activation, Tregs also express costimulatory receptors, such as inductive T-cell costimulator (ICOS) and CD28, that further boost their activation, proliferation, and survival (15). ICOS costimulation of CD4⁺ T cells has been found to facilitate the production of Th2 cytokines such as IL-4, IL-13, and IL-10 (16). Recently, a number of normal tissues have been reported to express ICOS-L and regulate CD4⁺ T-cell activation and cytokine production (17–24). In several mouse models of autoimmunity, the CD4⁺CD25⁺ Tregs expressing ICOS were shown to produce IL-10 and control autoreactive T cells in the invaded organs such as the prediabetic pancreas (25, 26). Tregs present in melanoma have also been found to express ICOS on their surface (27), and ICOS⁺ Tregs have been shown to potentely inhibit T-cell responses indirectly through suppressing antigen-presenting cells with IL-10 (26, 27). In cancer, the source of ICOS costimulation for Tregs is largely unknown. Although DC, pDC, and B cells can express ICOS-L (16), there are no reports that ICOS-L expressed by tumor cells can regulate CD4⁺ T-cell activation, and the expression of ICOS-L in melanoma has not been characterized yet.

In this work, we report that both cultured and freshly isolated metastatic melanoma cells from stage IV melanoma patients express ICOS-L on their surface and can costimulate Tregs to promote high expression of CD25, Foxp3, and ICOS.

Materials and Methods

Cell lines

L cells transfected with CD32 and ICOS-L were a gift of Yong-Jun Liu. Melanoma tumor cell lines used in the study: WM35, WM35P1N1, WM35P2N1, A684, 888, 938, 624, WM793, WM793P1N1, WM793P2N1, A375, A375S2, 526, 2088, 2089, 2084, A681, A682, A687, 1007, MEMO, and SK-MEL-1.

Antibodies

ICOS-L, B7-H1, ICOS, CD86, Foxp3, rat IgG, and hamster IgG isotypes antibodies were from ebioscience. Human leukocyte antigen (HLA) class II, CD4, CD25, CD45RA, CD45, CD8, CD16, IL-10, and IFN-γ antibodies were from BD Biosciences. Anti-MCP-1 (melanoma-associated chondroitin sulfate proteoglycan-1) was from Miltenyi Biotec. Cytokine analysis by intra-
cellular staining was done with a BD fixation/permeabilization kit.

Quantitative real-time RT-PCR

RNA was obtained using PureLink RNA mini-kit (Invitrogen) and RT was performed using Superscript RT First Strand (Invitrogen). Real-time PCR was then done using a Syber Green based kit from BioRad. The primer sequences are ICOS-L: forward 5'-AGCGTGGAGTTACAC TGCATGTGGC-3', reverse 5'-GCTGACCACGTCATACAAGCCCCGCA-3'; B7-H1: forward 5'-GTACCGGTTCATCAGAGGCCCAGA-3', reverse 5'-CAGATGACTTCGGCCTTGGG-3'; and actin: forward 5'-ACTCCAGCGAAGGAAGTTTGGT-3', reverse 5'-GCTGACCACGTCATACAAGCCCCGCA-3'.

Screening of melanoma cell lines and primary melanomas for B7 molecule expression by flow cytometry

Melanoma cell lines were harvested with protease-free dissociation buffer (Invitrogen). Metastatic melanoma tissue was obtained by surgical resection with patient informed consent using clinical and laboratory protocols approved by the M. D. Anderson Cancer Center Institutional Review Board (see Table 1). Tumor samples were processed within 2 hours of resection first by cutting them into 8mm² pieces followed by mechanical disruption using a Seeward Stomacher (Fisher). The cell suspensions were applied over a 70% Ficoll-Isopaque layer (Sigma-Aldrich). IL-10 and IFN-γ production was evaluated after activating the cultured cells for 6 hours with PMA+Ionomycin. Brefeldin A (Golgi-Stop; BD Biosciences) was added during the last hour of incubation. Cytokine staining was done using BD Fix/Perm reagents (BD Biosciences).

