miR-31 Ablates Expression of the HIF Regulatory Factor FIH to Activate the HIF Pathway in Head and Neck Carcinoma

Chung-Ji Liu1,3,4, Meng-Miao Tsai1, Pei-Shih Hung1, Shou-Yen Kao1,5, Tsung-Yun Liu6, Kou-Juey Wu2, Shih-Hwa Chiou6, Shu-Chun Lin1,5, and Kuo-Wei Chang1,5,6

Abstract
MicroRNAs (miRNA) are endogenously expressed noncoding RNAs with important biological and pathological functions that are yet to be fully defined. This study investigated alterations in miRNA expression in head and neck squamous cell carcinoma (HNSCC), the incidence of which is rising throughout the world. Initial screening and subsequent analysis identified a panel of aberrantly expressed miRNAs in HNSCC tissues, with miR-31 among the most markedly upregulated. Ectopic expression of miR-31 increased the oncogenic potential of HNSCC cells under normoxic conditions in cell culture or tumor xenografts. Conversely, blocking miR-31 expression reduced the growth of tumor xenografts. The in silico analysis suggested that miR-31 may target the 3’ untranslated region (UTR) of factor-inhibiting hypoxia-inducible factor (FIH), a hypoxia-inducible factor (HIF) regulatory factor that inhibits the ability of HIF to act as a transcriptional regulator under normoxic conditions. In support of this likelihood, miR-31 expression repressed FIH expression and mutations within the predictive miR-31 target site in the FIH 3’ UTR abrogated FIH repression. Furthermore, miR-31 expression increased HIF transactivation activity. We found that FIH suppressed oncogenic phenotypes under normoxic conditions and that this activity was abrogated by functional mutations. Lastly, increased miR-31 expression was correlated with decreased levels of FIH in tumor tissues. Our findings suggest that miR-31 contributes to the development of HNSCC by impeding FIH to activate HIF under normoxic conditions.

Introduction
Head and neck squamous cell carcinoma (HNSCC) is the fifth most common carcinoma worldwide (1, 2). MicroRNAs (miRNA) are 19 to 24 nucleotides noncoding RNAs that regulate the translation and degradation of target mRNAs (3, 4). Lines of evidence indicate that miRNA may play important roles in carcinogenesis (5). The abundance of miRNAs and their apparent pluripotent actions suggest that the identification of miRNAs involved in oncogenesis might yield targets or networks that are suitable for therapeutic intervention (3).

miR-21 was found to be oncogenic in HNSCC (6–8). miR-98 regulates HMGA2 expression in HNSCC cells (9). An association has also been identified between miR-211 expression and the vascular invasion of oral carcinoma (10). miRNA expression can also be used as a diagnostic marker of HNSCC (7, 11). Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α are key transcription factors induced by hypoxia, which activate a transcription program that promotes aggressive tumor phenotypes by triggering the expression of critical genes, including vascular endothelial growth factor (VEGF), TWIST transcription factor, and others (12, 13). When sensing the oxygen tension, asparagine hydroxylation by factor-inhibiting HIF-1α (FIH) inactivates the COOH terminal transactivation domain (C-TAD) region of HIF-1α (14, 15). VEGF is one of the hypoxia-inducible C-TAD–regulated genes (12). FIH is a dioxygenase (14); mutations disrupting the oxygen sensing or the dimerization of FIH molecule resulted in FIH inactivation (16, 17). FIH also modulates other elements and drives diverse phenotypic effects (14, 15). Although FIH expression is associated with neoplastic progression (18–20), the functional role of FIH in tumorigenesis has been obscure.

miR-31 was upregulated in hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), breast carcinoma, and tongue carcinoma (7, 21–24). However, downregulation of miR-31 or deletion of 9p21 locus harboring pri-miR-31 was also found in malignancies (25, 26). A recent study showed the upregulation of miR-31 in metastasis-free breast carcinoma and miR-31 drives inhibitory effects on breast cancer metastasis by targeting multiple genes (27). In this study, we
identified that miR-31 transactivated HIF in normoxia and enhanced the oncogenesis of HNSCC via FIH, which acts as a target.

