Contents

BREAKING ADVANCES

10017 | Highlights from Recent Cancer Literature

REVIEWS

10019 | Imaging Cycling Tumor Hypoxia
Shingo Matsumoto, Hironobu Yasui, James B. Mitchell, and Murali C. Krishna

10024 | Targeting γδ T Lymphocytes for Cancer Immunotherapy: From Novel Mechanistic Insight to Clinical Application
Anita Q. Gomes, Duarte S. Martins, and Bruno Silva-Santos

PERSPECTIVE

10028 | XMRV: A New Virus in Prostate Cancer?
Amanda L. Aloia, Karen S. Sfansos, William B. Isaacs, Qi Zhi Cheng, Frank Maldarelli, Angelo M. De Marzo, and Alan Rein

MEETING REPORT

10034 | Twenty-Second Annual Pezcoller Symposium: RNA Biology and Cancer
Rene Bernards, Witold Filipowicz, David M. Livingston, and Enrico Mihich

INTEGRATED SYSTEMS AND TECHNOLOGIES

10044 | Human Bone Marrow–Derived MSCs Can Home to Orthotopic Breast Cancer Tumors and Promote Bone Metastasis
Robert H. Goldstein, Michaela R. Reagon, Kristen Anderson, David L. Kaplan, and Michael Rosenblatt

PRIORITY REPORTS

10051 | Mathematical and Experimental Approaches to Identify and Predict the Effects of Chemotherapy on Neuronal Precursors
Olivier Hyrien, Jorg Dietrich, and Mark Noble

10060 | Coexpression Network Analysis Identifies Transcriptional Modules Related to Proastrocytic Differentiation and Sprouty Signaling in Glioma
Alexander E. Ivliev, Peter A.C. 't Hoen, and Marina G. Sergeeva

10071 | Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues
Chao Zhou, David W. Cohen, Yihong Wang, Hsiang-Chieh Lee, Amy E. Mondellblatt, Tsung-Han Tai, Aaron D. Aguirre, James G. Fujimoto, and James L. Connolly

Précis:

- Human Bone Marrow–Derived MSCs Can Home to Orthotopic Breast Cancer Tumors and Promote Bone Metastasis
 - *Précis:* Mesenchymal stem cells home to primary breast cancer tumors from physiologic bone environments, promoting tumor growth and skeletal and visceral metastases.

- Mathematical and Experimental Approaches to Identify and Predict the Effects of Chemotherapy on Neuronal Precursors
 - *Précis:* Chemotherapeutic drugs may alter precursor cell function in multiple ways, including cell cycle length, the time between division and differentiation, and the probability of self-renewal division, with potential clinical implications.

- Coexpression Network Analysis Identifies Transcriptional Modules Related to Proastrocytic Differentiation and Sprouty Signaling in Glioma
 - *Précis:* Study identifies a proastrocytic gene expression signature with prognostic utility in brain tumors and reveals that Sprouty family proteins which modify EGF signaling likely participate in brain cancer pathogenesis.

- Integrated Optical Coherence Tomography and Microscopy for Ex Vivo Multiscale Evaluation of Human Breast Tissues
 - *Précis:* Findings lay the foundation to improve optical evaluation of breast tissues with 3D imaging technologies that could improve surgical management of cancer.
Expression of Snail in Epidermal Keratinocytes Promotes Cutaneous Inflammation and Hyperplasia Conducive to Tumor Formation
Fei Du, Yoshikazu Nakamura, Tuan-Lin Tan, Pedro Lee, Robert Lee, Benjamin Yu, and Colin Jamora

Précis: Findings suggest that the chief contribution of a key EMT-inducing transcription factor to carcinoma progression is largely through the creation of a hyperproliferative and inflammatory niche in the tumor microenvironment.

HGF/c-Met Acts as an Alternative Angiogenic Pathway in Sunitinib-Resistant Tumors
Farbod Shojaei, Joseph H. Lee, Brett H. Simmons, Anthony Wong, Carlos O. Esparza, Pamela A. Plumlee, Junlii Feng, Albert E. Stewart, Dana D. Hu-Lowe, and James G. Christensen

Précis: Results indicate that inhibition of the c-Met pathway has an additive effect on inhibition of the VEGF pathway in tumors resistant to the VEGF inhibitor sunitinib.

