An Oncogenic Role for ETV1 in Melanoma

Judit Jané-Valbuena1,3, Hans R. Widilund2, Sven Perner2, Laura A. Johnson1,3,5,7, Aurora C. Dibner1,3, William M. Lin1,3,7, Alissa C. Baker1,3, Rosalynn M. Nazarian4,6, Krishna G. Vijayendran1,3, William R. Sellers8, William C. Hahn1,3,7, Lyn M. Duncan4,6, Mark A. Rubin5, David E. Fisher2, and Levi A. Garraway1,3,7

Abstract

Copy gains involving chromosome 7p represent one of the most common genomic alterations found in melanomas, suggesting the presence of “driver” cancer genes. We identified several tumor samples that harbored focal amplifications situated at the peak of common chromosome 7p gains, in which the minimal common overlapping region spanned the ETV1 oncogene. Fluorescence in situ hybridization analysis revealed copy gains spanning the ETV1 locus in >40% of cases, with ETV1 amplification (>6 copies/cell) present in 13% of primary and 18% of metastatic melanomas. Melanoma cell lines, including those with ETV1 amplification, exhibited dependency on ETV1 expression for proliferation and anchorage-independent growth. Moreover, overexpression of ETV1 in combination with oncogenic NRASG12D transformed primary melanocytes and promoted tumor formation in mice. ETV1 overexpression elevated microphthalmia-associated transcription factor expression in immortalized melanocytes, which was necessary for ETV1-dependent oncogenicity. These observations implicate deregulated ETV1 in melanoma genesis and suggest a pivotal lineage dependency mediated by oncogenic ETS transcription factors in this malignancy. Cancer Res; 70(3); 2075–84. ©2010 AACR.

Introduction

Recurrent tumor genomic alterations may pinpoint key drivers of tumorigenesis and offer avenues for rational therapeutic development. In some cancers, the importance of a gene to tumor maintenance is tightly linked to the presence of specific genetic alterations affecting that gene. In other cases, recurrent genomic changes illuminate mechanisms that are broadly operant, even in cancers where specific genetic alterations are not present at the “index” locus. Thus, some cancer gene mutations may serve as signifiers for cardinal pathways that are commonly altered by multiple genetic and epigenetic mechanisms across many cancers.

Chromosomal copy number changes represent highly prevalent genomic aberrations in cancer. In principle, genes targeted by such events might be expected to underlie fundamental tumorigenic mechanisms that are deregulated by both genetic and other means in many tumor types, as described above. However, many chromosomal alterations (e.g., copy gains, losses, and loss of heterozygosity) involve broad, low-amplitude changes that may encompass an entire chromosome or chromosome arm. Dozens to hundreds of genes are altered by such genetic events; thus, characterizing the relevant effectors poses a significant challenge.

In melanoma, copy gains involving chromosome 7 are exceedingly common (up to 40% of cases; refs. 1–3). Recent melanoma genomic studies suggest that the “peaks” of statistically significant chromosome 7 copy gains localize to independent loci on 7p and 7q (2, 3). Chromosome 7q contains the BRAF oncogene, which commonly undergoes activating point mutations in melanoma (4). However, the target(s) of 7p gains in melanoma, although equally common, remain uncharacterized. We therefore sought to identify candidate target oncogenes of chromosome 7p in melanoma. The results herein suggest that ETV1, an ETS transcription factor known to undergo genetic deregulation in several cancer types (5–7), is targeted by 7p21 amplification events and exerts a mitogen-activated protein (MAP) kinase– and microphthalmia-associated transcription factor (MITF)–dependent tumor-promoting function in many melanomas. Thus, ETV1 may represent a critical effector within an oncogenic module that is broadly operant in melanoma.
Materials and Methods

Microarray studies. High-density single nucleotide polymorphism (SNP) array and gene expression microarray data generation were done as described previously (3). A brief description is provided in Supplementary Methods.

