Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance

Shinichi Sakamoto1, Richard O. McCann2, Rajiv Dhir3, and Natasha Kyprianou1,4,5

Abstract

Talin1 is a focal adhesion complex protein that regulates integrin interactions with ECM. This study investigated the significance of talin1 in prostate cancer progression to metastasis in vitro and in vivo. Talin1 overexpression enhanced prostate cancer cell adhesion, migration, and invasion by activating survival signals and conferring resistance to anoikis. ShRNA-mediated talin1 loss led to a significant suppression of prostate cancer cell migration and transendothelial invasion in vitro and a significant inhibition of prostate cancer metastasis in vivo. Talin1-regulated cell survival signals via phosphorylation of focal adhesion complex proteins, such as focal adhesion kinase and Src, and downstream activation of AKT. Targeting AKT activation led to a significant reduction of talin1-mediated prostate cancer cell invasion. Furthermore, talin1 immunoreactivity directly correlated with prostate tumor progression to metastasis in the transgenic adenocarcinoma mouse prostate mouse model. Talin1 profiling in human prostate specimens revealed a significantly higher expression of cytoplasmic talin1 in metastatic tissue compared with primary prostate tumors (P < 0.0001). These findings suggest (a) a therapeutic significance of disrupting talin1 signaling/focal adhesion interactions in targeting metastatic prostate cancer and (b) a potential value for talin1 as a marker of tumor progression to metastasis.

Cancer Res; 70(5); 1885–95. ©2010 AACR.

Introduction

Cancer metastasis is a multistep and complex process that involves dissociation of the tumor cells from the organ of origin, degradation of the ECM, cell migration, anchorage-independent growth, apoptosis evasion, angiogenesis, invasion of surrounding tissues, cell adhesion, movement, and colonization to distant sites in the body (1). Human prostate cancer progression to advanced metastatic disease is associated with relapse to a hormone refractory state due to impaired apoptotic response to androgen ablation. Androgen-independent prostate cancer cells become resistant due to roadblocks in apoptosis and, depending on the interactions with the tumor microenvironment, acquire invasive and metastatic properties (2). Both tumor epithelial and endothelial cells require attachment to the ECM for survival, and upon loss of adhesion, they undergo detachment-induced cell death, known as anoikis. Anoikis, a unique phenomenon of apoptosis consequential to insufficient cell-matrix interactions (3) is recognized as a significant player in tumor angiogenesis and metastasis (4). During metastatic progression, cells are in a dynamic state, lacking firm attachment to ECM and susceptible to anoikis (4). Thus, resistance to die via anoikis dictates tumor cell survival and provides a molecular basis for therapeutic targeting of metastatic prostate cancer.

Talin1 is a focal adhesion protein that binds to multiple adhesion molecules, including integrins, vinlulin, focal adhesion kinase (FAK), and actin. In addition to structural role, talin1 play an essential role in integrin activation (5). Upon activation, integrins increase the functional interactions between a cell and ECM, thus serving as bidirectional transducers of extracellular and intracellular signals and ultimately regulating adhesion, proliferation, anoikis, survival, and tumor progression (1, 5–7). Therefore, talin1-mediated linkage of integrins to the actin cytoskeleton in focal adhesion complexes is a dynamic, multicomponent plasma membrane-associated assemblies essential for cell adhesion and motility (8). Talin1-deficient mice exhibit failure of integrins to aggregate into clusters and connect to the cytoskeleton, resembling the integrin deficient phenotype and supporting that integrin function is talin1 dependent (9). Recent evidence documents that talin1 suppresses expression of E-cadherin, a cell-cell adhesion effector that negatively correlates with cancer progression, independent of integrin (10), indicating a role for talin1 distinct from the integrin-dependent mechanism. However, the precise role of talin1 in cancer development and progression has not been elucidated.

©2010 American Association for Cancer Research.

www.aacrjournals.org

Published OnlineFirst February 16, 2010; DOI: 10.1158/0008-5472.CAN-09-2833
The present study investigated the role of talin1 in prostate cancer progression to metastasis. We show that talin1 engages in focal adhesion interactions with the AKT signaling as the intracellular survival mechanism to confer anoikis resistance and promote prostate cancer cell invasion. Talin1 profiling in human prostate cancer specimens revealed a significantly increased talin1 expression in metastases compared with benign and primary prostate tumors.

