Serial Transcriptome Analysis and Cross-Species Integration Identifies Centromere-Associated Protein E as a Novel Neuroblastoma Target

Abstract

Cancer genomic studies that rely on analysis of biopsies from primary tumors may not fully identify the molecular events associated with tumor progression. We hypothesized that characterizing the transcriptome during tumor progression in the TH-MYCN transgenic model would identify oncogenic drivers that would be targetable therapeutically. We quantified expression of 32,381 murine genes in nine hyperplastic ganglia harvested at three time points and four tumor cohorts of progressively larger size in mice homozygous for the TH-MYCN transgene. We found 93 genes that showed a linearly increasing or decreasing pattern of expression from the pre-neoplastic ganglia to end stage tumors. Cross-species integration identified 24 genes that were highly expressed in human MYCN-amplified neuroblastomas. The genes prioritized were not exclusively driven by increasing Myc transactivation or proliferative rate. We prioritized three targets [centromere-associated protein E (Cenpe), Gpr49, and inosine monophosphate dehydrogenase type II] with previously determined roles in cancer. Using siRNA knockdown in human neuroblastoma cell lines, we further prioritized CENPE due to inhibition of cellular proliferation. Targeting CENPE with the small molecular inhibitor GSK923295 showed inhibition of in vitro proliferation of 19 neuroblastoma cell lines (median IC50, 41 nmol/L; range, 27–266 nmol/L) and delayed tumor growth in three xenograft models (P values ranged from P < 0.0001 to P = 0.018). We provide preclinical validation that serial transcriptome analysis of a transgenic mouse model followed by cross-species integration is a useful method to identify therapeutic targets and identify CENPE as a novel therapeutic candidate in neuroblastoma.

Cancer Res; 70(7); 2749-58. ©2010 AACR.

Introduction

Neuroblastoma is a pediatric cancer that arises from the developing sympathetic nervous system. Forty percent of cases present with a "high-risk" phenotype characterized by wide dissemination at diagnosis, unfavorable biology, and a high risk of relapse and treatment failure (1). Despite intensification of chemoradiotherapy, high-risk tumors historically have overall survival under 40% (2, 3). Further intensification risks adding negligible benefit at a significant cost (4, 5). A phase III trial targeting the ganglioside GD2 glycolipid, with chimeric monoclonal antibody (ch14.18) and cytokines, recently reported the first substantive improvement in survival by reducing relapse by 20% in high-risk disease (6). This suggests that incorporation of targeted therapeutics may improve treatment outcomes for children with high-risk neuroblastoma.

High-risk neuroblastomas acquire copy number aberrations that are distinct from low- and intermediate-risk cases, suggesting regions of recurrent somatic alterations harbor candidate genes (7–10). The seminal example of this is MYCN oncogene amplification, which is highly predictive for adverse outcome (11, 12), but MYCN is not yet pharmacologically tractable. An ongoing genome-wide association study has identified multiple single-nucleotide polymorphisms (13, 14) and copy number variations (15) associated with sporadic neuroblastoma. Total attributable risk from these loci remains modest. Genome-wide linkage analysis of familial neuroblastoma pedigrees identified germline mutations in anaplastic lymphoma kinase (ALK) as the major familial neuroblastoma predisposition gene (16). Whereas inhibition of ALK is a highly attractive

www.aacrjournals.org
therapeutic target for this subset of patients, tractable molecular targets have not been identified for the majority of high-risk patients.

Here, we use a transgenic model of high-risk neuroblastoma to discover somatic transcriptional alterations in murine tumors that seem to be critical for progression. By filtering this list with both human neuroblastoma transcriptional data and matching the resultant gene list with anticancer drugs currently in development, we show the utility of this strategy in the prioritization of early-phase clinical trial planning.

Materials and Methods

Homozygous TH-MYCN^{–/–} mice. TH-MYCN mice bred to homozygosity (TH-MYCN^{+/+}) develop tumors with near complete penetrance (17–19). TH-MYCN^{–/–} mice were sacrificed at birth, day 7, or day 14 to harvest superior cervical and celiac sympathetic ganglia. Ultrasonography (Veo770 Visual Sonics) was performed thrice per week. Mice were sacrificed when tumors were within one of four predetermined size ranges (six mice per cohort). Specimens were cryopreserved for nucleic acid extraction or preserved in paraffin and ornithine carbamyl transferase for histologic evaluation. Mice were maintained under the protocols and conditions were approved by the Institutional Animal Care and Use Committee.