Materials and Methods

HNSCC tissues. Resected tissues from 46 HNSCC patients (Supplementary Table S1), who gave informed consent for the use of their tissue, were harvested at surgery. The study was approved by the institutional review board. Tissue specimens were taken from primary HNSCC, along with paired noncancerous matched tissues (NCMT) as well as available neck metastatic lesions (NML). Ten primary tumor tissues were microscopically screened to have >70% of their areas occupied by tumor cells; these were used to analyze a panel of 154 highly conserved miRNAs using quantitative reverse transcription–PCR (qRT-PCR) array (Applied Biosystems). The results of this assay allowed the selection of particular miRNAs to be assessed in tissues retrieved by laser capture microdissection (LCM; ref. 1).

Quantitative PCR. A mirVana PARIS kit (Ambion) was used to isolate miRNA from the total RNA. A Taqman miRNA assay kit and Taqman miRNA assay supplies were used to quantify the expression of mature miRNAs according to the manufacturer’s instructions (Applied Biosystems). miRNA-specific qRT-PCR was done in duplicate or triplicate on the ABI Prism 7700 Sequence Detector system (Applied Biosystems) using RNU19 or let-7a as internal controls (28). Ct was the number of cycle at which the fluorescence signal passed threshold. \(\Delta \Delta Ct \) was the difference of Ct values between tested miRNA and internal control (10). \(\Delta \Delta Ct \) was the difference of \(\Delta Ct \) values between different experimental settings or paired samples. \(2^{\Delta \Delta Ct} \) represents the fold change in miRNA expression. mRNA expression of FHI, ING4, and PHD4 was analyzed using Taqman qRT-PCR analysis (Applied Biosystems).

Cell culture, reagents, and phenotypic assays. The HNSCC cell lines Fadu, OECM-1, and SAS cells; HT29 CRC cells; and 293FT and phoenix package cells were cultured as previously described (2, 29), as were normal human oral keratinocytes (NHOK), which were used as controls (30). Fadu and SAS were tumorigenic, whereas OECM-1 was non-tumorigenic in nude mice (31). For hypoxia use, cells were grown in an incubator (Aste) with 1% O2, 5% CO2, and 94% N2 for 24 h. miR-31 antisense locked nucleic acid (2′-O,4′-C-methylene-linked ribonucleotide derivative; LNA) together with control scramble LNA were purchased from Ambion. The inhibitory efficacy of miR-31 LNA in cultivated SAS cells was validated as 120 nmol/L for 24 to 72 h. The dose of miR-21 mimic (Ambion) was determined as 30 nmol/L by pilot studies. VEGF production in aliquots of cell supernatant or tissue lysate was analyzed using a kit (Invitrogen). Analysis of cell viability, proliferation, migration, and anchorage-independent colony formation followed the protocols previously published (2).

Plasmids, transfection, and infection. For exogenous miR-31 expression, pre-mir-31 sequence was cloned into a lentivirus vector, pLV-EFla-GFP, which contains a green fluorescent protein (GFP) tag (10). An empty vector or a vector carrying the miR-31 insert was cotransfected with helper plasmids into 293FT cells to produce lentiviruses. The stable cell lines were established by lentiviral infection.

To test the targeting activity of miR-31, antisense sequences complementary to miR-31 sequences and the 3′ untranslated region (UTR) of FHI containing predictive miR-31 target sites were cloned into the pCMV-LacZ plasmid at the 3′-end of the lacZ coding sequence; these reporter plasmids were designated miR-31-AS R and pCMV-LacZ-FIHW3′UTR, respectively. Cotransfection of reporter plasmids with pCMV-Luc into cells was performed using Lipofectamine 2000 (Life Technologies). LacZ gene expression would be repressed if the pre-mir-31 insert was expressed, processed, and served as small interfering RNA against lacZ. Two putative miR-31 target sites residing at nucleotides 117 to 124 and 774 to 780 in the FIH3′UTR predicted by TargetScan7 and PicTar8 were designated A and B as conservative and nonconservative sites, respectively. Mutant reporter plasmids were obtained from pCMV-LacZ-FIHW3′UTR using a site-directed mutagenesis kit (Stratagene). After confirmation of the replacement of the target sequence UCUUGC by AAACUU, the plasmids were designated A Mut, B Mut, and AB Mut, which had mutations in A, mutations in B, and double mutations in both A and B sites, respectively.

pHIFI-luc reporter plasmid (Ponomics) was used for the assay of HIF transactivation.