Materials and Methods

Cell culture and transfections. Human prostate cancer cell lines PC-3, DU-145, LNCaP, and CWR-22, were obtained from the American Type Culture Collection and cultured in RPMI 1640 (Invitrogen) containing 10% fetal bovine serum (Invitrogen) and antibiotics (PenicillinG/Streptomycin, 50 μg/mL). Human vascular endothelial cells and human brain microvascular endothelial cells (HBMEC) were cultured in endothelial basal medium (EGM-2; Cambrex). Transfection was performed using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s protocol. PC-3 cells were transfected with pEGFP or green fluorescent protein (GFP)–talin1 plasmids and cloned under G418 selection (Geneticin, Life Technologies Bethesda Research Laboratories). For silencing talin1 expression in prostate cancer cells, the ShRNA talin1 vector (GIPZ ShRNAmir talin1) was obtained from Open Biosystems. After transfection ShRNA talin1 DU-145 cells were selected using puromycin (a resistance marker). Polyclonal populations were pooled under anti-talin1 antibody selection media, and after several passages, stable cell lines were characterized for each group by Western blotting.

Attachment assay. Cells were seeded in six-well plates (5 × 10⁴ cells per well) coated with fibronectin (BD Biosciences Discovery Labware). After a 10-min attachment period, attached cells were fixed with methanol (100%) and stored at 4°C in PBS for image analysis. Cells were counted in 3 × 100 fields per well.

Migration assay. Cell cultures (at 75% confluency) were subjected to wounding as previously described (11). At 24 and 48 h postwounding cells migrating to the wounded areas were counted under the microscope.

Transendothelial migration assay. Sterile (12-mm diameter) glass coverslips were coated with Matrigel (Becton Dickson). Coverslips were then seeded (at a density of 6.25 × 10⁴ HBMEC) to form a complete monolayer. Cells were allowed to adhere/spread on the Matrigel for 24 h before initiation of the migration assay. PC-3 and DU-145 cells were resuspended in EGM-2MV (Cambrex) and added to the HBMEC monolayer (8 × 10⁴ cells per coverslip) for 12 h. Cells were subsequently fixed in paraformaldehyde (2% in PBS; 10 min at room temperature) and washed with PBS. Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) nucleic acid stain (Molecular Probes). Slides were visualized and examined under confocal microscopy.

Western blot analysis. Protein expression was determined by immunoblotting using the following specific antibodies. The human polyclonal rabbit talin1 antibody was generated by Dr. Richard McCann. The antibodies against FAK, AKT, phosphorylated Akt (Ser473), p44/42 mitogen-activated protein kinase (MAPK), phosphorylated p42/44 MAPK, glycogen synthase kinase 3β (GSK3β), phosphorylated GSK3β, SRC, and phosphorylated SRC (Tyr416) were obtained from Cell Signaling Technology; phosphorylated FAK (Y927) was obtained from Sigma. Protein levels were normalized to α-actin expression and were detected by using the α-actin antibody from Oncogene Research Products. Cell lysates were prepared using radioimmunoprecipitation assay (RIPA) buffer [150 mmol/L NaCl, 50 mmol/L Tris (pH 8.0), 0.5% deoxycholic acid, 1% NP40 with 1 mmol/L phenyl methyl-sulfonyl fluoride]. Protein content was quantified using the bicinchoninic acid protein assay kit (Pierce), and protein samples (30 μg) were subjected to SDS-PAGE and transferred to Hybond-C membranes (Amersham Pharmacia Biotech). Membranes were blocked in 5% milk in TBS-T (TBS containing 0.05% Tween 20; 1 h at room temperature), and following incubation with the respective primary antibody (overnight at 4°C), membranes were exposed to species-specific horseradish peroxidase–labeled secondary antibodies. Signal detection was achieved with SuperSignal West Dura Extended Duration Substrate (Pierce) and visualized using a UVP Imaging System. Fold change in specific protein expression was determined on the basis of α-actin expression as a loading control.