Tissue microarray construction. The melanoma tumor progression array was generated through the collaborative efforts of three Skin Specialized Programs of Research Excellence (Harvard, M.D. Anderson, and U Penn) and contained 480 0.6-mm cores of tissues from 170 distinct clinical specimens, including 132 cores from 36 benign melanocytic nevi, 196 cores from 59 primary melanomas, and 150 cores from 75 metastatic lesions (8).

Fluorescence in situ hybridization. All bacterial artificial chromosome (BAC) clones were selected using the USC Genome Browser and obtained from the BACPAC Resource Center (CHORI). BAC probes preparation, labeling, and hybridization were done as described previously (9). To assess for ETV1 amplification, a dual-color fluorescence in situ hybridization (FISH) assay was designed using an ETV1 and a reference probe. To assess for ETV1 rearrangement, a dual-color break-apart FISH assay was designed for the locus. Probes used and protocols followed are described in Supplementary Methods.

Genomic quantitative PCR. ETV1 locus genomic quantitative PCR was done following standard protocols and using two ETV1-specific primers. Protocols and primer sequences are provided in Supplementary Methods.

Analysis of mRNA expression by quantitative reverse transcription-PCR. Quantitative reverse transcription-PCR (RT-PCR) was done following standard protocols. Primer sequences and protocols are provided in Supplementary Methods.

Molecular cloning and expression of ETV1 and MITF. Human ETV1 was cloned from total fetal brain RNA. Total cDNA was generated with the SuperScript III first strand synthesis kit and random hexamers (Invitrogen). ETV1 cDNA was generated by PCR from the pool of fetal brain cDNA using primers containing ETV1-specific sequences flanked by a 5′ EcoRI site and a 3′ XhoI site to allow for cloning into the retrovirus-blast vector pWZL (see Supplementary Methods for primer sequences). The pWZL-blast-HA-MITF vector used to overexpress melanocytic MITF was generated as described previously (10). All cDNAs were verified by Sanger sequencing.

Immunoblot analysis. Cell lysis and immunoblot analysis were done as described in Supplementary Methods.

Cell culture. Culture conditions for short-term cultures and cell lines used are described in Supplementary Methods.

Retroviral infections. Retroviruses were obtained by triple cotransfection of HEK293-ebna cells (Invitrogen) with the pWZL-blast vector (empty or containing the cDNA of interest) and the packaging and envelope plasmids pNS8-VESV-G and pNS8-GagPolΔS (kind gift from Dr. Jay Morgenstern, Millenium Pharmaceuticals, Cambridge, MA). P′mel* cells were infected with the retrovirus pBABE-zeo-NRAS^{G12D} or pBABE-zeo-BRAF^{V600E} and selected by growth factor deprivation in Ham’s F10 medium supplemented with 10% fetal bovine serum (FBS), L-glutamine, and penicillin/streptomycin. P′mel*-BRAF^{V600E} and p′mel*-NRAS^{G12D} expressing cells were infected with the pWZL-blast-empty, pWZL-blast-ETV1, or pWZL-blast-HA-MITF retroviruses followed by blasticidin selection.

Lentivirally delivered short hairpin RNA. pLKO1-based lentiviral vector knockdown assays were done following standard protocols, described in Supplementary Methods.

Cell proliferation assays. Cells were plated in triplicate in 12-well plates at 20,000 per well in a final volume of 2 mL of medium. At each time point, cells were washed twice with PBS, trypsinized, and counted with a cell counter (Beckman Coulter).

Assessment of growth factor autonomy. Cells were plated on 24-well plates (7,000 per well) in Ham’s F10 medium containing 12-O-tetradecanoylphorbol-13-acetate (TPA), 1 mmol/L cyclic AMP (cAMP), L-glutamine, 0.1 mmol/L 1-methyl-3-isobutylxanthine, 1 μmol/L NA₃VO₄, 5% FBS, and penicillin/streptomycin [referred to as +growth factors (+GF) medium], or in Ham’s F10 medium containing L-glutamine, 10% FBS, and penicillin/streptomycin [referred to as −growth factors (−GF) medium]. Growth factor dependence of cells was determined by counting surviving cells in +GF medium compared with −GF medium. At each time point, cells were washed with PBS, trypsinized, and counted on a hemacytometer.