Blockade of ICOS-L in a tumor mouse model

C57BL/6 mice were injected intravenously (i.v.) with 10⁵ B16-OVA cells (day 0) followed by intraperitoneal (i.p.) transfer of 2 million CD4⁺ OT-II- Ly5.2 T cells on day 2. Starting on day 2, the mice were treated with 100 µg of anti-ICOSL antibody (28), or rat IgG, and thereafter for every 2 days until the end of the experiment on day 17. On day 17 after tumor challenge, Foxp3, CD25, CD4, and ICOS expression on T cells from lung tissues were evaluated by flow cytometry (29). C57BL/6 mice were purchased from the NCI and OT-II-CD45.1 mice were from our colony.

T-cell suppression assay

For the T-cell suppression assays, the isolated Tregs from the cocultures were washed and rested in culture medium with no IL-2 for 1 day. Autologous-sorted CD4⁺ CD25⁻ cells labeled with CFDA-SE were cultured at a 1:1 ratio with the isolated and rested Tregs. An equal number of autologous-irradiated PBMC pulsed with 10 ng/mL of anti-CD3 were added, and the cultures incubated for 6 days. Cell division was analyzed by flow cytometry measuring CFDA-SE dilution.

Table 1. Tumor origin and expression of ICOS-L, B7-H1, and HLA class II

<table>
<thead>
<tr>
<th>Tumor number</th>
<th>Location of metastasis</th>
<th>ICOS-L</th>
<th>B7-H1</th>
<th>HLA class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>2033</td>
<td>Neck subcutaneous superior and inferior cervical lesion</td>
<td>Negative</td>
<td>P</td>
<td>High</td>
</tr>
<tr>
<td>2035</td>
<td>Left serratus: muscle under arm</td>
<td>Negative</td>
<td>P</td>
<td>High</td>
</tr>
<tr>
<td>2088</td>
<td>Abdomen: local fungating melanoma</td>
<td>Negative</td>
<td>N</td>
<td>Negative</td>
</tr>
<tr>
<td>2069</td>
<td>Neck</td>
<td>Low</td>
<td>N</td>
<td>Low</td>
</tr>
<tr>
<td>2089</td>
<td>Axillary lymph node</td>
<td>Low</td>
<td>P</td>
<td>Low</td>
</tr>
<tr>
<td>2097</td>
<td>Left arm: tumor mass</td>
<td>Low</td>
<td>P</td>
<td>Low</td>
</tr>
<tr>
<td>2016</td>
<td>Lung wedge</td>
<td>High</td>
<td>P</td>
<td>Low</td>
</tr>
<tr>
<td>2017</td>
<td>Parathyroid superficial</td>
<td>High</td>
<td>P</td>
<td>Low</td>
</tr>
<tr>
<td>2057</td>
<td>Lung nodule</td>
<td>High</td>
<td>P</td>
<td>High</td>
</tr>
<tr>
<td>2062</td>
<td>Uterus</td>
<td>High</td>
<td>N</td>
<td>High</td>
</tr>
<tr>
<td>2063</td>
<td>Occipital scalp mass</td>
<td>High</td>
<td>P</td>
<td>High</td>
</tr>
<tr>
<td>2082</td>
<td>Right leg: superficial</td>
<td>High</td>
<td>P</td>
<td>High</td>
</tr>
</tbody>
</table>

Abbreviations: N, negative; P, positive.
Results

ICOS-L is expressed by human melanoma cells

While searching for the expression of B7 molecules in mouse tumors, we found that ICOS-L (also known as B7H, B7RP-1, GL50, or B7-H2) was expressed by the B16/F10 melanoma excised from C57BL/6 mice (Fig. S1). Then we checked whether human melanoma cells also express ICOS-L. We first analyzed mRNA expression of ICOS-L on a panel of human melanoma cell lines. White histograms show anti ICOS-L and gray histograms isotype control. Normal melanocytes do not express ICOSL (not shown).