Immunoprecipitation. DU-145 cells, ShVector control, and ShTalin1 transfectants were lysed in RIPA buffer. Total protein concentration was quantified (as described above), and protein samples (100 μg) were incubated overnight at 4°C with the specific antibody. Controls for the immunoprecipitations were set up by using control IgG derived from the same species as the primary antibody + Protein G/A (second antibody). After incubation of lysates with Protein G Plus/Protein A agarose beads (30 μL) for 3 h at 4°C, beads were washed in PBS buffer, subjected to SDS-PAGE analysis, and transferred to nitrocellulose membranes (Amersham Pharmacia).

AKT inhibitor. The AKT inhibitor 1L6-hydroxymethyl-chiro-inositol-2-(R)-2-O-methyl-3-O-octadecyl-sn-glycero-carbonate was obtained from Calbiochem; it was used at concentration of 10 μmol/L as previously reported (12).

Apoptosis evaluation. Cells were harvested in EDTA buffer (0.5 mmol/L) and incubated in HBSS supplemented with 2% bovine serum albumin and 0.01% sodium azide (30 min at 4°C). Cells were subsequently fixed in 4% (w/v) formaldehyde in PBS and exposed to Annexin V (R&D Systems) followed by FITC-conjugated secondary antibody. Analysis of Annexin V fluorescence was performed using flow cytometry (Partec).

Caspase-3 activity assay. GFP talin1 and vector control cells were plated on either collagen or nonadhesive polyHEMA (poly-HHEMA) and incubated for 6 to 24 h. Caspase-3 activation was measured by Caspase-Glo 3/7 Assay (Promega) according to manufacturer’s protocol. Exposure to TNF-related apoptosis-inducing ligand (TRAIL; 100 ng) + Velcade (100 nmol/L) for 16 h was used as a positive control.

Cell cycle arrest evaluation. Cells were fixed with 70% ethanol (30 min at 4°C), stained with propidium iodide (50 μg/mL) containing 20 μg/mL of RNase (30 min at room temperature), and were subsequently subjected to flow cytometric analysis. Cell cycle progression was analyzed via fluorescence-activated cell sorting using the Partec Flow Max.

Anoikis evaluation. Cells were plated on fibronectin or the nonadhesive poly-HHEMA–coated dishes and incubated...
for 24 h. Cells undergoing apoptosis were detected using the Annexin V immunofluorescence approach and flow cytometric analysis (Partec). Western blotting was used to determine expression of apoptosis regulators after talin1 overexpression/silencing in prostate cancer cells.

Casapse-3 activity assay. GFP talin1 and vector control cells were plated on either collagen or nonadhesive polyHEMA and incubated for either 6 or 24 h. Casapse-3 activation was measured by Casapse-Glo 3/7 Assay (Promega) according to manufacturer’s protocol. Exposure to TRAIL (100 ng) + Velcade (100 nmol/L) for 16 h was used as a positive control.

In vivo experimental metastasis assay. Human prostate cancer cells were injected (2 × 10⁷/80 μL of PBS) in the tail vein of male nude mice (4–6 wk). After 4 wk mice were sacrificed and the lungs and liver were surgically excised and examined for metastatic lesions under a dissecting microscope (40×).

Transgenic adenocarcinoma mouse prostate transgenic mouse model. The transgenic adenocarcinoma mouse prostate (TRAMP) mice (C57BL/6) are transgenic mice that express SV40T/1 antigens under the prostate-specific rat probasin promoter (13, 14). TRAMP transgenic males develop prostate adenocarcinoma in a manner resembling the clinical progression of human prostate cancer from intraepithelial neoplasia to androgen-independent metastatic tumors. H&E-stained sections of prostate tissues from TRAMP+/+ male mice were evaluated by two independent investigators (S.S. and N.K.) to confirm pathologic grade. Wild-type (WT) male mice (C57BL/6) of comparable age groups (6–29 wk) served as controls. The histopathologic grading of prostatic tumors was conducted using a standard grading scale in TRAMP mice. Flat lesions and focal cell piling (grade 2.0–2.2) were observed in the majority of 12-wk-old TRAMP mice (Table 1). In 20- to 27-wk-old TRAMP mice, prostate exhibited focal cribriform lesions protruding into the lumen (grades 3–5), representing tumor progression to advanced disease.