Anchorage-independent assays. Cells (10,000 or 20,000 per well) were suspended in medium (2 mL) containing 0.7% noble agar layer (2 mL). Colony formation in soft agar was assayed in triplicate.

Xenograft tumor experiments. Animal experiments were conducted according to the Dana-Farber Cancer Institute Animal Care and Use Committee guidelines. Isogenic sets of transformed melanocytes were injected (5 × 10⁶ cells per site in 100 μL of Hanks buffered saline) at three flank positions (in cohorts of five animals) in 6-wk-old female NCR-Nu mice and tumor growth was monitored for 5 to 7 wk after injection. Animals were sacrificed before behavioral malaise followed by excision and analysis of resulting tumors.

Results

Amplification of the ETV1 locus in melanoma. To identify candidate effector genes targeted by chromosome 7p gains in melanoma, we analyzed chromosomal copy number data from SNP arrays done on melanoma short-term cultures and cell lines. As shown in Fig. 1A, many samples contained broad regions of chromosome 7p copy gain, as expected; however, focal 7p21 amplification events were apparent in a few samples. Notably, the M25 short-term culture and the 501mel and WW94 cell lines harbored overlapping focal amplifications at the 7p21.3 locus (Fig. 1A, arrowheads). Inspection of genes common to the amplified regions identified ETV1 (Fig. 1A), a known oncogene and a member of the ETS family.
transcription factor family (5–7). Quantitative genomic PCR confirmed \(ETV1 \) amplification in these samples compared with primary melanocytes and to cell lines without focal amplification (SKMEL2 and SKMEL28; Fig. 1B). In addition, FISH analysis showed higher numbers of \(ETV1 \)-probe signals in 501mel and WW94 relative to SKMEL2 and SKMEL28 (Supplementary Fig. S1). Moreover, quantitative RT-PCR and immunoblot analyses also showed increased \(ETV1 \) mRNA and protein levels in 501mel and WW94, respectively (Fig. 1C), suggesting that the DNA amplification events resulted in increased \(ETV1 \) expression.

To confirm the presence of \(ETV1 \) amplification in clinical specimens, we performed FISH analysis on an assembled melanoma tissue microarray (TMA) containing 170 evaluable nevi, primary, and metastatic melanoma specimens (Table 1). The FISH results were segregated based on the quantity of \(ETV1 \) probe signals detected relative to the reference probe (see Materials and Methods). Detection of two \(ETV1 \) copies per nuclei was considered to indicate no amplification; between \(>2 \) and \(\leq 5 \) \(ETV1 \) copies indicated “low-level” amplification; and \(>5 \) \(ETV1 \) copies represented “high-level” amplification. Although no \(ETV1 \) copy gains were detected in any of the nevi examined, low-level \(ETV1 \) gains were detected at \(\sim 40\% \) frequency in all melanomas examined, regardless of stage. These results were consistent with SNP array and comparative genomic hybridization results reported here and elsewhere (2, 3). Notably, high-level \(ETV1 \) copy gains occurred in 13% of primary samples and in 18% of metastatic melanomas present on the TMA (Fig. 1D; Table 1). These results suggest that DNA amplifications involving the \(ETV1 \) locus occur frequently in melanoma.