Immunohistochemistry. We stained with endothelial cell marker CD34 (Abcam, ab8158, Cambridge, MA) at 1:50 dilution to quantify vessels. Sections were incubated with a biotinylated goat anti-mouse secondary antibody, and tertiary staining was with horseradish peroxidase–conjugated streptavidin. The immune complex was visualized by using liquid 3,3′-diaminobenzidine as a chromagen (DAKO, LSAB 2 System, K0673, North American, Inc.).

Microarray. RNA was extracted from 10-μm frozen sections using Qiagen RNeasy Micro kit (Qiagen). Tumor total RNA (76 ng to 1.6 μg) was used to generate cDNA targets that were hybridized to the Applied Biosystems Mouse Genome Survey Microarray version 1.0, and ganglia samples (which became available later in the experimental plan) were hybridized to version 2.0 of the array. Two tumors were hybridized to both microarray versions for quality control. All microarray data are available at the National Center for Biotechnology Information (NCBI) web site (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3960) (20). The murine genes were mapped to Affymetrix U95 probe sets using the NCBI Homologene database. Genes with concordant overexpression in murine and human neuroblastomas proceeded to manual curation prioritizing druggable targets based on literature review. PANTHER classification system was used to classify biological function of genes with concordant expression (21).

Quantitative reverse transcription–PCR. Real-time quantitative reverse transcription–PCR (RT-PCR) was performed on TH-MYCN^{–/–} tumors (Applied Biosystems). Relative expression of target genes was determined by normalization to β-2-microglobulin, TATA box binding protein, and hypoxanthine phosphoribosyltransferase using a standard curve. All experiments were performed in triplicate.

MYC transcriptional activity during tumor progression. We evaluated expression of the murine Mycn and Mycc and human MYCN during tumor progression using quantitative RT-PCR. We quantified Myc transcriptional activity using a clinically validated <i>a priori</i> defined gene expression signature (22) based on the Myc target gene database (http://www.mycancergene.org/index.asp) (23). High Myc transcriptional activity was indicated by upregulation or downregulation of Mycc, Mycn, and Mycl target genes.

siRNA validation. Functional validation of manually curated genes in a human neuroblastoma-derived cell line (NB1643) was performed using transient transfection of siRNA against tumor-associated calcium signal transducer-1 (TACSTD1), inosine monophosphate dehydrogenase type II (IMPDH2), GPR49, and centromere-associated protein E (CENPE; Dharmaco, Thermo Scientific). CENPE siRNA knockdown was also performed in NB-EBC1, Kelly, SKNSA, and NGP. Cell proliferation was monitored using the RT-CES (ACEA Biosciences), which measures substrate adherent growth in real time, as described previously (24). Each experiment was performed in triplicate.

Cell cycle analyses. Cells were seeded at 50% confluence and cultured overnight to allow cell attachment. Cells were treated with inhibitor 24 h after seeding. At each treatment, time point media were removed and cells were harvested using 0.05% Trypsin-EDTA. Media and trypsin fractions were then combined and spun. Cells were fixed with ice-cold ethanol overnight. Membranes were permeabilized by incubating in phosphate–citric acid buffer for 5 min. Cells were spun and incubated with propidium iodide (50 μg/mL) and RNase A (250 μg/mL) for 30 min and analyzed by flow cytometry using a FACSCalibur (BD Bioscience).

Pharmacologic CENPE inhibition. In vitro activity of GSK923295 dissolved in DMSO was evaluated in 19 neuroblastoma cell lines using the RT-CES system. IC₅₀ was
calculated from the area under the curve across a four-log dose range (1–10,000 nmol/L).

Xenograft studies. CB17 scid mice (Taconic Farms) were used to propagate s.c. implanted neuroblastoma tumors. Tumor diameters were measured using calipers. Tumor volumes were calculated using the formula, \((\pi/6) \times \text{diameter}^3\). Once tumor volume exceeded 200 mm\(^3\), mice were randomized \((n = 10\) per arm) to receive either 125 mg/kg i.p. GSK923295 or vehicle (96% acidified water, 2% DMAC, 2% CREM) for a total of six doses using a 3 d on–4 d off–3 d on regimen.