ICOS-L signaling delivered by melanoma cells promote sustained CD25 and Foxp3 expression by Tregs

We next designed a series of experiments to test whether ICOS-L-expressing melanoma cells could provide costimulation to purified CD4+ T cell populations. We sorted CD4+CD25hi (CD25+) and CD4+CD25lo (Treg-enriched) T
cells from peripheral blood of normal donors and cultured them with irradiated melanoma lines that were ICOS-L⁺ (WM35 or A684) or ICOS-L⁻ (WM793) and soluble anti-CD3 IgE (that stimulates human T cells in a soluble fashion; ref. 31) for 5 days. We used this IgE clone instead of OKT3 because the tumor cells do not express Fc receptors and cannot induce cross-linking of the CD3 complex with OKT3 (31). Immediately after sorting and after the coculture, the CD4⁺ T cells were analyzed for CD25, Foxp3, and ICOS expression. The initial CD25⁻ cells did not express Foxp3, whereas the CD25⁺ cells contained about 72% of Foxp3⁺ cells, which also had a fraction of 24% expressing ICOS (Fig. 3A top panels). This is similar to recently published results showing that a significant fraction of Tregs in the periphery can have ICOS expression (26). The CD25⁻ cells did not express ICOS (data not shown). After activation in the culture with all the melanoma lines, the CD25⁻ cells upregulated Foxp3 expression but only 6%–14% upregulated CD25 and this expression was not influenced by the ICOSL expression of the melanomas. Also the CD25⁻ cells only showed a 5%–10% increased of the ICOS⁺ cells (data not shown). Since activated CD4⁺ T cells can express low levels of Foxp3 (32, 33), these results suggest that the CD25⁻ cells have been recently activated and that our culture activation with the melanoma lines did not altered the capacity to induce Foxp3. For the CD25⁺ cells, although all the cells were CD25⁺ Foxp3⁺, the expression of Foxp3 increased to a higher level in about 45% of the cells (Foxp3hi red gate in Fig. 3A) in the cocultures with ICOS-L⁺ melanoma lines, WM35 and A684 (Fig. 3A left panels). Also the cells that were Foxp3hi had the higher expression of CD25. In contrast, CD25⁺ cells cultured with the ICOS-L⁻ melanoma line, WM793, only showed a 15% increase of Foxp3hi cells and 29% of the cells started to lose CD25 expression by the end of the culture period. Therefore, ICOSL costimulation during activation of
Treg cells induces the high expression of Foxp3 and sustains the expression of CD25. In contrast, non-Treg CD25− cells upregulate Foxp3 to a lower level through activation of the TcR and independent of ICOS-L costimulation. We then analyzed the expression of ICOS in the Foxp3+ and Foxp3hi of the CD25+ cells (blue and red gates of Fig. 3A right panels) and found an increase level of ICOS+ cells in both Foxp3+ and Foxp3hi from the cocultures with ICOS-L+ melanoma lines (40% and 60%, respectively). Whereas the CD25− cells cultured with ICOS-L− melanoma lines had only 27% ICOS+ cells in the Foxp3+ cells and 42% ICOS+ cells in the Foxp3hi cells (Fig. 3A right panels). We tested several normal donors Treg in our cocultures with melanoma lines and found that in every case there was an induction of Foxp3hi cells when the T regs were cultured with ICOS-L expressing melanoma lines (Fig. 3B). Therefore, we concluded that ICOS-L costimulation during the activation of T regs positively induces the expression of Foxp3 and ICOS.