Targeted \(ETV1 \) gene disruption in melanoma. As \(ETV1 \) undergoes translocation in some tumor types (6, 7, 11), we sought to determine if \(ETV1 \) gene rearrangements were evident in melanoma. Accordingly, we performed a FISH break-apart assay on the melanoma TMA using flanking telomeric and centromeric \(ETV1 \) probes (Supplementary Fig. S2). All \(ETV1 \) translocations described to date show 5′ coding exons replaced by an ectopic promoter and, in some cases, by 5′-end exons of the partner gene. These rearrangements result in a truncated product that retains the ETS DNA binding domain but whose expression is controlled by the fusion partner upstream regulatory promoter elements. Interestingly, the \(ETV1 \) FISH assay exhibited a “break-apart” pattern in two lymph node metastases (from a total of 41 lymph and visceral metastases analyzed), suggestive of targeted gene disruption or possible translocation of the \(ETV1 \) locus (Supplementary Fig. S2). The \(ETV1 \) locus remained intact in the antecedent primary tumors (not shown). Interestingly, one of the lymph node metastases contained more signals corresponding to the telomeric probe (green) than to the centromeric probe (red; Supplementary Fig. S2, right). Because \(ETV1 \) is positioned with its 5′ end nearest to the centromere, this pattern could reflect loss of the centromeric region after translocation or of selective amplification of a translocation product containing the (telomeric) 3′ end of \(ETV1 \). These results raised the possibility that \(ETV1 \) might undergo rare chromosomal translocation events in addition to the more common amplification events in melanoma.

\(ETV1 \) expression is elevated in melanoma. In some cancers, the oncogenicity of ETS transcription factors derives primarily from deregulated gene expression (5, 7, 11). To examine \(ETV1 \) expression in melanoma, we analyzed microarray data from a collection of metastatic short-term melanoma cultures and cell lines. \(ETV1 \) mRNA levels were elevated in most of the samples relative to primary melanocytes (Fig. 2A). As expected, two cell lines harboring the focal amplification (501mel and WW94) were among the highest \(ETV1 \)-expressing samples (Fig. 2A and B). On average, the presence of chromosome 7p copy gains correlated with a slightly higher \(ETV1 \) expression compared with samples with no 7p gains (Fig. 2A), although this correlation did not reach statistical significance. Immunoblot analysis confirmed the increased levels of \(ETV1 \) protein compared with normal melanocytes in melanoma samples with and without 7p gains (Fig. 2B). Thus, elevated \(ETV1 \) expression was observed in melanoma samples relative to normal melanocytes regardless of 7p copy gains. Although we identified \(ETV1 \) as a melanoma oncogene based on genetic criteria, these results raised the possibility that \(ETV1 \) dysregulation might be achieved in melanoma by both genetic and nongenetic mechanisms.

\(ETV1 \) oncogene dependency in melanoma. To determine whether melanoma samples are dependent on \(ETV1 \) and whether \(ETV1 \) dependency correlates with \(ETV1 \) amplification, we studied the consequences of RNAi-mediated suppression of \(ETV1 \) expression on melanoma cell proliferation and colony formation. Here, we used two independent lentivirally delivered short hairpin RNA (shRNA) constructs that effectively reduced \(ETV1 \) mRNA and protein levels (Fig. 3A), as well as a control hairpin against the green fluorescent protein (shGFP). We tested the effects of \(ETV1 \) knockdown in 501mel and WW94, two cell lines with focal \(ETV1 \) amplification, as well as in SKMEL2 and SKMEL28 (Fig. 1B). To eliminate the possibility that the effects we observed were the consequence of off-target effects of the \(ETV1 \)-specific shRNAs, we also tested HeLa cells, which do not express \(ETV1 \) (Supplementary Fig. S3).

Suppression of \(ETV1 \) resulted in a marked reduction of proliferation in both 501mel and WW94 cells (\(ETV1 \) amplified; Fig. 3B). Moreover, silencing of \(ETV1 \) suppressed anchorage-independent growth in 501mel cells, whereas control shRNA had no effect (Fig. 3C). The effect of \(ETV1 \) knockdown was more variable in melanoma cell lines that lacked chromosome 7p copy gains. The proliferation of SKMEL28 cells was substantially inhibited following \(ETV1 \) suppression; however, SKMEL2 cells were largely unaffected (Fig. 3B). These results suggest that \(ETV1 \) amplification induces an \(ETV1 \) dependency in melanoma, while supporting the hypothesis that \(ETV1 \) dependency also exists in some (but not all) melanoma cells lacking \(ETV1 \) amplification.

