Downregulation of Human DAB2IP Gene Expression in Prostate Cancer Cells Results in Resistance to Ionizing Radiation

Zhaolu Kong¹,⁵, Daxing Xie², Thomas Boike¹, Pavithra Raghavan¹, Sandeep Burma¹,⁴, David J. Chen¹,⁴, Amyn A. Habib³,⁴, Arup Chakraborty⁶, Jer-Tsong Hsieh²,⁴,⁷, and Debabrata Saha¹,⁴

Abstract

DAB2IP (DOC-2/DAB2 interactive protein) is a member of the RAS-GTPase–activating protein family. It is often downregulated in metastatic prostate cancer and has been reported as a possible prognostic marker to predict the risk of aggressive prostate cancer. In this study, we furnish several lines of evidence indicating that metastatic human prostate cancer PC3 cells deficient in DAB2IP (shDAB2IP) exhibit increased clonogenic survival in response to ionizing radiation (IR) compared with control cells expressing an endogenous level of DAB2IP (shVector). Radiosensitivity was also observed in normal prostate cells that are deficient in DAB2IP. This enhanced resistance to IR in DAB2IP-deficient prostate cancer cells is primarily due to faster DNA double-strand break (DSB) repair kinetics. More than 90% of DSBs were repaired in shDAB2IP cells by 8 hours after 2 Gy radiation, whereas only 60% of DSB repair were completed in shVector cells at the same time. Second, upon irradiation, DAB2IP-deficient cells enforced a robust G₂-M cell cycle checkpoint compared with control cells. Finally, shDAB2IP cells showed resistance to IR-induced apoptosis that could result from a striking decrease in the expression levels of proapoptotic proteins caspase-3, caspase-8, and caspase-9, and significantly higher levels of antiapoptotic proteins Bcl-2 and STAT3 than those in shVector cells. In summary, DAB2IP plays a significant role in prostate cell survival following IR exposure due to enhanced DSB repair, robust G₂-M checkpoint control, and resistance to IR-induced apoptosis. Therefore, it is important to identify patients with dysregulated DAB2IP for (a) assessing prostate cancer risk and (b) alternative treatment regimens. Cancer Res; 70(7); 2829–39. ©2010 AACR.

Introduction

Prostate cancer represents the most common incidence of cancers and the second leading cause of cancer-related death in U.S. men. Specifically, prostate cancer accounts for 25% of diagnosed cancers in U.S. men and 10% of cancer-related death (1). Current medical management for localized prostate cancer ranges from close monitoring for indolent disease to radical treatment such as radiation or surgery. Treatment with radiation therapy has the advantage of being noninvasive and well tolerated. However, a significant proportion of high-risk patients will fail therapy and develop metastatic disease, for which no curative treatment currently exists (2, 3). Increasing our understanding about biomarkers and their effect on therapeutic response may allow physicians to personalize care based on the patient's biomarkers in the future.

A recent study by Duggan and colleagues (4) offers a new single nucleotide polymorphism marker from the DAB2IP gene that can predict aggressive prostate cancer. DAB2IP is a novel member of the Ras GTPase–activating protein family and is often downregulated in prostate cancer (5). By knocking down endogenous DAB2IP levels, prostate cancer cells could gain proliferative potential and become resistant to stress-induced apoptosis (6). Most importantly, the loss of DAB2IP expression in prostate epithelia leads to epithelial-mesenchymal transition, a central step in tumor metastasis, through recruitment of PP2A and GSK-3β resulting in β-catenin degradation. All these findings support a tumor suppressive role of DAB2IP (7) in prostate cancer development.

Therefore, it is important to understand the response to ionizing radiation (IR) of DAB2IP-deficient prostate cancer cells. Our results clearly show that the loss of DAB2IP expression in prostate cancer and normal prostate epithelia results in resistance to IR. This, in sum, is due to more efficient...
repair, robust cell cycle checkpoint activation, and decreased apoptosis. To the best of our knowledge, this is the first report to suggest a link between the expression of DAB2IP and radiation sensitivity.