Proliferative signature during tumor progression. We used an *a priori*-defined "proliferative signature" that identified genes that are upregulated in rapidly proliferating cells, both malignant and nonmalignant (25). We compared the distribution of nonparametric Spearman’s correlation...
coefficients of the "proliferative signature" transcripts to murine transcripts with human orthologues that were not contained within the proliferative signature.

Results

Modeling tumor progression. We sacrificed TH-MYCN+/− mice at day 0 (n = 5), day 7 (n = 2), and day 14 (n = 2) of life to harvest sympathetic ganglia containing foci of neuroblast hyperplasia. To model progression of macroscopic tumors, we monitored tumor growth in TH-MYCN+/− mice using ultrasound. Mice were sacrificed when tumor dimensions were within predetermined ranges (Fig. 1).

Increasing tumor volume on ultrasound corresponded to increasing tumor weight: group A, mean weight 0.08 ± 0.02 g; group B, 0.35 ± 0.09 g; group C, 0.94 ± 0.22 g; and group D, 2.01 ± 0.59 g. We confirmed that harvesting tumors at different sizes provides a model of neuroblastoma progression by comparing cohorts for macroscopic and histologic vascularity, locoregional invasion, infiltration of intratumoral vasculature, and metastases. The smallest tumors were asymptomatic and avascular and had no evidence of metastasis. With increasing tumor size, there was increasing displacement and invasion of local structures and increasing vascularity (Fig. 1A–D). The two larger tumor sizes (groups C and D) invaded tumor vasculature,
and in the largest tumors (group D), distant metastases were detected (Supplementary Table S1).

Identification of differentially expressed genes associated with neuroblastoma progression. We assayed each harvested sample with a murine-specific microarray. Our algorithmic approach is shown in Fig. 2A. The murine-specific microarray interrogated 32,381 genes, of which 18,251 genes had human orthologues. The exclusion of transcripts with low expression in any tumor cohort yielded 11,320 transcripts for further consideration. We next identified transcripts showing the strongest correlation of mRNA quantity to tumor progression using Spearman’s method (Supplementary Table S2). Using a conservative false discovery rate of 0.05, we obtained 1,127 transcripts. We filtered the 1,127 candidates by determining which transcripts showed the same direction of expression in murine sympathetic ganglia across day 0, day 7, and day 14 of life. Of 1,127 candidates, 93 transcripts showed a consistent alteration in mRNA quantity (one-tailed \(P \leq 0.01 \)) with progression from hyperplastic ganglia to advanced neuroblastomas (Fig. 2B; Supplementary Table S2).

Cross-species integration of gene expression. Of the 93 murine genes with differential expression, 56 had homologues present on the human microarray platform and 32 of these had increasing expression with tumor progression. We focused on genes with increasing expression, as potential oncogenes provide a more tractable therapeutic target than potential tumor suppressors. Of the 32 murine transcripts, we found 24 unique genes that were overexpressed in human high-risk \(MYCN \)-amplified neuroblastoma compared with low-risk nonamplified neuroblastomas (Supplementary Table S2). The 24 genes with concordant overexpression in murine and human \(MYCN \)-amplified neuroblastoma were classified using PANTHER biological function (21).

Manual curation of the 24 differentially expressed transcripts prioritized three genes with previously described roles in cancer and potential for therapeutic inhibition (\(Gpr49 \), \(Impdh2 \), and \(Cenpe \)). To act as a control for cross-species integration, we identified the transcript with the largest increase in expression across murine tumor progression that was not overexpressed in human \(MYCN \)-amplified neuroblastomas. This transcript was \(Tacstd1 \) gene. Quantitative PCR was used to confirm that the three candidate transcripts and the control transcript had increased expression with tumor progression (Fig. 3A–D).

\(MYCN \) transactivation did not increase with tumor progression. To ensure that our candidate genes were not simply the result of the basal myc activity, we investigated whether the human \(MYCN \) transgene was driving alterations in gene expression with tumor progression. Human \(MYCN \) transgene expression increased with tumor progression, but murine \(Myc \) and \(Mycn \) showed a decrease in expression. Overall, the average expression of \(MYCN \), \(Myc \), and \(Mycn \) remained unchanged from small avascular tumors to large metastasizing tumors (Fig. 4A). Myc transcriptional activity, as indicated by upregulation or downregulation of \(Myc \), \(Mycn \), and \(Myc \) target genes, did not show a significant increase with tumor progression (Fig. 4B). \(Cenpe \), \(Gpr49 \), and \(Impdh2 \) showed a significant linear increase in expression with tumor progression (Fig. 3A–D), but Myc transcriptional activity did not (Fig. 4B).