\(ETV1 \) overexpression cooperates with oncogenic NRAS and BRAF to transform immortalized human melanocytes. To test the hypothesis that \(ETV1 \) functions as an oncogene in melanoma, we overexpressed \(ETV1 \) in genetically modified primary melanocytes (hereafter referred to as p‘mel‘ cells).
As described previously (10), p’mel* cells were immortalized through ectopic expression of hTERT, p53DD (dominant-negative p53), and CDK4(R24C) (INK-resistant CDK4). These factors facilitated telomere stabilization as well as retinoblastoma and p53 pathway inactivation, which occur commonly in this malignancy. Although immortalized, p’mel* cells require TPA and cAMP agonists for survival, a hallmark of non-transformed melanocytes.

Overexpression of ectopic ETV1 alone did not overcome the TPA and cAMP growth factor requirement in p’mel* cells (Fig. 4A). As expected (10), similar results were obtained following ectopic expression of MITF, a known oncogenic transcription factor in melanoma. However, most melanomas also harbor activating NRAS or BRAF mutations that result in aberrant MAP kinase pathway activation (4, 12, 13). Toward this end, we expressed NRASG12D oncoprotein in...
p’mel* cells (Fig. 4B). When expressed alone, NRASG12D activated MAP kinase signaling (Fig. 4C) but failed to confer robust anchorage-independent growth (Fig. 4D). This result is reminiscent of prior studies using the BRAFV600E oncogene in these cells (10). In contrast, combined expression of both ETV1 and NRASG12D strongly induced anchorage-independent growth in p’mel* cells, with a phenotype that resembled the effect of ectopic MITF expression (Fig. 4D). Combined ETV1 and BRAFV600E expression also conferred soft-agar growth to p’mel* cells, albeit with lower efficiency (Supplementary Fig. S4). Thus, ETV1 overexpression is able to cooperate with both NRAS G12D and BRAFV600E to transform immortalized human melanocytes.

ETV1 overexpression promotes melanoma tumor formation in vivo. We next investigated the effect of ETV1 overexpression on melanoma genesis in a xenograft model. Here, p’mel* cells expressing NRASG12D alone or in combination with ETV1 were injected s.c. into immunodeficient mice and monitored for tumor formation. P’mel* cells expressing NRASG12D alone failed to form tumors (0 of 15 mice examined). In contrast, p’mel* cells expressing both NRASG12D and ETV1 formed tumors in 67% of cases (10 tumors/15 injections; Fig. 4D). Together with the soft-agar findings above, these results suggest that the ETV1 transcription factor can function as an oncogene in melanoma.

ETV1 overexpression induces MITF upregulation in p’mel*-NRASG12D cells. In previous work, our group showed that the MITF transcription factor, a master regulator of melanocyte lineage development and survival, cooperates with BRAFV600E to function as a melanoma oncogene (10). Consistent with these earlier observations, overexpression of HA-tagged melanocytic MITF in p’mel*-NRASG12D cells also

Table 1. ETV1 FISH analysis of melanoma tissue samples

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Samples on array</th>
<th>Analyzable samples</th>
<th>% of samples</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No amp</td>
<td>Low amp (≤6)</td>
<td>High amp (>6)</td>
<td></td>
</tr>
<tr>
<td>Thin nevus</td>
<td>21</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thick nevus</td>
<td>15</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thin primary</td>
<td>39</td>
<td>16</td>
<td>56.2</td>
<td>31.3</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Thick primary</td>
<td>20</td>
<td>15</td>
<td>46.7</td>
<td>40.0</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>Lymph node mets</td>
<td>39</td>
<td>17</td>
<td>23.6</td>
<td>58.8</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>Visceral mets</td>
<td>46</td>
<td>23</td>
<td>43.5</td>
<td>39.1</td>
<td>17.4</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: mets, metastases.