Materials and Methods

Cell culture. PC3 and its derivative lines were maintained in T medium supplemented with 5% FCS, 100 U/mL penicillin, 100 μg/mL streptomycin, 900 μg/mL of G418, and 700 ng/mL of Puromycin in a humidified atmosphere with 5% carbon dioxide. RWPE-1 cell, a normal prostatic epithelial cell line derived from the peripheral zone of prostate gland and immortalized by human papillomavirus (HPV) 18 virus, was maintained in Keratinocyte KSF medium (Invitrogen Corp.) with 10% fetal bovine serum. PZ-HPV-7 cell is a normal prostatic epithelial cell line derived from a donor with cystoprostatectomy by immortalizing with HPV18. All the knockdown and control sublines from these cell lines were generated using the shRNA-lentiviral system (Open Biosystems) under puromycin selection. DAB2IP-transfected C4-2 subline-D2 and its vector control subline-Neo were also maintained in T medium with 5% FCS, 1% penicillin-streptomycin, and 400 μg/mL of G418.

Irradiation. All cells were irradiated at room temperature in ambient air using a 137Cs source (Mark 1-68 irradiator, JL Shepherd & Associated) at a dose rate of 3.47 Gy/min.

Antibodies. Anti–phospho-Histone γH2AX (Ser139) and anti–phospho-Histone H3 (Ser 10) were from Millipore; signal transducers and activators of transcription 3 (STAT3) and 53BP1 antibodies were from Cell Signaling Technology, Inc.; anti–caspase-3, caspase-8, and caspase-9 were from EMD Chemicals, Inc.; and anti–Bcl-2 and the horseradish peroxidase–conjugated secondary antibodies against mouse and rabbit were obtained from Santa Cruz Biotechnology, Inc. Actin antibody was purchased from Sigma-Aldrich, Inc. Fluorescent dye–conjugated secondary antibodies were obtained from Invitrogen Corp.

Clonogenic survival. Exponentially growing cells were trypsinized and counted using a particle counter (Beckman Coulter, Inc.). Cells were diluted serially to appropriate concentrations and plated into 60-mm dish in triplicate for 2 h. Then, cells were treated with increasing doses of IR (0, 2, 4, 6, and 8 Gy). After 7 or 14 d of incubation, the colonies were fixed and stained with 4% formaldehyde/PBS containing 0.05% crystal violet. Colonies containing >50 cells were counted. Surviving fraction was calculated as (mean colony formation)/(mean number of planted cells) × 100.

Comet assay. The frequency of DSBs and single-strand breaks in PC3 shDAB2IP and shVector cells post-IR were compared by using the alkaline comet assay kit (Trevigen, Inc.). Briefly, cells were plated on 60-mm dishes, were allowed to attach, and were exposed to total dose of 2 Gy radiation. Cells were fixed in 4% formaldehyde/PBS for 30 min, permeabilized in 0.5% Triton X-100 in PBS for 1 h, and blocked in 5% bovine serum albumin and 1% normal goat serum for 1 h at room temperature. Then, cells were incubated with the primary antibody, anti–phospho-Histone γH2AX (Ser139: 1:2,000), and anti–53BP1 (1:1,500) for 1 h. Alexa Fluor 488–conjugated goat anti-Rabbit and rhodamine red–conjugated goat anti-mouse were used as secondary antibodies. Cells were mounted in a Vectashield mounting medium containing 4',6-diamidino-2-phenylindole (DAPI). Phospho-γH2AX and 53BP1 foci were examined using a fluorescence microscope (CRG Precision Electronics). The number of merged 53BP1 and phospho-γH2AX foci (yellow) was determined at each time point (average of 50 nuclei), and after subtracting background (number of foci in unirradiated population), the percentage foci remaining was plotted against time to obtain DSB repair kinetics.
Actin was used for loading control.

membranes and probed with primary antibodies as indicated. 10% SDS-PAGE and transferred to polyvinylidene difluoride An equal amount of total protein (20 μg) concentration was quantified by Bradford assay (Bio-Rad).

0.2 mmol/L sodium orthovanadate, 0.1 mmol/L sodium fluorophosphate inhibitors (1 mmol/L phenylmethylsulfonylfluoride, NP40, 1 mmol/L EDTA] and a cocktail of protease and phosphatase inhibitors (1 μmol/L leupeptin). Protein concentration was quantified by Bradford assay (Bio-Rad). An equal amount of total protein (20 μg) was subjected to a 10% SDS-PAGE and transferred to polyvinylidene difluoride membranes and probed with primary antibodies as indicated. Actin was used for loading control.