HIF-2α Enhances β-Catenin/TCF-Driven Transcription by Interacting with β-Catenin
Hyunsung Choi, Yang-Sook Chun, Tae-You Kim, and Jong-Wan Park

Précis: Findings suggest that HIF-1α/HIF-2α balance determines cell growth when hypoxia and Wnt stimulation coexist, affecting understanding of tumor fate under hypoxic conditions that may help control hypoxic tumor cells.

IL-17 Enhances Tumor Development in Carcinogen-Induced Skin Cancer
Lin Wang, Tangsheng Yi, Wang Zhang, Drew M. Pardoll, and Hua Yu

Précis: Activation of a central proinflammatory pathway for adaptive immune cells contributes to cancer-associated inflammation in a classical model of carcinogenesis.

Delivery of NKGR2 Ligand Using an Anti-HER2 Antibody-NKGR2 Ligand Fusion Protein Results in an Enhanced Innate and Adaptive Antitumor Response

Précis: Preclinical study defines a novel antibody-based therapeutic strategy that can couple innate and adaptive immune responses against tumors to increase antitumor efficacy.
Prognostic Value and Function of KLF4 in Prostate Cancer: RNAa and Vector-Mediated Overexpression Identify KLF4 as an Inhibitor of Tumor Cell Growth and Migration

Ji Wang, Robert F. Place, Vera Huang, Xiaoling Wang, Emily J. Noonan, Clara E. Magyar, Jiaoti Huang, and Long-Cheng Li

Précis: A potential tumor and metastasis suppressor gene is identified in prostate cancer, in which its decreased expression predicts the development of metastasis.

Free Tubulin Modulates Mitochondrial Membrane Potential in Cancer Cells

Eduardo N. Maldonado, Jyoti Patnaik, Matthew R. Mullins, and John J. Lemasters

Précis: Results suggest a mechanism to understand how mitochondrial metabolism is suppressed in cancer cells, a characteristic feature of the Warburg effect.

A Unique Metastasis Gene Signature Enables Prediction of Tumor Relapse in Early-Stage Hepatocellular Carcinoma Patients

Stephanie Roessler, Hu-Liang Jia, Anuradha Budhu, Marshonna Forgues, Qing-Hai Ye, Ju-Soeng Lee, Snorri S. Thorgeirsson, Zhongtang Sun, Zhao-You Tang, Lun-Xiu Qin, and Xin Wei Wang

Précis: Results from two independent cohorts with mixed etiologies and ethnicity define a unique metastasis expression signature that can predict early recurrence of hepatocellular carcinoma.

Downregulation of c-MYC Protein Levels Contributes to Cancer Cell Survival under Dual Deficiency of Oxygen and Glucose

Hiroaki Okuyama, Hiroko Endo, Tamaki Akashika, Kikuya Kato, and Masahiro Inoue

Précis: c-MYC downregulation may represent a universal survival strategy of cancer cells under ischemic conditions that select for development of aggressive phenotypes.

Tip30 Deletion in MMTV-Neu Mice Leads to Enhanced EGFR Signaling and Development of Estrogen Receptor–Positive and Progesterone Receptor–Negative Mammary Tumors

Chengliang Zhang, Mikito Mori, Shenglan Gao, Aimin Li, Isamu Hoshino, Mark D. Aupperlee, Sandra Z. Haslam, and Hua Xiao

Précis: Mechanistic study leads to development of a mouse model of ER+/PR breast cancer, which while not as widely studied as other disease subtypes accounts for up to 25% of all breast cancers.

Histone H3 Lysine 79 Methyltransferase Dot1 Is Required for Immortalization by MLL Oncogenes

Ming-Jin Chang, Hongyu Wu, Nicholas J. Achille, Mary Rose Reisenauer, Chau-Wen Chou, Nancy J. Zeleznik-Le, Charles S. Hemenway, and Wenzheng Zhang

Précis: Findings define a pivotal requirement for an important histone methyltransferase in a class of clinically aggressive leukemias, also implicating this enzyme as a therapeutic target for novel treatment strategies in these diseases.