To confirm the Foxp3 induction by ICOS-L costimulation driven by melanoma lines, we generated melanoma cell lines that could express ICOS-L and human CD32 (Fc receptor) on their surface, such that the CD3 complex could be cross-linked on the T cells by OKT3 after CD32 binding with or without ICOS-L costimulation (Fig. S4A). WM793, which does not...
express ICOS-L, was transfected with pcDNA3.2-CD32 with a empty pcDNA3.1 vector or with pcDNA3.1-ICOS-L and after selection and sorting, we obtained two cell lines designated as CD32 − WM793 and CD32 − ICOS-L + WM793 (shown as ICOS-L + WM793.CD32 in Fig. S4A). We used as reference L cells expressing CD32 and ICOSL. (26; donated of Dr. Yong-Jun Liu, M. D. Anderson Cancer Center). After coculturing CD25 + and CD25 − T cells with these set of cell lines, we found that Foxp3hi induction in the CD25 − cells was only present when cocultured with ICOS-L expressing cells (Fig. S4B, left panels) and that the Foxp3hi cells from these cultures had more than 80% ICOS+ cells (Fig. S4B, right panels). For the CD25 − cells, we found that activation with WM793 and ICOSL + WM793 generated about 18% Foxp3hi cells and 46% CD25 + cells with no influence of ICOS-L. Thus, activation of Tregs with melanoma cells providing ICOS costimulation promotes the expansion of ICOS+ CD4+ CD25hiFoxp3hi T cells.

We next asked whether ICOS costimulation by ICOS-L+ melanoma cells could facilitate cell division of Tregs. Sorted CD4+CD25+ and CD4+CD25− T cells were labeled with CFDA-SE and cultured over ICOS-L+ (WM35 and A684) or ICOS-L− (WM793) melanoma cells. After 5 days in culture, more than 90% of the CD25− T cells have divided and only 4% of the divided cells were Foxp3hi in both ICOS+ and ICOS-L− melanoma cell lines (Fig. 3C left panel). Similarly, CD25− T cells cocultured with ICOS-L− melanoma line showed more than 90% cell division with 12% of Foxp3hi CFDA-SElow. In contrast, CD25− T cells cocultured with ICOS-L+ melanoma lines showed about 60% cell division with 40% of Foxp3hi CFDA-SElow cells (Fig. 3C, middle panel). These results indicated that ICOS-L costimulation of Tregs slows the cell division rate and sustains Foxp3hi expression. Since TGF-\textbeta has been found to induce Foxp3 expression in non-Tregs, we then investigated the role of TGF-\textbeta signaling in our cocultures. For this, we used the TGF-\textbeta signaling inhibitor SB431542 (34) during the activation of CD25− T cells with the ICOS-L− melanoma cells. We found that the addition of SB431542 did not affect the cell division rate or the Foxp3 expression of the CD25− T cells (Fig. 3C, right panel). Thus, the enhanced accumulation of divided CD4+CD25−Foxp3hi Tregs induced by ICOS-L− melanoma cells was not due to TGF-\textbeta secreted by the melanoma cell lines. Moreover, real-time RT-PCR analysis found that although WM35 does express a low level of the TGF-\textbeta gene, A684 cells are TGF-\textbeta1-negative (data not shown). Thus, ICOS-L− melanoma cells, although slowing down the cell division of Tregs, facilitated the maintenance of CD25− and high Foxp3 levels. When we studied 12 independent normal donor Tregs, we found that in all cases ICOS-L− melanoma cell lines (WM35 and A684) facilitated increased expansion of Foxp3hi CFDA-SElow cells compared with ICOS-L− WM793 cells (Fig. S5A). We did not see a difference in viability of both CD25+ and CD25− T cells in these melanoma cocultures.

To confirm the role of ICOS costimulation in driving the expansion of Tregs with sustained and higher Foxp3 expression, we used OKT3 activation with ICOS-L-transduced L cells in CFDA-SE dilution assays. ICOS-L+ L cells facilitated a much higher rate of cell division of the CD25− T cells (52.5%–90.8%; Fig. S5B). More specifically, 72% of the divided cells had high levels of Foxp3 expression compared with only 18% of the CD25− cells that were cultured with L cells (Fig. S5B). Also the cells that have divided more showed the highest ICOS expression levels. As observed before, ICOS-L signaling did not alter the cell division or Foxp3 levels of CD25− T cells.