*Samples that rendered an informative result.
†Samples presenting three to six ETV1-probe signals.
‡Samples presenting more than six ETV1-probe signals.
resulted in robust colony formation (Fig. 4D). These results indicated that MAP kinase pathway activation by either NRAS or BRAF mutation could cooperate with MITF to transform p'mel* cells. Together with the observation that ETV1 transforms p'mel* cells in the same genetic context, these findings also raised the possibility that a mechanistic relationship might exist between ETV1 and MITF with regard to melanocyte transformation.

To test this hypothesis, we performed immunoblot analysis of lysates derived from p'mel*-NRAS^{G12D} cells expressing empty vector, ETV1, or HA-MITF. Interestingly, ETV1 overexpression strongly induced endogenous MITF protein upregulation in p'mel*-NRAS^{G12D} cells (Fig. 5A, left). Quantitative RT-PCR using MITF primers revealed a concomitant increase in MITF mRNA levels (Fig. 5A, right). The melanocytic MITF promoter contains several four-base GGAA/T sequences characteristic of the ETS factor consensus binding site; however, ETV1 did not augment MITF promoter activity in luciferase reporter assays (data not shown). Thus, ETV1 expression induced MITF mRNA and protein expression markedly but indirectly in p'mel*-NRAS^{G12D} cells.

MITF is necessary for ETV1 oncogenicity in melanoma. Given its oncogenic properties in MAP kinase–driven melanomas, we next examined whether MITF is required for ETV1-mediated transformation in p'mel*-NRAS^{G12D} cells. Here, we suppressed MITF expression using a MITF-specific shRNA in p'mel*-NRAS^{G12D} cells that overexpressed ETV1. As a control, we performed similar experiments in p'mel*-NRAS^{G12D} cells overexpressing MITF (Fig. 5B, left). Silencing of MITF greatly diminished the anchorage-dependent growth phenotype induced by both ETV1 and MITF overexpression in these cells (Fig. 5B, right). To eliminate the possibility that the effects we observed were the consequence of off-target effects of the MITF-specific shRNA, we also tested MCF7
Figure 4. Effects of ETV1 overexpression on melanocyte transformation. A, proliferation curves are shown for p’mel* cells (immortalized human melanocytes described in the text) and p’mel* cells expressing ETV1, HA-MITF, or NRASG12D cultured in F10 medium in the presence (+GF) or absence (−GF) of TPA and cAMP growth factors. Cells were photographed after 5 d in culture. B and C, immunoblot analyses of p’mel* and p’mel*-NRASG12D cells infected with empty vector, ETV1, or HA-MITF retroviruses. Antibodies recognizing ETV1, HA epitope, actin, phospho-ERK, and tubulin were used. HA-MITF-P, phosphorylated form of HA-MITF. D, left, anchorage-independent growth of p’mel* cells expressing NRASG12D alone or in combination with ETV1 or HA-MITF (photographs from two independent assays are shown for each cell type). Middle, colony counts from these experiments are also indicated. Right, p’mel*-NRASG12D cells infected with empty or ETV1 retroviruses were injected s.c. in mice. Tumor formation following injection is indicated numerically and a histologic section of a representative ETV1-dependent tumor is shown (stained with H&E).
cells, which do not express MITF (Supplementary Fig. S5). Thus, MITF is required for ETV1-dependent oncogenicity in this setting.

Because ETV1 overexpression augmented MITF expression (at least indirectly) as described above, we next investigated whether reduction of ETV1 expression in established melanoma cell lines might downregulate endogenous MITF levels. Indeed, RNAi-mediated suppression of ETV1 resulted in a measurable albeit modest reduction in endogenous MITF in 501mel cells, which harbored ETV1 amplification (Fig. 5C, left). Moreover, shRNAs directed against MITF reduced both proliferation (data not shown) and colony formation in soft agar in 501mel cells (Supplementary Fig. S6). In contrast to the studies of p’mel*-NRASG12D cells above, we did not detect a corresponding decrease in MITF mRNA following ETV1 knockdown (Fig. 5C, right). These results suggest that