Cell cycle and early G2-M checkpoint assay. Dual parameter flow cytometry method was used as follows: PI staining for DNA content and anti–Phospho-Histone H3 for detecting the % of mitosis cells. Cells were plated in 100-mm dishes overnight and samples were collected as described. Briefly, the medium was collected to recover floating cells and attached cells were harvested by trypsinization and mixed with the pool of floating cells at 2, 4, and 8 h after exposure to 2 and 5 Gy IR. After fixing and incubation with anti–phospho-Histone H3 (Ser 10), cells were stained with Alexa Fluor 488–conjugated anti-rabbit secondary antibody and PI, and analyzed on a flow cytometer (BD FACScan). Three independent experiments were done and at least 20,000 cells were counted, the proportion of cells of different phase was gated and calculated using the software Flowjo 8.7.1 (Tree Star, Inc.).

Apoptosis assay. Cells were plated in a 100-mm dish and treated with indicated dosage of radiation on the second day. Floating and attached cells were harvested at 24 and 48 h postradiation. After centrifugation (200 × g, 5 min), the medium was removed and the cell pellet was carefully resuspended in 5 mL PBS. Phycoerythrin Annexin V apoptosis detection kit I (BD Biosciences) was used to identify apoptotic cells by flow cytometry. Cells that stain positive for Phycoerythrin Annexin V and negative for 7-AAD (right bottom quadrant) are undergoing apoptosis. Cells treated with 5 mmol/L sodium butyrate (NaBu) for 24 h were applied as positive control of apoptosis (11, 12). The proportion of apoptotic cells was gated and calculated by Flowjo 8.7.1.

Western blot assay. Cell lysates were prepared from each sample with a lyses buffer [50 mmol/L Tris (pH 7.5), 1% NP40, 1 mmol/L EDTA] and a cocktail of protease and phosphatase inhibitors (1 mmol/L phenylmethylsulfonylfluoride, 0.2 mmol/L sodium orthovanadate, 0.1 mmol/L sodium fluoride, 10 μg/mL aprotinin, and 10 μg/mL leupeptin). Protein concentration was quantified by Bradford assay (Bio-Rad). An equal amount of total protein (20 μg) was subjected to a 10% SDS-PAGE and transferred to polyvinylidene difluoride membranes and probed with primary antibodies as indicated. Actin was used for loading control.

Statistical analysis. The data are presented as the mean ± SEM of at least three independent experiments. The results were tested for significance using the unpaired Student’s t test.

Results

Decreased DAB2IP expression enhances radioresistance. To determine the role of DAB2IP in prostate cancer cells after IR, endogenous DAB2IP of a metastatic prostate cancer cell line (PC3) was knocked down using shRNA-lentiviral system and Western blot analysis was done to show the loss of DAB2IP protein expression in DAB2IP knockdown (shDAB2IP) cells compared with the control (shVector) cells (Fig. 1A). Both derivative lines were exposed to increasing doses of IR (0, 2, 4, 6, and 8 Gy). Radiation caused a dose-dependent reduction in the clonogenic survival in both lines. However, shDAB2IP cells showed higher radioresistance compared with shVector cells (Fig. 1B). The surviving fraction at 2 Gy (SF2) of shDAB2IP and shVector cells were 0.64 ± 0.04 and 0.38 ± 0.05, respectively (Supplementary Table S1A; Fig. 1B). We also measured the cell proliferation rate based on MTT assay following increasing doses of IR (0–10 Gy) in both sublines (Fig. 1C and D). shDAB2IP cells clearly showed a greater proliferation rate than shVector cells even at higher radiation dose (Fig. 1D). Because DAB2IP is a member of the GTPase-activating protein family inhibiting the Ras-mediated signal pathway, we used a ras signaling pathway inhibitor (FTI-277) to study the radiosensitization in the DAB2IP-deficient and control cells (Supplementary Fig. S1). Our results showed that FTI-277 caused significant radiosensitization in DAB2IP-deficient cells (SF2, 0.53 ± 0.01) compared with the DAB2IP-proficient cells (SF2, 0.36 ± 0.01).