The favorable cell division rate of CD25− T cells observed with ICOS-L− L cells activation correlated with an increase in cell viability of about 19% on average (ICOS-L−: 59.9 ± 1.83%, ICOS-L+: 79.35 ± 5.66%, n = 5 experiments), whereas the viability of the CD25− T cells was not affected by ICOS-L expression.

Next we asked whether patients with melanoma would have a CD25−Foxp3+ ICOS− T cell population in the tumor environment. We isolated tumor-infiltrating lymphocytes (TIL) and PBMC from stage IV melanoma patients and analyzed T cell populations. We found that melanoma patients have 10 times more CD4+CD25−Foxp3+ T cells in the TIL when compared with PBMC, and they also have increased numbers of these cells expressing ICOS (Fig. 3D). This suggests that the tumor environment indeed favors CD25−Foxp3+ ICOS− T cell generation.

Blockade of ICOS-L reduces the generation of CD4+CD25−Foxp3+ ICOS− T cells

To confirm that Foxp3 induction in Treg cells is driven by ICOS-L stimuli, we sorted CD4+CD25− T cells, labeled them with CFDA-SE and activated them with the tumors, as previously, but this time we added anti-ICOS-L blocking antibody or mouse IgG. For these experiments, we used both normal donors and PBMC from stage IV melanoma patients. We found that blockade of ICOS-L reduced the generation of Foxp3+CFDA-SElow cells in normal donors by about 55% when the cells were cultured with ICOS-L− melanomas but did not alter the percentage of cells generated by ICOS-L+ melanomas (Fig. 4A and B). Similar level of cell division and Foxp3 induction were found in cells from melanoma patients. These results indicate that a part of the Foxp3hi Treg cells generated by activation with the tumors expressing ICOS-L is dependent on ICOS-L costimulation.

To further confirm that ICOS-L expressed by the tumor is involved in the appearance of Foxp3+ cells in the tumor microenvironment, we made use of a mouse B16 melanoma model that expresses ICOS-L (see Fig. S1 in Supplementary data). C57BL/6 mice were injected i.v. with B16 cells expressing recombinant ovalbumin (B16-OVA) that provokes the development of tumor colonies in the lung. After 5 days, we transferred CD4+ T cells from OT-II TCR transgenic mice recognizing OVA\textunderscore 323-337 peptide in context of H-2\textbeta and that are congenic for C57BL/6 (OT-II.CD45.1). Blocking antibodies against ICOS-L or rat IgG were administered every 2 days for 16 days starting 2 days before the tumor injection. We then evaluated Foxp3+ T cells in the lung and found that both recipient CD45.1- and OVA-specific T cells had a reduced number of Foxp3+ cells in the mice treated with anti-ICOS-L antibody (Fig. 4C). Also these cells had reduced expression of ICOS. Therefore, ICOS-L expression in the melanoma tumors promoted the expansion of Treg in the tumor environment.
Figure 4. Blockade of ICOSL reduces the induction of Foxp3^{hi}CD25⁺ T-cells by melanomas. A–B, sorted CD4⁺CD25⁺ cells from normal donors or melanoma patients were labeled with CFDA-SE and activated with anti-CD3 over a monolayer of irradiated melanoma lines, ICOS-L⁺ WM35 or ICOSL[−] WM793. On day 1, mouse IgG or anti-ICOS-L antibody (MIH12) was added to the cultures. A, after 5 days, cells were analyzed for Foxp3 expression and CFDA-SE dilution. B, percentage of CD25⁺ cells expressing high levels of Foxp3 and CFDA-SE_{low} from different donors (n = 5) cultured with ICOS⁺ or ICOSL[−] melanomas and mouse IgG or anti-ICOSL antibodies. C, blockade of ICOS-L in vivo reduces the number of Foxp3⁺ ICOS⁺ Tregs in the tumor tissue. Rat IgG or anti-ICOS-L was administered i.p. to C57BL/6 mice every 2 days for 16 days. Mice were i.v. injected with B16-OVA melanoma cells on day 2 and on day 7, mice were injected with 2 million OT-II-Ly5.1 CD4⁺ T cells. On day 17, lymphocytes from the lung were analyzed for the expression of CD45.1, CD4, CD25, Foxp3, and ICOS. Numbers in the plots are the percentage of Foxp3⁺ Tregs from Ly5.1⁺ (recipient Treg) and Ly5.1⁺ (OT-II T reg) CD4⁺ T cells. Numbers in the histogram show the percentage of ICOS⁺ T cells from CD4⁺ Foxp3⁺ cells. Graphs on the right show the percentage and total cell number of Foxp3⁺ cells from CD45.1⁺ and CD45.1⁺ cells in the lungs of all mice analyzed (n = 5).
We next tested the suppressive activity of the CD4⁺CD25⁺ T cells form the cocultures with ICOS-L⁺ WM793 or ICOS-L⁻ WM793 melanoma cells. Autologous CD4⁺CD25⁻ T cells were CFDA-SE-labeled and cultured for 6 days with the activated CD4⁺CD25⁺ T cells at a 1:1 ratio. As shown in Fig. 5, CD4⁺CD25⁺ T cells activated with ICOS costimulation by ICOS-L⁺ WM793 cells had a similar (albeit slightly enhanced) suppressor cell activity as CD4⁺CD25⁺ T cells activated with ICOS-L⁻ WM793 cells, as indicated by the inhibition of CFDA-SE dilution in the CD4⁺CD25⁻ responder cells. Similar results were found when the CD4⁺CD25⁺ T cells were activated with ICOS-L⁺ L cells or control L cells (Fig. 5A).