Prostate sections from WT and the TRAMP tumors of increasing grade and metastatic lesions (5 μm) were subjected to immunohistochemical analysis for talin1 expression using the talin1 polyclonal antibody (provided by Dr. McCann). Slides were examined under a Nikon fluorescence microscope (Nikon, Inc.). Values were determined in a semiquantitative fashion, incorporating both the intensity of staining and the number of positively stained epithelial cells (15). Briefly, the staining intensity (I) was graded as 0 (absent), 1 (weak), 2 (moderate), or 3 (strong). The proportion (P) of positive epithelial cells (0.0–1.0) with the staining intensity was recorded. A score for each histologic grade (H) was determined as the product of intensity and proportion (H = I × P).

Human prostate specimens. Human prostate tissue specimens from patients with primary and metastatic prostate tumors (Department of Pathology, University of Pittsburgh) were subjected to immunoprofiling for talin1 expression. Computer image analysis determined talin1 expression levels in prostate specimens: 74 normal prostate, 93 normal areas surrounding malignant tissue, 71 benign prostate hyperplasia (BPH) areas, 35 prostate primary tumors (Gleason score, 6–9), and 44 metastatic lesions.

Table 1. Expression of talin1 in human prostate cancer

<table>
<thead>
<tr>
<th>Specimen</th>
<th>(n)</th>
<th>Intensity</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>(42)</td>
<td>155.4 ± 5.3</td>
<td></td>
</tr>
<tr>
<td>Adjacent</td>
<td>(101)</td>
<td>150.2 ± 0.3</td>
<td>0.017*</td>
</tr>
<tr>
<td>BPH</td>
<td>(56)</td>
<td>155.2 ± 6.3</td>
<td>0.319</td>
</tr>
<tr>
<td>Primary tumor</td>
<td>(34)</td>
<td>162.2 ± 7.8</td>
<td>0.00028**</td>
</tr>
<tr>
<td>Metastasis</td>
<td>(74)</td>
<td>167.3 ± 7.9</td>
<td>0.000009**</td>
</tr>
</tbody>
</table>

Results

Role of talin1 in prostate tumorigenesis. The expression profile of talin1 was assessed during in vivo prostate tumorigenesis in the TRAMP model. As shown in Fig. 1A, talin1 immunoreactivity was primarily detected among the glandular epithelial cells in the TRAMP prostates. Talin1 protein levels progressively increased with increasing age of TRAMP mice (6–27 weeks) (Fig. 1A, iii–vi). There was weak talin1 immunoreactivity in prostate tissue from WT control mice, whereas the intensity of talin1 staining was considerably stronger in primary prostate tumors, with the highest detected in liver metastases (Fig. 1A, ii). Quantitative analysis revealed a 2-fold increase in talin1 levels in prostate tumors derived from the 12-week-old TRAMP mice compared with the 6-week-old TRAMP mice (Fig. 1B). By 27 weeks of age, at which time TRAMP mice exhibit a highly aggressive prostate tumor
phenotype (grades 4.5–5), talin1 expression increased significantly \((P = 0.0019; \text{Fig. } 1B)\).

Talin1 correlates with human prostate cancer progression. To determine significance of talin1 in human prostate cancer progression to metastatic disease, we conducted immunohistochemical staining for talin1 in human prostate tissue specimens (Fig. 1C). Talin1 expression was analyzed in 307 human prostate tissue specimens, including 74 normal, 101 adjacent areas to the tumor, 56 BPH, 34 primary tumors (Gleason score, 6–9), and 74 metastatic lesions (Table 1A). Immunoreactivity was quantitated by automated quantitative analysis to determine the cytoplasmic levels of talin1. A representative picture of normal prostate, BPH, primary prostate tumor, and metastatic lesion to the lymph node is shown in Fig. 1C (i–iv). Cytoplasmic talin1 expression was significantly higher in primary tumor and metastatic lesion compared with normal prostate \((P < 0.00028, P < 0.0001, \text{respectively})\), whereas talin1 expression detected in BPH specimens was comparable with those detected in normal prostate tissue \((P = 0.319)\). Talin1 expression in metastatic lesions was significantly higher compared with primary tumors \((P < 0.0001; \text{Table } 1A)\). The intensity of talin1 immunoreactivity in poorly differentiated prostate tumors (Gleason score, 8/9) was significantly higher compared with...
moderately differentiated tumors (Gleason score, 6/7; \(P = 0.0009 \)). Talin1 levels also increased with increasing Gleason score (Gleason score, 6/7–9; Table 1B).