To further characterize the role of DAB2IP in radiosensitization, two human immortalized normal prostate epithelial cell lines PZ-HPV-7 and RWPE-1 were subjected to clonogenic survival assay (Fig. 2). Again, the endogenous DAB2IP expression was knocked down using shRNA-lentiviral system (Fig. 2A). shDAB2IP sublines from both PZ-HPV-7 and RWPE-1 cells showed more radiosensitivity compared with shVector cells. SF2 values of the shDAB2IP sublines from PZ-HPV-7 and RWPE-1 were 0.73 ± 0.01 and 0.64 ± 0.03, respectively, compared with 0.51 ± 0.03 and 0.42 ± 0.01 in the shVector cells, respectively, (Supplementary Table S1B and C; Fig. 2B and C). In another experiment, we further characterized the role of DAB2IP in radiosensitization by over-expressing DAB2IP in C4-2 prostate cancer cells (D2-Cells; Fig. 2A). Because the plating efficiency of D2 and vector control (Neo-cells) sublines of C4-2 are extremely low, we did a limiting dilution assay (Fig. 2D) following the method described by Green and colleagues (8). We noticed that after the overexpression of DAB2IP protein, C4-2 cells became more radiosensitive; SF2 values of the D2 and Neo were 0.43 ± 0.01 versus 0.76 ± 0.07 (Supplementary Table S1D; Fig. 2D). Taken together, these results indicate that the down-regulation of DAB2IP significantly enhances IR resistance in both prostate cancer and normal prostate epithelial cells.

DAB2IP knockdown–induced IR resistance is associated with enhanced DSB repair in PC3 cells. Enhanced DSB repair is an important mechanism by which cells may become resistant to IR (13, 14). To measure the induction and repair of IR-induced DSBs, shDAB2IP and shVector cells were exposed to a total dose of 2 Gy and samples were collected at the indicated times (Fig. 3A). An early step in DSB repair involves the rapid phosphorylation of γH2AX and recruitment of 53BP1 that form foci at the damage sites (9, 10, 15–17). Cells were subjected to dual immunofluorescence staining for 53BP1 (green) and phospho-γH2AX (red) foci, and DSB repair kinetics were determined by counting the colocalized foci (yellow).
We observed a significantly faster rate of DSB repair in shDAB2IP cells compared with shVector cells (Fig. 3B). More than 90% repair was completed at 8 hours following IR in shDAB2IP cells, whereas shVector cells still retained nearly 60% and 40% of foci at 8 and 24 hours, respectively. These data indicate that knockdown of DAB2IP in PC3 cells is associated with accelerated DSB repair kinetics (Fig. 3B). Based on surviving fraction analysis and DSB repair kinetics, it is now clear that DAB2IP level modulates radiosensitization. In an additional experiment, we applied alkaline single cell gel electrophoresis (Fig. 3C and D) to quantify the DNA damage in the DAB2IP-deficient and DAB2IP-proficient cells in response to a radiation dose of 2 Gy. We observed an extended migration of the fragmented DNA in the comet tails of both DAB2IP-proficient and DAB2IP-deficient cells at 30 minutes post-IR. Tail moment (%DNA in tail × tail length) was then used to evaluate the level of DNA damage (18). In DAB2IP-deficient cells, the mean value of tail moment decreased to basal levels within 8 hours post-IR, suggesting that the loss of DAB2IP significantly enhances the repair of radiation-induced damage (Fig. 3D, inset). In contrast, the mean tail moment was significantly high even after 24 hours postirradiation in the DAB2IP proficient cells (Fig. 3C, inset).

DAB2IP knockdown cells exhibit a robust early G2-M checkpoint after IR. In mammalian cells, IR induces blocks in the G1, S, and G2 phases and these cell cycle checkpoints are necessary to maintain genomic stability. In this study, we determined the G2 block in both derivative lines by flow cytometric analysis of histone H3 phosphorylation. This assay specifically distinguishes the cells entering M phase from G2 cells with a G2-M block manifesting as a decrease in the M phase population (19). Results in Fig. 4 indicate that >90% of shDAB2IP cells are blocked in G2 within 2 hours of a total radiation dose of 2 Gy (4.04 ± 0.11% to 0.40 ± 0.01%). These cells again reenter mitosis within 4 hours (0.40 ± 0.01% to 4.19 ± 0.14%) after radiation. In contrast, shVector cells continue to enter mitosis even 2 hours after radiation with only 50% decrease in the M phase population, indicating a G2-M block that is less robust that seen upon DAB2IP knockdown. Taken together, these results indicate that the robust G2-M checkpoint and accelerated DSB repair might render shDAB2IP cells more radioresistant than shVector cells.