For exogenous FHI expression, two wild-type and two mutant FHI cDNA sequences generated by site-directed mutagenesis were cloned into pBabe-puro vector to produce retrovirus for infection. The stable cells FHI(3′UTR), FHIWt, FIHD201A, and FIH 1-302 cells were established by puromycin selection after retroviral infection. FIH(3′UTR) cells would express wild-type full-length FHI cDNA, including 3′ UTR, whereas FIHWt would express wild-type FHI coding sequence without 3′ UTR. FHI is a dioxygenase, and its activity is Fe(II) dependent (14). FIH D201A cells would express a mutant FHI coding sequence encompassing an aspartic acid-to-alanine mutation at residue 201 that disrupts Fe (II) binding and attenuates catalytic activity. FIH 1-302 cells would express a protein with truncation of 303 to 349 residues that prevents the dimerization of FHI molecules at COOH terminal region and attenuates FIH (16, 17). Vector alone is a control cell infected with control virus.

Western blot analysis. Cell lysate (80 μg), cytosolic fraction (80 μg), and nuclear extract (40 μg) were isolated using previously described protocols (27). Western blot analysis followed previously used protocols (2). The providers and dilution of the primary antibodies are presented in Supplementary Table S2.

Immunohistochemistry. FHI and VEGF immunoreactivities in HNSCC, together with available NCMT and NML, were detected by immunohistochemistry following previously reported protocols (1). Incubation of primary antibodies
miR-31 Regulates FIH and HIF in HNSCC

was at 4°C overnight (Supplementary Table S2). Preimmunized mouse IgG was used as a negative control. The immunoreactivity was scored −, +, and ++ when <10%, 10% to 50%, and >50% immunoreactive cells were counted, respectively, in five randomly selected 200× fields.

Tumorigenesis. The analysis of tumorigenesis followed the previously published protocols (10). For blockage of xenographic tumors, 0.5% atelocollagen (Koken Co.) on pepsin treatment to remove antigenicity was complexed with 2.5 μmol/L miR-31 LNA and equivalent scramble controls in a volume of 200 μL. When SAS xenografts grew to ∼0.2 cm³, the complexes were injected s.c. to the periphery of tumors (31).

Statistical and bioinformatics analysis. Pair-wise analysis was performed using website-accessible Generalized Association Plots (GAP) program. Mann-Whitney test and Fisher’s exact test were used to compare the differences among variants. Receiver operating characteristic (ROC) analysis was performed, and the area under curve was used as a measurement for the level of separation between clinical settings. The leave-one-out cross-validation (LOOCV) model was used to compute the accuracy of assays. A P value of <0.05 was considered statistically significant.

Results

Upregulation of miR-31 in HNSCC. The miRNA expression profile of HNSCC was achieved from 10 screened tumors analyzed with qRT-PCR array (Supplementary Table S3). miRNAs having concordant ΔΔCt of >0 or <0 across at least seven screened tumors relative to their paired NCMT were selected for further stratification. The average ΔΔCt was >1 for 22 miRNAs and <−1 for 9 miRNAs. These miRNAs were therefore considered aberrant in the HNSCC samples (Fig. 1A). Six tumors had high correlation in the miRNA aberration. The highest overexpression was found for miR-31, and miR-21 was also markedly upregulated. GAP analysis showed a strong correlation between expression of miR-31 and miR-21, miR-34b and miR-34c, and miR-99a and miR-100 (Fig 1B). Analysis of the 46 LCM-retrieved samples confirmed that there was an increase in miR-21, miR-31, and miR-371 in 89%, 84%, and 70% HNSCC relative to NCMT, respectively (Fig. 1C). miR-31 was confirmed to be shown the greatest level of overexpression in HNSCC, with a mean ΔΔCt of 3.64. ROC and LOOCV analyses indicated the analytic power (0.82) and accuracy (0.72) using miR-31 expression to dissect NCMT from HNSCC (Fig. 1D). The analytic power was better than that shown by miR-21 expression or miR-371 expression (Supplementary Fig. S1). No significant association was identified between miR-31 expression and clinical parameters.