ICOS costimulation has been shown to promote the expansion of Treg-like CD4⁺ T cells and ICOS⁺ Tregs capable of IL-10 production (26). We found that ICOS-L-expressing melanoma cells and L cells induced the expansion of Tregs that produce IL-10. Activated CD4⁺CD25⁺ and CD4⁺CD25⁻ cells cocultured with the indicated cell line were intracellular stained for IL-10 and IFN-γ.

Figure 5. Tregs activated through ICOS-L⁺ melanomas have suppressive capacity and produce IL-10. A, Tregs activated with ICOS-L-expressing WM793 cells or L cells can suppress effector T cells similarly as those activated over ICOS-L⁻ WM793 and L cell controls. Sorted CD4⁺CD25⁻ T cells that were cocultured with irradiated ICOS-L⁺ and ICOSL⁻ WM793 or L cells were rested in media with no IL-2 and used at 1:1 ratio in a suppression assay with isolated autologous CD4⁺CD25⁻ T cells prelabeled with CFDA-SE. After 6 days, cell division by CFDA-SE dilution was analyzed. B, Tregs activated with ICOS-L-expressing melanoma cells produce IL-10. Activated CD4⁺CD25⁻ and CD4⁺CD25⁻ cells cocultured with the indicated T-cell suppressive properties.

Discussion

Costimulatory molecules of the B7 family control the activation of T cells during antigen recognition on APC and other tissues. In cancer, some of these B7 molecules can be immune suppressive and facilitate immune evasion. For example, the expression of B7-H1 in tumors, the ligand for PD1, inhibits the expansion and survival of antitumor T cells and is associated with worse prognosis (30, 35). The results presented in this paper demonstrate that in addition to B7-H1, a high proportion of human metastatic melanomas, as well as B16, a well-known murine melanoma, also express cell surface ICOS-L (B7H). It still remains unknown how ICOS-L expression is regulated in melanomas or normal melanocytes. We did not find ICOS-L induced expression in melanomas by a number of proinflammatory cytokines (e.g., IL-6, IL-1β, TNF-α, IFN-γ).
and we found that cultured normal melanocytes although having low mRNA levels of ICOS-L do not express ICOS-L protein. All the tumors analyzed were stage IV with no common tissue origin, which indicates that there may be some genetic component that determines ICOS-L expression.