Figure 5. ETV1 regulation of MITF expression. A, left, immunoblot analyses of p’mel*-NRASG12D cells infected with empty vector, ETV1, or HA-MITF retroviruses. Antibodies recognizing ETV1, HA epitope, and actin were used. MITF-P and HA-MITF-P, phosphorylated forms of endogenous MITF and HA-MITF, respectively. Right, relative mRNA expression levels of endogenous melanocytic MITF are shown for the cell types analyzed at left as determined by RT-PCR. B, left, suppression of MITF expression is shown for p’mel*-NRASG12D cells overexpressing HA-MITF or ETV1 following infection with lentivirus containing shRNAs against MITF (shMITF) or GFP (shGFP). Right, anchorage-independent growth of the cells analyzed at left. C, left, immunoblot analysis of MITF levels following suppression of ETV1 expression using ETV1-specific shRNAs in 501mel cells. Right, ETV1 and MITF mRNA levels are shown for the cells analyzed at left, as determined by RT-PCR (in triplicate) and normalized to GAPDH.
the oncogenic function of ETV1 may derive, at least in part, through regulation of MITF protein levels in human melanoma cells.

Discussion

The systematic characterization of target or driver genes enacted by recurrent genomic aberrations offers a means to elucidate mechanisms of tumorigenesis. However, many prevalent chromosomal copy number aberrations consist of large, low-amplitude events that do not provide sufficient resolution to pinpoint driver genes definitively. Rare focal genetic alterations may enrich for driver cancer genes that are also enacted by highly recurrent, nonfocal events spanning the same locus. In this study, we identified three focal amplifications encompassing 7p21.3, which nominated the ETS transcription factor ETV1 as a candidate driver gene targeted by chromosome 7p gains in melanoma. TMA analyses also identified ETV1 amplification in 13% to 18% of melanomas, with occasional evidence of targeted gene disruption (e.g., translocation) involving this locus. Subsequent studies indicated that ETV1 expression is required in several melanoma contexts, including cell lines harboring ETV1 amplification. Ectopic ETV1 overexpression in the context of aberrant MAP kinase pathway activation transformed immortalized human melanocytes. Although these findings do not exclude the possibility that other genes located at chromosome 7p21 or elsewhere on 7p may be targeted by these same copy gains, our results strongly suggest that ETV1 functions as a melanoma oncogene.

Recent findings have drawn increasing attention to the role of ETS transcription factors in cancer. Since the original ETS sequence was discovered in an avian erythroblastosis virus (14), approximately 40 additional ETS factors have been identified (reviewed in ref. 15). Multiple members of the ETS family undergo oncogenic dysregulation in cancer, often through chromosomal translocation (reviewed in ref. 15 and in ref. 16). In Ewing’s sarcoma (EWS; ref. 6), EWS/ETV1 translocations result in highly transforming chimeric ETS fusion proteins (17, 18). More recently, chromosomal translocations involving ETV1 and other ETS genes were found in more than 40% of prostate cancers (7, 19). Most commonly, these translocations interpose the promoter and 5′ coding exons of the TMPRSS2 gene upstream of an ETS factor gene (ERG, ETV1, ETV4, or ETV5), resulting in androgen-dependent regulation and elevated expression of these genes (7, 19); results described herein add malignant melanoma to the growing list of cancers where ETS transcription factors in general and ETV1 in particular exert critical tumor dependencies.

In melanoma, ETV1 dependency may also extend beyond cases of 7p21 amplification/copy gain. Analyses of gene expression microarray data showed significantly higher ETV1 mRNA levels in melanoma relative to primary melanocytes, yet we did not observe a clear correlation between ETV1 mRNA expression and chromosome 7p copy gains per se. Thus, chromosomal copy changes represent only one mechanism of ETV1 upregulation in melanoma. Moreover, melanoma cell viability was reduced following ETV1 knockdown in two cell lines with ETV1 amplification (and high ETV1 expression), but at least one melanoma cell line lacking 7p copy gain also exhibited a reliance on ETV1 for viability. These results are reminiscent of studies on MITF dependency in melanoma: Focal amplifications targeting MITF are found in only 10% to 15% of melanomas (10), yet MITF dependency is broadly operant and not exclusive to MITF-amplified tumors. Thus, ETV1 amplifications and copy gains may highlight a widely relevant ETV1 dependency in melanoma.