miR-31 expression increased the oncogenic potential of HNSCC cells. HNSCC cells had higher miR-31 expression relative to NHOK (Supplementary Fig. S2). Blockage of miR-31 expression with miR-31 LNA treatment significantly decreased viability and migration of SAS cells (Fig. 2A). HNSCC cells were infected with lentivirus carrying miR-31. The detection of green fluorescence in SAS cells measured infectivity successfully (Fig. 2B, left). SAS-miR-31 cells exhibited upregulation of miR-31 expression by 32-fold relative to SAS-GFP control cells. There was also a remarkable Lac Z repression in SAS-miR-31 cells when transfected with the reporter plasmids miR-31-asR (Fig. 2B, right). This suggests the presence of targeting activity in exogenous miR-31. SAS-miR-31 had significantly greater proliferation, migration, and anchorage-independent growth than controls (Fig. 2C). SAS-miR-31 also showed significantly greater xenographic tumor growth than controls in nude mice (Fig. 2D, left). With the treatment of miR-31 LNA and atelocollagen mixture (32), the tumorigenic potential of SAS cells was attenuated (Fig. 2D, right).

OECM-1-miR-31 cells exhibited green fluorescence; upregulation of miR-31 expression for 10-fold; miR-31 targeting activity; and increased proliferation, migration, and anchorage-independent growth than OECM-1-GFP control cells. OECM-1-miR-31 cells exhibited a slight increase in tumorigenicity; however, the difference was not statistically significant (Supplementary Fig. S3A–F). Fadu-miR-31 cells exhibited a drastically higher tumorigenicity than Fadu-GFP control cells. Blood vessels with a greater diameter were present in Fadu-miR-31 xenografts than in the controls (Supplementary Fig. S4).

miR-31 targets FIH. TargetScan and/or Pictar systems predicted hypoxia-associated genes FIH, HIF-3α, ING4, and PHD4, to be putative targets of miR-31. Downregulation of FIH mRNA expression and protein expression was found in SAS-miR-31 cells compared with controls. Conversely, upregulation of FIH mRNA expression and protein by ∼50% on miR-31 LNA treatment relative to controls was found (Fig. 3A). Preliminary assays excluded HIF-3α, ING4, and PHD4 as miR-31 targets (Supplementary Fig. S5). To prove the repression of FIH by miR-31, the pCMV-LacZ-FIH3’UTR reporter was used. LacZ activity was repressed more in SAS-miR-31 than in controls; however, the repression reverted on treatment with miR-31 LNA (Fig. 3B). Conservative and non-conservative predicted targets for miR-31 in the 3’ UTR of FIH was designated as the A site and the B site, respectively. The mutant reporter plasmids A Mut, B Mut, and AB Mut were generated. In SAS-miR-31 cells, the A site mutation resulted in a considerable reversal of the Lac Z repression compared with the B site mutation (Fig. 3C). Mutations in both A and B sites resulted in a complete reversion of LacZ repression. These findings suggest that the binding of miR-31 to the conservative site in 3’ UTR may repress FIH expression. For exogenous FIH expression, SAS-miR-31 cells and SAS-GFP cells were further infected with retroviruses to achieve FIH(3’UTR) and FIHWt subclones. The former expressed FIH coding sequence together with 3’ UTR, and the latter expressed only FIH coding sequence. These subclones exhibited an increase in FIH expression relative to control subclones (Fig. 3D, top). The FIH expression in FIH (3’UTR) and FIHWt subclones from SAS-miR-31 cells was lower than corresponding subclones from SAS-GFP cells. Similar changes were also present in OECM-1 cells (Supplementary Fig. S3H). Furthermore, FIH expression is higher in...
FIHWt subclones than FIH(3′UTR) subclones in both SAS-miR-31 cells and OECM-1-miR-31 cells (Fig. 3D, bottom). These findings validated the presence of a miR-31 target in the 3′UTR of FIH. Sequence complimentarity was found between miR-21 and FIH 3′ UTR using RNA2210 program. The treatment with miR-21 mimic upregulated miR-21 expression and slightly repressed the FIH expression in SAS and OECM-1 cells (Supplementary Fig. S6).