Talin1 promotes prostate cancer cell adhesion, migration, and invasion. The effect of talin1 overexpression on the adhesion ability and migration potential of prostate cancer cells were examined *in vitro*. The endogenous expression of talin1 was profiled in human prostate cell lines as well as prostate fibroblasts (as positive control for talin1 abundance). DU-145 prostate cancer cells exhibited the highest talin1 expression (Fig. 2A). GFP talin1 stable transfectants were generated in PC-3 cells, which express very low endogenous talin1 levels (Fig. 2A). Overexpression of talin1 (Fig. 2A, right) significantly increased both the adhesion (Fig. 2B) and migration potential of prostate cancer cells (Fig. 2C) compared with vector control cells. To determine the consequences of talin1 overexpression on the invasive potential of prostate cancer cells through an endothelial cell monolayer, transendothelial migration (TEM) assay was performed using HBMECs. As shown on Fig. 2D, talin1 overexpression led to a significant increase in prostate cancer cell invasion through the endothelial cell monolayer (\(P < 0.01 \)).

Prostate tumor epithelial cell survival requires continuous attachment to the ECM, and it is recognized that fibronectin, laminin, and collagen participate in the formation of attachment plagues linked to the actin cytoskeleton. The effect of talin1 loss on prostate cancer cell adhesion was examined by generating shRNA talin1 stable transfectants in DU-145 prostate cancer cells that are characterized by high endogenous talin1 expression (Fig. 3A). As shown on Fig. 3A, shRNA silencing of talin1 effectively reduced talin1 expression in DU-145 cells (>80%). Talin1-silenced DU-145 cells exhibited a reduced ability to adhere to different ECM components, including collagen, laminin, and fibronectin (Fig. 3B). Furthermore loss of talin1 led to significant reduction in the migration potential compared with vector control cells (Fig. 3C). Examination of the invasion ability of talin1-silenced transfectants through an endothelial cell monolayer revealed a significant suppression (Fig. 3D).

Talin1 facilitates ECM-integrin–mediated focal adhesion signals. The mechanism via which talin1 activates intracellular signals was investigated in the context of ECM–epithelial cell interaction. We focused on FAK/AKT signaling and intracellular MAPK pathway, as both have been implicated in...
integrin-focal adhesion-dependent signals (17). Activation of FAK due to phosphorylation (Y397) was observed on collagen attachment conditions, whereas it was more prominent on fibronectin-coated ECM in talin1-overexpressing cells relative to control cells (Fig. 4A). Talin1 overexpression in prostate cancer cells (PC-3) also resulted in a marked activation on phosphorylation of AKT (Ser473) under fibronectin attachment conditions, whereas only a modest activation of p44/42 MAPK was observed (Fig. 4A). These observations were confirmed by fluorescence microscopy (data not shown). There was a significant enhancement in the phosphorylation of FAK, AKT, and MAPK when cells were cultured on fibronectin-coated surface (Fig. 4B). Talin1 overexpression induced AKT phosphorylation as early as 3 hours after adhesion, with continuous activation after 24 hours (Fig. 4B, right).

The effect of talin1 on integrin–focal adhesion complex signaling interactions was subsequently investigated by examining the direct binding of talin1 to integrin β3, a key talin1
Role of Talin1 in Prostate Cancer Metastasis

![Image of Western blots and graphs showing protein expression changes over time and conditions.]

A

<table>
<thead>
<tr>
<th>Protein</th>
<th>Collagen</th>
<th>Fibronectin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talin1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-AKT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total AKT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-FAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total FAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-MAPK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total MAPK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Protein</th>
<th>Vector</th>
<th>Talin1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-AKT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total AKT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-FAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total FAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-MAPK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total MAPK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Protein</th>
<th>mlgG</th>
<th>Cont</th>
<th>ShTalin1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talin1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrin β3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Protein</th>
<th>mlgG</th>
<th>+ Talin1</th>
<th>+ Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-FAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-FAK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-AKT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-AKT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P < 0.01