Dual Functional Monoclonal Antibody PF-04605412 Targets Integrin α5β1 and Elicits Potent Antibody-Dependent Cellular Cytotoxicity

Gang Li, Lianglin Zhang, Enhong Chen, Jianying Wang, Xin Jiang, Jeffrey H. Chen, Grant Wickman, Karin Amundson, Simon Bergqvist, James Zobel, Dana Buckman, Sangita M. Baxi, Steven L. Bender, Gerald F. Caspersion, and Dana D. Hu-Lowe

Précis: Findings suggest that the efficacy of antibody-based therapy of solid tumors can be improved by engineering changes in the antibody constant region that enhance ADCC.
Targeting the Mitotic Checkpoint for Cancer Therapy with NMS-P715, an Inhibitor of MPS1 Kinase
Riccardo Colombo, Marina Caldarelli, Milena Mennecozzi, Maria Laura Giorgini, Francesco Sola, Paolo Cappella, Claudia Perrera, Stefania Re Depaolini, Luisa Rusconi, Ulisse Cucchi, Nilla Avanzi, Jay Aaron Bertrand, Roberto Tiberio Bossi, Enrico Pesenti, Arturo Galvani, Antonella Isacchi, Francesco Colotta, Daniele Donati, and Jürgen Moll

Précis: Proof-of-concept findings based on a small molecule that targets a key mitotic checkpoint suggest a promising new approach to selectively destroy cancer cells.

Loss of Metallothionein Predisposes Mice to Diethylnitrosamine-Induced Hepatocarcinogenesis by Activating NF-κB Target Genes
Sarmila Majumder, Satavisha Roy, Thomas Kaffenberger, Bo Wang, Stefan Costinean, Wendy Frankel, Anna Bratasz, Periannan Kuppusamy, Tsonvin Hai, Kalpana Ghoshal, and Samson T. Jacob

Précis: Results demonstrate the important protective role of metallothioneins as free radical scavengers during chemical carcinogen–induced liver cancer.

Transcriptional Control of the ERBB2 Amplicon by ERRα and PGC-1β Promotes Mammary Gland Tumorigenesis
Geneviève Deblois, Ghada Chahrour, Marie-Claude Perry, Guillaume Sylvain-Drolet, William J Muller, and Vincent Giguère

Précis: This study identifies two transcription factors that influence breast cancer etiology by coordinating the expression of genes located in the 17q12 region surrounding HER2.

CX-4945, an Orally Bioavailable Selective Inhibitor of Protein Kinase CK2, Inhibits Prosurvival and Angiogenic Signaling and Exhibits Antitumor Efficacy

Précis: Study offers preclinical validation of a first-in-class orally bioavailable inhibitor of the nononcogenic protein kinase CK2.

Pemetrexed Indirectly Activates the Metabolic Kinase AMPK in Human Carcinomas
Scott B. Rothbart, Alexandra C. Racanelli, and Richard G. Moran

Précis: A folate antimetabolite currently approved by the FDA is found to also target the AMPK and mTORC metabolic pathways, broadening the range of its potential clinical applications.

NEDD8-Targeting Drug MLN4924 Elicits DNA Rereplication by Stabilizing Cdt1 in S Phase, Triggering Checkpoint Activation, Apoptosis, and Senescence in Cancer Cells
Jie Jessie Lin, Michael A. Milhollen, Peter G. Smith, Usha Narayanan, and Anindya Dutta

Précis: Findings reveal insights into the mechanism of action of an important new drug in clinical trials, also showing that even its transient exposure to p53 mutant cancer cells may be sufficient to produce potent anticancer effects.

ASNA-1 Activity Modulates Sensitivity to Cisplatin
Oskar Hemmingsson, Gautam Kao, Maria Still, and Peter Naredi

Précis: C. elegans offers a model to characterize cancer drug resistance mechanisms in different genetic backgrounds, used here to define a targetable mechanism of cisplatin resistance.