Transcripts with increased expression were not exclusively composed of genes involved in proliferation. Following
transgene expression increased with tumor progression, but human expression with tumor progression. Using an approach with tumor progression, only four were directly involved with purine synthesis.

To evaluate expression of Myc target genes in murine tumors, we used a predefined gene expression signature of Myc transcriptional targets shown to predict relapse and death from low-, intermediate-, and high-risk human neuroblastoma. This signature quantifies the overall pattern of transcription of Myc targets rather than limiting the evaluation to single transcripts. Overall transcription of the Myc target gene signature did not show a significant increase with tumor progression (Fig. 4B).

Functional validation prioritizes CENPE for further investigation. To functionally validate and prioritize the three candidate neuroblastoma targets (CENPE, GPR49, and IMPDH2), we performed siRNA knockdown in a MYCN-amplified human neuroblastoma-derived cell line (NB-1643). We also knocked down the control gene (TACSTD1), which was overexpressed with tumor progression but not overexpressed by human high-risk MYCN-amplified neuroblastomas. siRNA knockdown resulted in variable effects on cellular proliferation. Transient knockdown of TACSTD1 resulted in no significant decrease in growth velocity when compared with a targeted control, glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Fig. 5A). Knockdown of GPR49 (Fig. 5B) and IMPDH2 (Fig. 5C) showed modest inhibition of proliferation, but knockdown of CENPE resulted in the greatest inhibition prioritizing CENPE for further evaluation (Fig. 5D). Finally, to assure that the CENPE siRNA inhibition was not specific to the human neuroblastoma cell line NB1643, we performed additional transient siRNA knockdown experiments in three additional MCYN-amplified human neuroblastoma-derived cell lines (Kelly, NGP, and NBEBB1C1) as well as one nonamplified line (SKNAS). There was significant inhibition of cell growth in all three amplified lines, whereas the nonamplified line showed little effect (Supplementary Fig. S2C).

CENPE knockdown-induced suppression of neuroblastoma cell proliferation results from mitotic arrest. Following confirmation of knockdown by RT-PCR (Supplementary Fig. S2B), we examined cell cycle inhibition in two human neuroblastoma cell lines (SKNAS and NGP) using flow cytometry. At 24 hours, there was an accumulating cell population in the G2-M phase of the cell cycle. Notably, there is no sub-2N population to suggest apoptotic cell death (Supplementary Fig. S2A).

Pharmacologic inhibition of CENPE results in antitumor activity in vitro and in vivo. We sought validation that pharmacologic CENPE inhibition was efficacious in preclinical models. A potent CENPE Inhibitor, GSK923295, showed broad efficacy against a panel of 19 human neuroblastoma-derived cell lines with an average growth IC50 of 41 nmol/L (range, 27–266 nmol/L; Supplementary Table S3). Growth IC50 did not correlate to cell line MYCN amplification status (P = 0.51), CENPE copy number gain (P = 0.29), \textit{in vitro} cell line doubling time (r = 0.41, P = 0.0805), or CENPE mRNA expression as previously assayed by the Illumina Human-6 v2 expression BeadChip (r = -0.12, P = 0.62).
We selected three cell lines with a spectrum of in vitro growth IC₅₀ (NB-EBc1, 34 nmol/L; NB1643, 57 nmol/L; NB1691, 103 nmol/L) to assess in vivo GSK293295 activity. Xenografts of mice treated with GSK293295A showed significant tumor growth delay compared with the control arm (NB-EBc1, \(P < 0.0001\); NB-1643, \(P = 0.018\); NB-1691, \(P = 0.0018\); Fig. 6). GSK293295A does not target murine Cenpe so no toxicity was seen, and a therapeutic index could not be estimated.