n.s.
binding partner (18). To this end we used the DU-145 cell line, which exhibits high endogenous expression of integrin β3 (data not shown). Talin1 silencing significantly reduced talin1 binding to integrin β3 as well as the focal adhesion partners, FAK and Src (Fig. 4C). The reduced binding of Src upon talin1 loss (Fig. 4C) led us to probing the role of integrin-linked kinase-1 (ILK-1), a protein that regulates Src binding in response to integrin activation. Immunoprecipitation by integrin β3 revealed a significant decrease in ILK-1 binding in talin1-silenced prostate cancer cells. Immunoprecipitation by ILK-1 revealed that talin1 loss abrogated ILK-1 binding to integrin β3 complex (Fig. 4C, right). In the presence of a blocking antibody against integrin β3, there was a significant reduction in the phosphorylation of AKT and FAK in talin1-overexpressing cells (Fig. 4D).

Talin1 mediates anoikis resistance. To investigate the integrin-independent role for talin1 (10), we examined the effect of talin1 overexpression on cell suspension conditions. Cells were plated on either fibronectin-coated matrix or non-adhesive poly-HEMA. As shown on Fig. 5A, talin1 did not lead to a significant apoptotic effect in adherent conditions, but under nonadherent conditions, talin1-overexpressing cells exhibited a significant reduction in apoptosis as detected by Annexin V staining (Fig. 5A), suppression of caspase-3 activity (Fig. 5B), activation of AKT survival signaling (Fig. 5C), and subpopulation G0-G1 arrest (Supplementary Fig. S1). Talin1-overexpressing cells exhibited a moderate activation of FAK (Y992), AKT (Ser473), and Src (nonadherent conditions), although the response was weaker than under fibronectin conditions (Fig. 5C). Analysis of the anchorage-independent phosphorylation of these proteins revealed a significant time-dependent increase in phosphorylation of FAK, AKT, and Src in talin1-overexpressing cells, which was paralleled by a reduction in caspase-3 activation (Fig. 5C, right). Considering the evidence that ILK-1 is an effective signaling mediator of anoikis resistance (19), we also examined GSK3β activation, a direct target for ILK-1, under nonadherent conditions. Talin1-overexpressing cells exhibited increased phosphorylation of GSK3β and reduced caspase-3 cleavage compared with vector control cells, indicating anoikis suppression (Fig. 5C, right). Resistance to anoikis is recognized as a critical mechanism underlying tumor cell metastatic dissemination (4). Thus subsequent studies pursued the functional characterization of talin1 in determining the metastatic potential of prostate cancer cells in vivo. Talin1 loss in prostate cancer cells led to a significantly reduced number of metastatic tumor lesions (to the lungs; Fig. 5D).

AKT involvement in talin1 mediated migration and invasion but not adhesion. To determine whether AKT activation is an integral part of talin1 intracellular signaling, the consequences of AKT inhibition on talin1-mediated biological effects were examined. As shown on Supplementary Fig. S2, AKT inhibition had no significant effect on the adhesion potential of talin1-overexpressing prostate cancer cells on either fibronectin- or laminin-coated matrix. In the presence of the AKT inhibitor, both the migration potential and invasion ability of talin1-overexpressing cells (Supplementary Fig. S2) were significantly suppressed compared with the vector control cells (P < 0.01).

Discussion

Tumor cells develop mechanisms to resist anoikis, which enables their survival after detachment from the primary site and travel through the lymphatic and circulatory systems to distant organs (4). The present study identifies talin1 as a novel regulator of prostate cancer cell invasion and metastatic potential via its survival signaling by activating the ECM-integrin-mediated signaling and promoting anoikis resistance. Talin1 overexpression significantly enhanced the migration and invasion potential of human prostate cancer cells in an AKT-dependent manner. In contrast, loss of talin1 led to a diminished invasion potential and in vivo metastatic ability of prostate cancer cells. These results are in accord with a previous screening reporting that highly metastatic cells expressed significantly high levels of talin1 (>16-fold, second highest of 440 proteins screened) compared with less metastatic cells (20). Interestingly enough, talin1 mRNA has been shown to be downregulated by androgens in primary prostate cancer cells (21). Our in vivo findings in the TRAMP model of prostate tumorigenesis reveal a positive correlation between talin1 immunoreactivity and prostate cancer progression to metastasis. A dramatic increase in talin1 expression was detected in prostate tumors from 12-week-old TRAMP mice, and talin1 levels were further increased with tumor progression to advanced metastatic disease. Taken together, these lines of evidence support an indirect link between talin1 and prostate cancer metastasis and emergence to androgen independence.