FIH expression decreased the oncogenic potential of HNSCC cells in normoxia. Exogenous FIH expression was associated with decreased proliferation, migration, and anchorage-independent colony formation of SAS-GFP cells under normoxia culture conditions, but not in hypoxia culture (Fig. 4A). Exogenous FIH expression and hypoxia culture had only limited influence on the growth, but exogenous FIH expression significantly decreased migration and anchorage-independent colony formation of OECM-1-GFP cells in normoxia culture (Supplementary Fig. S3I–K). In hypoxic culture, the suppressive function of FIH(3′UTR) was remarkably attenuated. Because FIH function seemed inactivated in the hypoxia state, FIH D201A mutant subclone and FIH 1-302 truncaton subclone were established in SAS cells to insight the effects of FIH activity in normoxia (16, 17). The expression of the exogenous mutant FIH and the truncated FIH was shown by Western blot analysis (Fig. 4B). The suppressive effect of wild-type FIH on anchorage-independent growth (Fig. 4C) and tumorigenesis (Fig. 4D) was significantly reversed by the mutation or the truncation. Thus, FIH activity is suppressive to SAS cells in normoxia.

miR-31 transactivated HIF activity in normoxia. Under normoxia, SAS-miR-31 cells and OECM-1-miR-31 cells exhibited a HIF-1α and HIF-2α expression level that is equal to the
controls (Fig. 5A, top). SAS-GFP cells carrying exogenous FIH variants also had similar levels of HIF-1α and HIF-2α expression. SAS-miR-31 had higher HIF transactivation activity than controls, and this could be decreased by miR-31 LNA (Fig. 5A, bottom). The expression of HIF-1α and transactivation of HIF activity in SAS-miR-31 and controls were induced under hypoxia culture (Fig. 5B, top); however, exogenous miR-31 expression had no effect on HIF activation in hypoxia (Fig. 5B, bottom). In normoxia, SAS-miR-31 showed higher proliferation, migration, and anchorage-independent growth than controls, but this was not the case in hypoxia culture (Fig. 5C, a–c). VEGF production in SAS-miR-31 was higher than in the controls during normoxia, but VEGF production in SAS-miR-31 and the controls were similar under hypoxia (Fig. 5C, d). VEGF production in OECM-1-miR-31 was also higher than control cells during normoxia (Supplementary Fig. S2G). SAS-miR-31 xenografts showed higher VEGF production than SAS-GFP tumors, whereas SAS xenografts carrying exogenous FIH expression showed lower VEGF production (Fig. 5D).

Exogenous miR-31 expression decreased both cytosolic and nuclear FIH in SAS cells. Exogenous FIH expression resulted in a greater increase in cytosolic FIH compared with nuclear FIH; and exogenous miR-31 expression seemed to decrease nuclear FIH more remarkably than cytosolic FIH in SAS cells (Supplementary Fig. S7). Exogenous miR-31 decreased FIH expression and exogenous FIH increased FIH expression in SAS xenografts (Supplementary Fig. S8).

Decreased FIH and increased VEGF during head and neck carcinogenesis. FIH immunoreactivity was detected in the lower half of the epithelium in NCMT. This displayed heterogeneity in terms of cellular localization including the cytosol, membrane, and nucleus (Fig. 6A, a, b and B, a). Intensive cytosolic FIH was found in all HNSCC (Fig. 6A, a, c and B, a, b). In tissue pairs available for comparison, the FIH immunoreactivity was remarkably attenuated in the NML in relation to their HNSCC counterparts (Fig. 6B, b, c). A statistically significant difference in FIH immunoreactivity was found between HNSCC and NML (Supplementary Fig. S2).