Zoledronic Acid Potentiates mTOR Inhibition and Abolishes the Resistance of Osteosarcoma Cells to RAD001 (Everolimus): Pivotal Role of the Prenylation Process
Gatien Moriceau, Benjamin Orly, Laura Mitrofan, Chiara Riganti, Frédéric Blanchard, Régis Brion, Céline Charrier, Séverine Battaglia, Paul Pilet, Marc G. Denis, Leonard D. Shultz, Jukka Mönkkönen, Françoise Rédini, and Dominique Heymann

Précis: Combining inhibitors of the mTOR pathway with protein prenylation pathways such as zoledronate might markedly improve treatment of osteosarcoma, a highly aggressive disease.
Regulation of the Embryonic Morphogen Nodal by Notch4 Facilitates Manifestation of the Aggressive Melanoma Phenotype
Katharine M. Hardy, Dawn A. Kirschmann, Elisabeth A. Seftor, Naira V. Margaryan, Lynne-Marie Postovit, Luigi Strizzi, and Mary J.C. Hendrix

Precis: Findings define elements of a critical signaling pathway in development of metastatic melanoma that may be therapeutically tractable to disruption by Notch4 receptor antibodies.

Combinatorial Regulation of Neuroblastoma Tumor Progression by N-Myc and Hypoxia Inducible Factor HIF-1α
Guoliang Qing, Nicolas Skuli, Patrick A. Mayes, Bruce Pawel, Daniel Martinez, John M. Maris, and M. Celeste Simon

Precis: Lactate dehydrogenase is defined as a metabolic weakness of N-Myc–amplified neuroblastoma, providing an attractive therapeutic target in this aggressive and poorly managed pediatric cancer.

Mage-A Cancer/Testis Antigens Inhibit p53 Function by Blocking Its Interaction with Chromatin
Lynnette Marcar, Nicola J. MacLaine, Ted R. Hupp, and David W. Meek

Precis: Findings define a mechanism through which cells may gain metastatic capability by defeating p53 function, with implications for cancer immunotherapies that target MAGE antigens.

Homeoprotein Six1 Increases TGF-β Type I Receptor and Converts TGF-β Signaling from Suppressive to Supportive for Tumor Growth
Douglas S. Micalizzi, Chu-An Wang, Susan M. Farabaugh, William P. Schiemann, and Heide L. Ford

Precis: A transcription factor that promotes epithelial-mesenchymal transition in breast cancer is shown to support metastatic properties by upregulating the type I receptor for TGF-β.

p38 Kinase Is Crucial for Osteopontin-Induced Furin Expression That Supports Cervical Cancer Progression
Vinit Kumar, Reeti Behera, Kirti Lohite, Swapnil Karnik, and Gopal C Kundu

Precis: Mechanistic studies of the regulation of osteopontin, an important proinvasive cytokine in the tumor microenvironment, suggest novel approaches to combat cervical cancer.
Précis: Findings establish roles for two central embryonic stemness factors in promoting lung cancer metastasis.

Cell Cycle Regulator ING4 Is a Suppressor of Melanoma Angiogenesis That Is Regulated by the Metastasis Suppressor BRMS1

Jun Li and Gang Li

Précis: Findings suggest that restoring the function of the ING4 tumor suppressor gene could not only block cell proliferation but also angiogenesis and metastasis of human melanoma.

Pierce1, a Novel p53 Target Gene Contributing to the Ultraviolet-Induced DNA Damage Response

Young Hoon Sung, Hye Jin Kim, Sushil Devkota, Jusik Roh, Jaehoon Lee, Kunsoo Rhee, Young Yil Bahk, and Han-Woong Lee

RETRACTION

Retraction: Tripeptidyl-Peptidase II Controls DNA Damage Responses and In Vivo γ-Irradiation Resistance of Tumors

Rickard Glas, Alf Grandien, Steven Applequist, Brita Kunert, and Rajender Naredla

Acknowledgment to Reviewers

ABOUT THE COVER

Immunofluorescence analysis of Notch4 (red) and Nodal (green) in C8161 human metastatic melanoma cells reveals the expression of these proteins in a subpopulation of these aggressive cells in culture. An anti-pan-Cadherin antibody (pink) labels the cell membrane. Cell nuclei were counterstained with DAPI (blue). For details, see the article by Hardy and colleagues on page 10340 of this issue.