Overexpressing talin1 in prostate cancer cells led to activation of FAK/AKT signaling via both an ECM-dependent and -independent mechanism. Gaining support from evidence that AKT survival signaling is causally linked to anoikis resistance in detached cells (22, 23), our data indicate that talin1 promotes tumor cells to metastasize by enhancing their local invasive properties and survival after detachment from the primary tumor site via activation of FAK and AKT signaling. This resonates with a similar role assigned to another key focal adhesion protein, paxillin, in different tumors. Indeed, overexpression of paxillin correlates with metastatic and invasion properties in hepatocellular carcinoma (24). Recruitment of FAK and paxillin to β1 integrin promotes cancer cell migration through MAPK activation (25). The present findings suggest that talin1 might not be causally involved in primary tumor development and growth but rather in promoting local invasion, as well as distant metastasis, via targeting the ECM-integrin-mediated signaling and resistance to anoikis.

Resistance to anoikis, potentially conferred by talin1, is not a selective advantage during tumor growth in an ECM-rich microenvironment, rather during the invasion through vasculature during metastasis. Resistance to anoikis could predict a greater ability to form metastatic lesions. The idea resonates with the evidence gathered from the analysis of human prostate cancer specimens. The highest talin1 protein expression was found in metastatic lesions compared with benign areas and primary prostate tumor sites (Table 1A). Interestingly enough there was a gradient of increasing expression within the primary tumors of increasing Gleason score (Table 1B).
Figure 5. Talin1 mediates anoikis resistance. A, GFP talin1 and vector PC-3 cells were kept in suspension conditions using poly-HEMA–coated plates for 24 h and subjected to flow cytometry using AnnexinV antibody. B, caspase-3 activation was measured in poly-HEMA suspension conditions after 6, 12, and 24 h, as described in Materials and Methods. GFP talin1 and GFP vector cells were also treated with TRAIL (100 ng/mL) plus Velcade (100 nmol/L; positive control). Values indicate the mean from two independent experiments performed in triplicate ± SEM. **, statistically significant difference at \(P < 0.01 \).

C, GFP talin1 and vector PC-3 cells were kept in suspension conditions, and after 24 h, cells were lysed and subjected to Western blotting. Expressions of total protein and phosphorylated forms of AKT (Ser473), FAK (Y397), and p42/44 MAPK were detected using respective antibodies (left). Levels of total and phosphorylated AKT (Ser473), FAK (Y397), SRC, and GSK3β, as well as cleaved caspase-3, were assessed during different time points (3–24 h; right). The phosphorylation status of individual proteins was evaluated by densitometry (bottom). D, experimental metastasis assay. Nude mice were injected i.v. in the tail vein with prostate cancer cells: DU-145 ShVector \((n = 6)\) and DU-145 ShRNA talin1 \([n = 5 (2 \times 10^6 \text{ per mouse})]\). At 5 wk postinoculation, lungs were dissected and metastatic lesions were counted. Talin1 loss led to a significantly reduced number of metastatic lesions to the lungs \(P = 0.028\).
This points to a promising value of talin1 expression in primary tumors as a predictor of metastatic potential, because prostate tumors with high Gleason score (>8) are pathologically recognized as high-risk adenocarcinoma and those patients have limitations in treatment options due to higher incidence of distant metastasis that significantly limits prognosis (26). A similar functional contribution in enhancing metastasis, but not primary tumor growth, was shown by the apoptotic suppressor of cytoskeleton-dependent death Bel-XI during mammary carcinogenesis (27).

Mechanistic dissection revealed that talin1 promotes ILK-1 binding to integrin β3 subunit; this evidence implicates ILK-1, as an intracellular effector of talin1 signaling, activated upstream of the AKT survival pathway. ILK is a serine/threonine protein kinase that interacts with cytoplasmic domain of β1-integrin and β3-integrin and has been functionally linked to integrin and Wnt signaling pathways (28–30). ILK regulates several integrin-mediated cellular processes, including cell adhesion, fibronectin-ECM assembly, and anchorage-dependent cell growth (29, 31, 32). Upon cell adhesion, ILK is transiently activated and directly phosphorylates AKT Ser473 (33) and cell growth (29, 31, 32). Upon cell adhesion, fibronectin-ECM assembly, and anchorage-dependent adhesion, talin1 facilitates integrin signaling and cell survival. ILK-1 mediates anoikis resistance even without activation of integrin/ECM signals, possibly via recruiting through α-parvin–mediated targeting of AKT to lipid rafts (19, 34, 35). Our in vitro data suggest that talin1 facilitates direct ECM–epithelial cell interaction and confers anoikis resistance.