ICOS-L expression in the tumor environment is a potential source of costimulation for the TIL. Some reports have shown that ICOS-L expressed on normal renal tubule epithelial cells (36), and gastric cancer cells, can induce the activation of IL-10–producing CD4+ T cells (17). In this study, we found that ICOS-L expressed by melanoma cells could costimulate Tregs to induce high levels of Foxp3, CD25, and ICOS. Our results suggest that tumor cells themselves may act as direct APC, since they can express HLA class II and provide self-antigen presentation and costimulation through ICOS-L. Interestingly, ICOS signaling allowed the expression of high levels of Foxp3 during cell division and also production of IL-10. In contrast, blockade of ICOS-L during T cell activation reduced Foxp3 expression but did not eliminate it, indicating that there are some other factor influencing Foxp3 expression, such as TCR signals (37) and perhaps other tumor factors. These results also indicate that in a more settle TCR activation the T regs would require ICOS costimulation. Our results coincide with the finding that ICOS costimulatory signaling pathway drives Treg survival and expansion (26).

As found here and by others (27), Tregs coexpressing ICOS are elevated in TIL of melanoma patients, indicating an active presence of these cells in the tumor environment. Moreover, ICOS expression has been found in subsets of activated CD25+Foxp3+ Tregs (38) from peripheral blood. Taken together, these data indicate that ICOS+ Tregs are a subset of recently activated Tregs as a result of contact with tumor self-antigens and are critical in maintaining self-tolerance. This is in keeping with recent data showing an association of ICOS expression and IL-10–producing capacity in human Tregs and Tr1 cells (15, 26, 39). Data showing reduced ICOS+ Treg frequencies in the blood and tissues of patients with autoimmune diseases such as type I diabetes further support this contention (40).

It will be important to determine the levels of ICOS-L expression in a larger number of primary and metastatic melanoma samples and determine whether ICOS-L+ tumor cells is associated with increased infiltrating Tregs and poorer overall survival. From a clinical standpoint, inhibition of ICOS expression or blocking ICOS costimulation may be of therapeutic benefit. We found that blockade of ICOS-L in vivo can in fact reduced Tregs in the tumor environment; however, careful dissection of the role of ICOS costimulation blockade on Tregs versus effector T cells needs to be addressed.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank the melanoma TIL therapy team, D. Kentor for blood processing, and D. He, K. Dwyer, and K. Ramirez for cell sorting. We thank the Melanoma and Immunology Department members for help and discussion.

Grant Support

This work is supported in part by a NIH Melanoma SPORE Developmental grant (5 P50 CA093459-05-DBP14) to L. Radvanyi and a grant from the Center for Targeted Therapy of MD Anderson Cancer Center (C. Dong and N. Martin-Orozco). L. Radvanyi also acknowledges support from the Miriam and Sheldon Adelson Medical Research Foundation (AMRF). C. Dong also acknowledges support from the Trust Fellowship of the M. D. Anderson Cancer Center.

References

15. Haringer B, Lozza L, Steckel B, Geginat J. Identification and characteriza-
tion of IL-10/IFN-gamma-producing effector-like T cells with regulatory func-
Melanoma Cells Express ICOS Ligand to Promote the Activation and Expansion of T-Regulatory Cells

Natalia Martin-Orozco, Yufeng Li, Yijun Wang, et al.

Cancer Res 2010;70:9581-9590. Published OnlineFirst November 23, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-1379

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/11/23/0008-5472.CAN-10-1379.DC1

Cited articles
This article cites 38 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/23/9581.full.html#ref-list-1

Citing articles
This article has been cited by 17 HighWire-hosted articles. Access the articles at:
/content/70/23/9581.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.