Figure 2. Phenotypic effect of miR-31. A, blockage of miR-31 in SAS cells. miR-31 expression was decreased with miR-31 LNA treatment for 24 h. The treatment for 48 h also decreased cell viability and migration. B, left, green fluorescence in SAS-miR-31 cells and SAS-GFP cells; right, reporter assay. It showed the targeting of miR-31 to antisense sequence in reporter plasmid miR-31-asR, which resulted in a repression of β-galactosidase activity in SAS-miR-31 cells compared with controls. C, exogenous miR-31 expression increased proliferation (left), migration, and anchorage-independent colony formation (right) in SAS cells. D, tumorigenesis. Exogenous miR-31 expression increased the growth of SAS xenografts (left), whereas the blockage of endogenous miR-31 expression using miR-31 LNA complexed with atelocollagen decreased the tumorigenic potential of SAS cells (right). Mean ± SEM from triplicate or quadruplicate analysis or from at least five mice. *, \(P < 0.05; \) **, \(P < 0.01; \) ***, \(P < 0.001; \) Mann-Whitney analysis.
Table S4). Nuclear FIH was obvious in the superbasal cell layer of the NCMT samples, and it seemed stronger than the cytosolic FIH (indent in Fig. 6A, d). Only 24% of HNSCC samples were scored as having nuclear FIH immunoreactivity in >10% cells. A statistically significant decrease in nuclear FIH from NCMT samples to HNSCC samples was noted (Supplementary Table S4). A reverse association lying between miR-31 expression and nuclear FIH immunoreactivity was also noted in HNSCC (Supplementary Table S5).

There was 18% NCMT (Fig. 6C, a) and >60% HNSCC (Fig. 6C, b) or NML (Fig. 6C, c) having cytosolic VEGF immunoreactivity in >50% cells. A statistically significant increase of VEGF immunoreactivity from NCMT to HNSCC was noted (Supplementary Table S6). A trend for reverse association lying between nuclear FIH immunoreactivity and VEGF immunoreactivity was found in HNSCC samples. A reverse association lying between nuclear FIH immunoreactivity and VEGF immunoreactivity was noted in NML and the overall tumor tissues consisting of HNSCC and NML (Supplementary Table S7).

Discussion

We identified significant upregulation of miR-31 in HNSCC tumors and cell lines, which is similar to the situation with several important human cancers (7, 21–24). However, only expression studies were carried out during the above research, and no study up to the present has ever addressed the regulation and function of miR-31 in HNSCC, CRC, or HCC (7, 21–24). Our functional characterization verified the oncogenic roles of miR-31 in HNSCC, and this result was supported by the enhancement of in vitro oncogenicity and tumorigenesis after overexpression in cell lines. The oncogenic roles of miR-31 were also substantiated by in vitro or in vivo clues from miR-31 blockage. It seems that the increase in tumor induction was limited when miR-31 was overexpressed in SAS and OECM-1 cells. Because the endogenous expression of miR-31 has been found to be high in HNSCC tissues and cells, the exogenously expressed miR-31 might allow only limited further enhancement of tumor growth. We provide evidence that the oncogenic potential of miR-31 is abrogated
in hypoxia status. As a consequence, SAS or OECD-1 xenografts are postulated to contain a high fraction of hypoxic cells and limited miR-31 functionality. Our study also confirmed the upregulation of miR-21 and miR-371 in HNSCC (6–8). Although the dissection power of miR-21 expression did not exceed that of miR-31 in distinguishing benign from malignant status, miR-21 should still play key roles in HNSCC and other malignancies, because it targets crucial suppressors (4, 5, 8, 33).

Hypoxia is linked to epithelial-mesenchymal transition, metastasis, and therapy resistance among neoplasms (12). Using blockers, an exogenous expression system, reporters, and mutant constructs, we were able to verify that miR-31 targets the conservative complementary sequence in the 3’ UTR of FIH and transactivates HIF under normoxia. This resulted in an increase in VEGF and other factors that could be contributive to HIF under normoxia. This study also confirmed that HIF activation occurs during hypoxia and that this usually occurs at a late stage of neoplastic process. Because the downregulation of miR-31 occurs in metastatic breast carcinoma (27) and tumor metastasis occurs mainly in deeper tissue regions probably having oxygen deficiency (38), wherein miR-31 could be unable to activate HIF to augment the aggressiveness of HNSCC, different mechanisms regulated by FIH in hypoxic tumor regions must be further investigated. Whether miR-21 plays more prominent roles for HNSCC metastasis than miR-31 is also an interesting issue to be addressed (8).