Discussion

Emerging evidence suggests that neuroblastoma initiation and progression occur due to a combination of inherited variants and mutations (13–16) and stepwise somatic accumulation of drivers (10, 26). Diagnostic specimens provide a snapshot at one time point and the molecular events associated with tumor evolution may not be fully identified. We hypothesized that characterizing the evolution of the neuroblastoma transcriptome at multiple time points would augment existing cancer gene discovery. We serially sacrificed TH-MYCN mice to obtain specimens to provide a model of human neuroblastoma progression. Using a transgenic system meant we could use cross-species integration to reduce the number of candidate genes before manual curation. Mouse tumors with chromosomal instability acquire genomic aberrations that are orthologous with their respective human cancers, suggesting that selection pressures are tissue specific.
Cross-species integration has been used with the transcriptome, as expression signatures of oncogenic Kras2 mutations were identified using cross-species integration transgenic and human cancers (28). We predicted that biologically relevant alterations in gene expression would also be conserved. By identifying commonalities in gene expression, we posited that we would be more likely to identify critical driver genes that could be inhibited therapeutically.

MYCN overexpression is responsible for tumor initiation in the TH-MYCN model, but it was unknown whether increasing **MYCN** transcriptional activity accounted for differential gene expression with tumor progression. Overall expression of **MYCN** homologues and **Myc** transcriptional activity remained constant with tumor progression, suggesting that increasing **MYCN** transactivation was not exclusively driving alterations in gene expression. These findings are consistent with the hypothesis that the latent period before murine neuroblastoma initiation is due to the time needed to acquire cooperating mutations (17), which may contribute to differential gene expression. Following prioritization of the mitotic protein **CENPE**, we queried how many other genes identified had cell cycle–related functions. We established that genes upregulated in rapidly proliferating cells (25) showed greater upregulation with tumor progression than ~18,000 other murine transcripts. However, of the 93 murine genes with the greatest differential expression, 49 of those had increasing expression, and of those only four were directly involved with DNA replication, two were in the kinetochore, and two were involved with purine synthesis. Therefore, upregulation of the remaining transcripts was not a direct result of increased proliferative rate. These validations increase our confidence that we have not purely identified candidate genes that are artifacts of the model system but additional important functional mediators of tumorigenesis.

We identified 93 genes whose expression continuously increased or decreased across ganglia and tumor progression (Fig. 1; Supplementary Table S2). We used cross-species integration to reduce the number of transcript candidates by selecting those genes whose expression was greater in high-risk MYCN-amplified neuroblastomas relative to low-risk tumors without amplification of **MYCN** (Supplementary Table S2). The resultant 24 genes were prioritized based on whether we could inhibit them pharmacologically and identified three target genes. The G protein–coupled receptor (**GPR49/LGR5**) is overexpressed in carcinomas (31, 32). IMPDH2 is an enzyme involved in purine synthesis. Functional validation using siRNA-mediated knockdown against two target candidates, **IMPDH2** and **GPR49**, resulted in moderate inhibition. siRNA-mediated knockdown caused low or no inhibition in the control gene **TACSTD1**, which was not overexpressed in human high-risk disease. It is possible that further analysis of the candidate transcripts in cell lines with differing genomic profiles or different model systems will establish a greater therapeutic benefit.

Knockdown of **CENPE** showed the greatest growth inhibition in vitro. **CENPE** is a kinesin motor protein included in the kinetochore protein complex, whose motor activity is required for correct chromosomal alignment during metaphase. To satisfy the spindle assembly checkpoint before anaphase (33, 34), **CENPE** must be simultaneously bound to both the kinetochore and spindle microtubule to prevent asymmetrical separation of sister chromatids (34). We focused our initial studies on **CENPE** as knockdown showed the greatest inhibition, mitotic kinesins are druggable targets, and inhibition of mitosis is a proved cancer paradigm. The traditional microtubule-binding drugs, *Vinca* alkaloids and taxanes, have documented antitumor activity against a broad spectrum of malignancies, including neuroblastoma. Microtubule disruption during mitosis inhibits the mitotic spindle resulting in mitotic arrest in tumor cells, followed in some cases by cell death. **CENPE**’s known functions are restricted to cell division, suggesting that on-target toxicity will be limited to dividing cells, theoretically providing an advantageous therapeutic index over microtubule binding agents.