In our hands, the ability of deregulated ETV1 to transform immortalized human melanocytes is dependent on constitutive MAP kinase pathway activation by gain-of-function BRAF or NRAS mutations. This result is reminiscent of studies in prostate and mammary transgenic mouse models, where ERG or ETV1 expression alone was insufficient to drive tumorigenesis (19–23). Our findings also accord well with studies indicating that ETS factors become activated by MAP kinase–mediated phosphorylation (refs. 24, 25; reviewed in ref. 15). Interestingly, a recent study of oncogenic MAP kinase output in melanoma showed that extracellular signal–regulated kinase (ERK) also regulates the transcriptional expression of several ETS factors, including ETV1 (26). In this report, ETV1 mRNA levels in BRAFV600E melanoma cell lines were dramatically reduced following pharmacologic MAP kinase inhibition using a MEK kinase inhibitor (26). Together with published evidence, our findings support a model wherein deregulated ETV1 expression in melanoma (by genomic amplification or other means) elaborates an oncogenic signal that is both enabled and potentiated by concomitant MAP kinase pathway activation.

Ectopic ETV1 expression in immortalized human melanocytes results in upregulation of MITF mRNA and protein levels. This effect, although indirect, is necessary for ETV1-mediated melanocyte transformation. These results indicate that MITF expression may be necessary to elaborate a full ETV1 dependency in melanoma. ETV1 also regulates the expression of other proteins with tumorigenic functions, including hTERT (27). Our observations imply that MITF, which itself is activated by MAP kinase (28), may participate in a melanocytic transcriptional program that includes ETV1 and possibly other factors. This program may become deregulated at multiple points during melanoma genesis or progression.

In conclusion, this study suggests that deregulated ETV1 underpins a melanoma oncogene dependency involving both MAP kinase and MITF activation. The high prevalence of chromosome 7p gains together with activating MAP kinase mutations (e.g., BRAF or NRAS mutation) in melanoma may offer an optimal setting for ETV1-driven oncogenicity. Given the abundance of genetically characterized in vitro models for this malignancy, melanoma may offer a robust context for elucidating downstream oncogenic mechanisms linked to ETV1 and possibly other ETS factors in many human cancers.

Disclosure of Potential Conflicts of Interest

W.C. Hahn, D.E. Fisher, and L.A. Garraway received sponsored research grants and consulting fees from Novartis, Inc. The other authors disclosed no potential conflicts of interest.
Acknowledgments

We thank M. Bachrach for technical assistance. J. Jané-Valbuena and L.A. Garraway acknowledge financial support from the Department of Defense Prostate Cancer Program (Postdoctoral Traineeship Award), NIH, National Cancer Institute, Robert Wood Johnson Foundation, Prostate Cancer Foundation, Starr Cancer Consortium, Melanoma Research Alliance, and Burroughs-Wellcome Fund. D.E. Fisher is Distinguished Clinical Scholar of the Doris Duke Medical Foundation and acknowledges grant support from NIH.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 08/18/2009; revised 12/17/2009; accepted 01/04/2010; published OnlineFirst 02/16/2010.

References

An Oncogenic Role for ETV1 in Melanoma

Cancer Res 2010;70:2075-2084. Published OnlineFirst February 16, 2010.

Updated version
Access the most recent version of this article at: doi:10.1158/0008-5472.CAN-09-3092

Supplementary Material
Access the most recent supplemental material at: http://cancerres.aacrjournals.org/content/suppl/2010/02/15/0008-5472.CAN-09-3092.DC1

Cited articles
This article cites 28 articles, 9 of which you can access for free at: http://cancerres.aacrjournals.org/content/70/5/2075.full.html#ref-list-1

Citing articles
This article has been cited by 15 HighWire-hosted articles. Access the articles at: /content/70/5/2075.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.