Figure 1. Decreased DAB2IP expression increases radioresistance in prostate cancer cells. A, detection of DAB2IP protein in PC3 shVector and PC3 shDAB2IP cells. A rabbit polyclonal DAB2IP antibody (1:250) was used for Western blot analysis. B, clonogenic survival of shDAB2IP and shVector cells. Cells were exposed to increasing doses of radiation as indicated. After 7 to 14 d, colonies were counted and survival curves were constructed by fitting mean values from three independent experiments to a linear-quadratic model. Results were obtained from three independent experiments and compared in Supplementary Table S1A with Student’s t test (P < 0.01). C to D, viability assay of shDAB2IP and shVector cells in response to radiation. C, shVector; D, shDAB2IP. Cells were plated in triplicates in 96-well plates and MTT assay was done to determine the cell viability 24, 48, 72, and 96 h postirradiation. Absorbance at wavelength of 490 nm were measured by using Microplate Reader (BioTek Instruments).
DAB2IP knockdown cells are resistant to radiation-induced apoptosis. Clearly, the shDAB2IP cells showed an increased resistance to IR due to the enforcement of the early G2-M check and efficient DNA repair. In addition, we examined the IR-induced apoptotic response in shDAB2IP cells. Using Annexin V/7-AAD staining, we noticed that at 2 Gy, shDAB2IP cells did not undergo apoptosis until 48 hours post-IR (Fig. 5A). On the other hand, >18% Annexin V-positive cells were detected in the shVector population compared with <1% cells in the shDAB2IP population when cells were not treated with radiation (Fig. 5A). But no further apoptosis was noticed in both cell lines in response to IR. As a positive control, NaBu was used to detect apoptotic cells (11, 12). We observed extensive apoptosis (40%) after a 24-hour treatment of NaBu only in shVector cells not in the shDAB2IP cells. Interestingly, NaBu caused significant necrosis in shDAB2IP cells at the same time point (Fig. 5A). We then tested the effect of higher radiation dose (10 Gy) specifically on shDAB2IP cells at 24, 48, and 72 hours post-IR (Supplementary Fig. S3). Our results showed no significant induction of IR-induced apoptosis even after 72 hours, whereas, on the other hand, necrotic cell populations was greatly increased in shDAB2IP cells at 48 and 72 hours post-IR (Supplementary Fig. S3). To further characterize apoptosis in these sublines, Western blot analysis was done (Fig. 5B). Interestingly, we noticed that the basal expression levels of critical proapoptotic proteins such as caspase-3, caspase-9, and caspase-8 were significantly higher in shVector cells than shDAB2IP cells, whereas the antiapoptotic proteins STAT3 and Bcl-2 levels were elevated in shDAB2IP cells (Fig. 5B). Furthermore, there were no detectable changes in expression of these proteins upon radiation in shDAB2IP cells (data not shown). These data provide evidence indicating that shDAB2IP cells may have an additional survival advantage due to elevated expression of antiapoptotic proteins and reduced expression of proapoptotic proteins.

![Figure 2](https://example.com/fig2.png)

Figure 2. Decreased DAB2IP expression increases radioresistance in normal prostate epithelial cells, whereas overexpression of DAB2IP causes radiosensitivity. A, detection of DAB2IP protein in PZ-HPV-7 shVector, PZ-HPV-7 shDAB2IP, RWPE-1 shVector, RWPE-1 shDAB2IP, C4-2 Neo, and C4-2 D2 cells by Western blot. B to C, clonogenic survival of shDAB2IP and shVector cells. B, PZ-HPV-7 shVector and PZ-HPV-7 shDAB2IP; C, RWPE-1 shVector and RWPE-1 shDAB2IP. Survival curves were plotted by fitting to linear-quadratic model. Results were compared in Supplementary Table S1B and C with Student’s t test \((P < 0.01)\). D, limited dilution assay to detect cells sensitivity to IR in C4-2 Neo and D2 cells. Results were compared in Supplementary Table S1B with Student’s t test \((P < 0.01)\).
Discussion