HIF suppressed HNSCC during normoxia, and the suppression was abrogated in hypoxic culture. The findings were concordant with the fact that miR-31 enhanced oncogenicity only when oxygen supply is sufficient. This study also provided functional clues by inactivating FIH using mutant constructs, which specified the requirement of FIH activity for

Figure 4. FIH suppresses the oncogenicity in normoxia. A, the phenotypes of SAS cells. a-c, assays for proliferation, migration, and anchorage-independent colony formation, respectively. N, normoxia; H, hypoxia. B-D, SAS-GFP cells. B, Western blots analysis of FIH expression in various subclones. An arrow indicates the truncated FIH. C and D, anchorage-independent colony formation and tumorigenesis, respectively, for various subclones. Mean ± SEM from triplicate or quadruplicate analysis or five nude mice. *, $P < 0.05$; **, $P < 0.01$. Mann-Whitney analysis.
the tumor suppression in normoxia (16, 17). Nuclear FIH was prominent in the superbasal layers of NCMT, whereas it was significantly decreased in HNSCC. Nuclear FIH expression was opposite to the miR-31 expression in HNSCC. Moreover, a reverse association between nuclear FIH expression and VEGF expression was also found in tumor tissues. These lines of tissue evidence together with the functional clues provided above indicated a miR-31-FIH-HIF cascade involved in HNSCC development in normoxia state. Because a reverse association between nuclear FIH expression and VEGF expression was also noted in metastatic lesions, it suggested that the oxygen level in these tissues could be sufficient for nuclear FIH to hydroxylate HIF. The high abundance of FIH protein, particularly cytosolic FIH, was found in HNSCC tissues and cell lines and in other types of cancers (39). In HNSCC cells with exogenous FIH expression, the FIH is localized mainly in cytosol with only a small fraction of the FIH being distributed to the nucleus or onto the membrane (40). In addition, the high cytosolic FIH levels seem to define a poor prognosis or progression for breast carcinoma, non-small cell lung carcinoma, and pancreatic endocrine tumors (18–20). The high abundance of FIH in the cytosol of HNSCC cells might act as a reservoir and allows it to act as a direct oxygen sensor. Alternatively, because FIH also modulates Notch and IκBα by hydroxylation (14, 15, 39, 40), the stability or activity of Notch and IκBα being regulated by cytosolic FIH for pathogenesis requires further stratification using specific constructs.

This study identified that miR-31 contributes to HNSCC development through HIF activation in tumor regions.
miR-31 expression was known to repress several target genes to inhibit the metastasis of breast carcinomas (27); thereby, the identification of other miR-31 targets and pluripotent actions of miR-31 involved in different neoplastic stage of tumorigenesis will be important. Further understanding of the pathogenetic significance of other aberrantly expressed miRNAs identified in this study may eventually contribute to diagnosis and interception of HNSCC (11).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr. Hsi-Feng Tu, Dr. Wen-Yuan Hu, and Hui-Wen Cheng.

Grant Support

National Science Council grants NSC96-2628-B-010-033-MY3, 96-3111-B-075-001-MY3, and 96-2314-B-195-018-MY3, Taipei Mackay Hospital grant 9117, Aim for the Top University Plan from Department of Education grant, and Taipei Veterans General Hospital grant V97ER2-015.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 6/26/09; revised 10/27/09; accepted 12/7/09; published OnlineFirst 2/9/10.
References

miR-31 Ablates Expression of the HIF Regulatory Factor FIH to Activate the HIF Pathway in Head and Neck Carcinoma

Chung-Ji Liu, Meng-Miao Tsai, Pei-Shih Hung, et al.

Cancer Res 2010;70:1635-1644. Published OnlineFirst February 9, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-2291

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/02/08/0008-5472.CAN-09-2291.DC1

Cited articles
This article cites 39 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/4/1635.full#ref-list-1

Citing articles
This article has been cited by 20 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/70/4/1635.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.