Based on these findings we propose that talin1 is responsible for the acquisition of the primary prostate tumor cell invasive and metastatic properties leading to metastasis. In the schematic scenario shown on Supplementary Fig. S3, under adherent conditions, talin1 facilitates integrin signaling and its link to the ECM. Talin1 binding to β integrin recruits the focal adhesion proteins ILK, FAK, and Src toward activation of the downstream signals, such as AKT and extracellular signal-regulated kinase. These signaling events promote cell survival, invasion, and angiogenesis. Under nonadherent conditions, talin1 stimulates FAK, Src, and GSK3β independent of integrin signaling and confers resistance to anoikis, leading to metastatic spread (Supplementary Fig. S3). Our attempts to analyze the direct interaction of talin1 with ILK-1 or β integrin did not provide clear evidence of such interactions under nonadherent conditions. This might be attributed to weak "bonding" interactions relative to the adherent focal adhesion complex by additional proteins responsible for transducing talin1 signaling under nonadherent conditions.

The clinical relevance of our findings relates to the significant increase in talin1 expression in primary tumors and metastatic prostate cancer compared with benign and normal prostate. The metastatic specimens exhibited significantly higher talin1 levels compared with primary prostate tumors, implicating an involvement of talin1 in the metastatic process. These results suggest that talin1 may have diagnostic values in prostate cancer detection and clinical outcome. Ongoing studies focus on a correlation between talin1 expression with serum PSA levels, Gleason grade, and patient (disease-free) survival in a large cohort of prostate cancer patients, which may define the value of talin1 as a cancer metastasis marker. The interaction with other talin1 binding candidates, including paxillin and vinculin, and the effect of such interactions on the phosphorylation status of critical downstream anoikis repressor signaling effectors are the focus of ongoing studies. Because talin1 contains multiple phosphorylation sites, including PKA, PKC, and GSK3, as predicted by mass spectrometry (36), it is tempting to propose a potential strategy to target these phosphorylation sites to block talin1-mediated survival signaling in tumor cells. Further dissection of the functional contribution of talin1 in dictating tumor cell and endothelial survival outcomes may provide new opportunities for therapeutic targeting of metastatic prostate cancer.

In summary, the evidence presented supports a regulatory role for talin1 in tumor cell invasion and prostate cancer metastasis via conferring anoikis resistance. Future studies will pursue the generation of a conditional knockout mouse model of talin1, selectively targeting talin1 gene expression in prostate epithelial cells and its crossing with a transgenic mouse model of prostate cancer.

Disclosure of Potential Conflicts of Interest

There are no potential conflicts.

Acknowledgments

We thank Dr. Hong Pu for the animal experiments, Matthew Martelli for the initial contribution to the in vitro analysis of talin1, Dr. Barbara Foster (Roswell Park Cancer Institute) for the expert help with the TRAMP mouse model and specimen acquisition, Dr. Steven Schwarze (Department of Biochemistry) and Dr. Chendil Damodaran (College of Health Science) for useful discussions, and Lorie Howard for assistance with the manuscript submission process.

Grant Support

NIH R01 CA107575-06 grant (N. Kyprianou), Markey Cancer Foundation grant (N. Kyprianou), and American Cancer Society IRG grant (R.O. McCann). Shinichi Sakamoto is an American Urological Association Foundation Research Scholar.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 07/31/2009; revised 11/13/2009; accepted 12/09/2009; published OnlineFirst 02/16/2010.

References

Role of Talin1 in Prostate Cancer Metastasis

Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance

Cancer Res 2010;70:1885-1895. Published OnlineFirst February 16, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-2833

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/02/15/0008-5472.CAN-09-2833.DC1

Cited articles
This article cites 36 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/5/1885.full#ref-list-1

Citing articles
This article has been cited by 19 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/70/5/1885.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/70/5/1885.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.