DAB2IP, also known as ASK-interacting protein 1 (20) and a potential tumor suppressor gene, is a novel member of the Ras GTPase–activating protein family and plays an important role in balancing intracellular proliferation, survival, and apoptosis (5, 21). Loss of DAB2IP expression is often observed in prostate cancer cells (5) and is associated with...
increased risk of tumor metastasis. A similar relationship between DAB2IP expression and aggressive tumor is also reported in breast cancer (22). Depletion of DAB2IP in prostate cancer cells as well as normal prostate epithelia leads to phosphoinositide 3-kinase-Akt, mitogen-activated protein kinase activation, and ASK1-c-Jun NH2-kinase inactivation by which cells become resistant to stress-induced apoptosis (6). Nevertheless, this is the first study to report that the loss of DAB2IP expression in prostate cells contributes to the resistance to IR. We believe that an accelerated process of DNA DSB repair, a robust G2-M checkpoint, and a functional system to escape from apoptosis are the underlying mechanisms. It is well known that the loss of certain genes such as PTEN and ATM markedly alters radiation responses. Mutational or epigenetic inactivation of PTEN results in constitutive activation of Akt and its downstream substrates, and as a result, cells are resistant to apoptosis and IR, whereas ectopic expression of PTEN causes radiosensitization (23–25). In prostate cancer, PTEN loss (~70%) has been associated with progression to androgen independence, chemoresistance, radiosensitivity, and bone metastasis (26–28).

On the other hand, alteration in ATM expression is frequently reported in prostate tumorigenesis and the enhanced ATM levels could be correlated with the elevated level of prostate-specific antigen (29, 30). Further experiments are needed to elucidate whether DAB2IP may exert its effects by intersecting with pathways regulated by PTEN or ATM.

IR can cause a variety of DNA damage, including base lesions, DNA-protein cross-links, single-strand breaks, and DSBs, of which DSBs are the most potent, resulting in cell death or genomic instability that could lead to carcinogenesis (31). The kinetics of residual phospho-γH2AX and 53BP1-colocalized foci in shDAB2IP and shVector cells represent a significant difference in the kinetics of DSB repair. H2AX phosphorylation has also been reported to occur under conditions of cell stress such as hyperthermia (23). In addition to H2AX phosphorylation, accumulation of 53BP1 also occurs at the sites of DSBs and 53BP1 foci colocalized with IR-induced Mre11/NBS and H2AX foci; thus in addition to γH2AX foci, 53BP1 foci are also frequently used as a measure of DNA DSB repair kinetics (9, 10, 32). In these assays, the initial number of foci counted 30 minutes post-IR was similar for the both
cell lines. Hence, the differences in repair kinetics are not caused by any difference in the initial damage. For the sake of quantitative accuracy, we have used both γH2AX and 53BP1 foci as surrogate markers for DSBS, and based on this and results from a Comet assay, we show the faster repair kinetics of shDAB2IP cells is a major contributing factor toward radioresistance. Similar to our results, previous reports by Mukherjee and colleagues (33) and Golding and colleagues (34) showed the increased glioblastoma multiforme radioresistance is due to augmented DSB repair kinetics. At this point, the mechanism of accelerated DSB repair in DAB2IP-deficient cells is under investigation.

Cell cycle checkpoint is another defense mechanism to protect cells from DNA damage allowing them to repair

Figure 5. DAB2IP knockdown cells exhibit resistance to radiation-induced apoptosis. A, radiation-induced apoptotic responses in these two cells were determined by flow cytometry using Annexin V/7-AAD staining kit. These cells were treated with 2 Gy IR and the samples were collected 24 and 48 h post-IR; the proportion of apoptosis cells were detected by Flowjo 8.7.1. NaBu was used as positive control for cell death. B, Western blot analysis of proapoptotic and antiapoptotic proteins in PC3 shVector and PC3 shDAB2IP cells. Unirradiated cells were lysed and subjected to Western blot analysis for caspase-3, caspase-8, caspase-9, Bcl-2, and STAT3.
Figure 6. A dosage-dependent G2-M arrest in DAB2IP knockdown cells after IR. A, PC3 shVector and PC3 shDAB2IP were treated with 2 Gy and collected 0, 2, 8, and 24 h postirradiation. PI staining was applied to detect the distribution of cell cycle response to ionizing irradiation by flow cytometry. B, PC3 shDAB2IP cells were exposed to 3 Gy (top) and 5 Gy (middle, PI staining only; bottom, phospho-histone-H3 and PI dual-staining for mitosis cells), respectively. The DNA profiles were obtained 0, 2, 8, and 24 h after irradiation.
genetic lesions (35, 36). Radiation-induced G2 arrest is critical in preventing cells from death (37). In this study, two distinct G2 arrests were noticed in shDAB2IP and shVector cells in response to IR. shDAB2IP deficient cells showed early G2 checkpoint within 2 hours (Fig. 4), whereas control shVector cells exhibit late G2 arrest 8 hours after radiation (Fig. 6A). shDAB2IP cells did not exhibit late G2 arrest until a higher radiation dose (5 Gy) was used (Fig. 6B).