GSK923295 is a potent and selective small molecule inhibitor of human **CENPE** with a Ki of 3.2 mmol/L. It directly inhibits microtubule-stimulated ATPase activity of the human **CENPE** motor domain, resulting in irreversible binding of **CENPE** to microtubules and mitotic arrest. GSK923295 has shown in vitro and in vivo activity against a broad spectrum of malignancies. A phase I study of GSK923295 is currently nearing completion in adults with refractory solid cancers, and early results have been promising in terms of safety (35). The identification of **CENPE** in our cross-species integrative genomics study of transcriptome evolution suggests that it is also a rational target for neuroblastoma. We show that GSK923295 has significant activity against a panel of human neuroblastoma-derived cell lines in vitro and in vivo. Our findings suggest that a transgenic model recapitulating the MYCN-amplified subset of neuroblastoma can discover downstream oncogenic mediators common to tumors without **MYCN** amplification. Importantly, this inhibitor is relatively inactive against murine **Cenpe**, meaning we were unable to test the inhibitors against TH-MYCN neuroblastomas used for target discovery nor could we estimate a therapeutic index in xenograft or transgenic models. Interestingly, although the identification of **CENPE** included differential expression between MYCN-amplified and nonamplified human tumors, GSK023295 activity did not correlate with MYC status or **CENPE** expression. This suggests the presence of as yet unidentified variables important in predicting **CENPE** activity.

The mechanism for increased **CENPE** expression in neuroblastoma remains unclear. **CENPE** is not a known Myc target gene (http://www.myccancergene.org/index.asp). We analyzed **CENPE** copy number on 599 primary neuroblastoma tumors previously assayed using the Illumina HumanHap550 SNP microarray. Relative copy number loss occurred in 66 of 599 (11%) and gain in 48 of 599 (8%) of tumors. Copy number gains were mostly whole chromosome gains and were not significantly associated with **CENPE** overexpression (P = 0.89). This indicates that **CENPE** would be unlikely to have been prioritized as target using genomic data obtained at diagnosis, but it was identified through serial transcriptomic analysis of neuroblastoma progression. This suggests that serial transcriptome analysis can augment existing integrative genomic strategies.
In summary, we used serial transcriptome analysis and cross-species integration to identify molecular targets associated with tumor progression. Our gene set includes many targets with no previously established role in tumor progression and numerous candidates suitable for pathway analysis. Future follow-up studies with these genes may uncover novel biological roles in neuroblastoma oncogenesis. The focus of this study was to identify molecular targets from this gene set that have the potential to be quickly translated into therapies for high-risk neuroblastoma. This led to the preclinical evaluation of a CENPE inhibitor that is currently in an adult phase I trial. Other genes identified in this study may prove to be equally strong candidates for therapeutic targeting. Likewise, analysis of transcripts with decreasing expression may aid identification of bona fide tumor suppressor genes, which are yet to be identified in sporadic neuroblastoma. Future studies will focus on the transcriptional and post-transcriptional regulation of CENPE expression in neuroblastoma cells. In conclusion, we have provided strong preclinical rationale that serial transcriptome profiling of a spontaneous tumor model with cross-species integration can identify and prioritize novel therapeutic targets in neuroblastoma. This strategy may have utility in other tumor types and further utility in neuroblastoma for target discovery.

Disclosure of Potential Conflicts of Interest

J.M. Maris: commercial research grant. The other authors disclosed no potential conflicts of interest.

Grant Support

NHI grants RO1-CA78545 (J.M. Maris), RO1-CA87487 (J.M. Maris), and PO1 CA97323 (J.M. Maris); NH&MR Australia (G.M. Marshall); Cancer Institute New South Wales (G.M. Marshall); Cancer Council New South Wales (G.M. Marshall); Alex’s Lemonade Stand Foundation (J.M. Maris); a research collaborative agreement with GlaxoSmithKline; and Abramson Family Cancer Research Institute (J.M. Maris).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 10/18/2009; revised 01/19/2010; accepted 01/20/2010; published OnlineFirst 03/16/2010.

References

Serial Transcriptome Analysis and Cross-Species Integration Identifies *Centromere-Associated Protein E* as a Novel Neuroblastoma Target

Naomi J. Balamuth, Andrew Wood, Qun Wang, et al.

Cancer Res 2010;70:2749-2758. Published OnlineFirst March 16, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-3844

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/03/15/0008-5472.CAN-09-3844.DC1

Cited articles
This article cites 32 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/7/2749.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/70/7/2749.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.