In an additional experiment, we monitored S-phase population using bromodeoxyuridine (BrdUrd) in shDAB2IP cells following IR (Supplementary Fig. S2). S-phase cells were labeled with BrdUrd for 30 minutes before 2 Gy radiation. After 8 hours, >90% BrdUrd-positive cells (both treated and nontreated) entered either G1 or S phase of the following cell cycle (Supplementary Fig. S2A and B). In contrast, at 5 Gy, a large proportion (>50%) of BrdUrd-positive shDAB2IP cells were blocked at G2 at the same time point (Supplementary Fig. S2C), indicating that these cells are still undergoing DSB repair. Therefore, at 5 Gy, the late G2 arrest in shDA2IP cells resulted from the unrepaird S population that is blocked at G2.

Apoptosis is an important mechanism by which IR exerts its therapeutic response (38, 39) and faulty apoptosis is a known mechanism leading to resistance to radiation therapy. Preclinical studies showed that wild-type p53 was required for apoptosis induced by IR; however, many clinical outcomes clearly indicated that p53 status was not a useful prognostic marker for successful radiation therapy (40, 41). Both shDAB2IP deficient and vector shVector controlled cells were derived from the parental PC3 cells bearing p53 mutation (42–44). It is known that caspase family and Bcl-2 family are the major families involved in apoptosis. Caspase-8 and caspase-9 are associated with activating “extrinsic” and “intrinsic” apoptosis pathway (45), respectively, and caspase-3 is the critical executioner to participating in both apoptosis process (46). On the other hand, Bcl-2 is the key antiapoptotic protein and is induced by STAT3 (47, 48). In this study, we compared the expression of caspase-3, caspase-8, caspase-9, Bcl-2, and STAT3 in shDAB2IP and shVector cells. The results support the observation that shDAB2IP cells are resistant to apoptosis as the levels of proapoptotic proteins caspase-3, caspase-8, and caspase-9 are significantly lower than shVector cells. In contrast, antiapoptotic proteins such as Bcl-2 and STAT3 levels are higher in shDAB2IP cells; overexpression of both Bcl-2 and STAT3 has been reported to be associated with radiosensitivity (49–51). Although the mechanism(s) leading to increased expression of antiapoptotic protein levels or decreased expression of proapoptotic proteins in shDAB2IP cells is largely unknown, we hypothesize that DAB2IP could modulate the half-life of these proteins through proteasomal degradation as previously found (6). However, we cannot rule out that DAB2IP may function through transcriptional regulation. Nevertheless, these data strongly support that the loss of DAB2IP in prostate cell confers a survival advantage to IR due to enhanced DSB repair, strong G2-M checkpoint control, and evasion of apoptosis. Therefore, identifying individual patients with dysregulated DAB2IP gene is of significant clinical importance.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

Flight Attendant Medical Research Institute (D. Saha and J.T. Hsieh), NASA Grants NNA06CC97G and NNX10AE09G (S. Burma), CA 060519 to (D.J. Chen), and the Cancer Prevention and Research Institute of Texas (RP100644 to S. Burma).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 08/07/2009; revised 12/31/2009; accepted 01/13/2010; published OnlineFirst 03/23/2010.

References

Correction: Online Publication Dates for Cancer Research April 15, 2010 Articles

The following articles in the April 15, 2010 issue of Cancer Research were published with an online publication date of April 6, 2010 listed, but were actually published online on April 13, 2010:

Dudka AA, Sweet SMM, Heath JK. Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Cancer Res 2010;70:3391–401. Published OnlineFirst April 13, 2010. doi:10.1158/0008-5472.CAN-09-3033.

Published OnlineFirst 05/11/2010.
©2010 American Association for Cancer Research.
doi: 10.1158/0008-5472.CAN-10-1347
Downregulation of Human DAB2IP Gene Expression in Prostate Cancer Cells Results in Resistance to Ionizing Radiation

Zhaolu Kong, Daxing Xie, Thomas Boike, et al.

Cancer Res 2010;70:2829-2839. Published OnlineFirst March 23, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-2919

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/03/23/0008-5472.CAN-09-2919.DC1

Cited articles
This article cites 51 articles, 15 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/7/2829.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/70/7/2829.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/70/7/2829.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.