The Bisecting GlcNAc on N-Glycans Inhibits Growth Factor Signaling and Retards Mammary Tumor Progression

Yinghui Song, Jason A. Aglipay, Joshua D. Bernstein, Sumanta Goswami, and Pamela Stanley

Abstract

The branching of complex N-glycans attached to growth factor receptors promotes tumor progression by prolonging growth factor signaling. The addition of the bisecting GlcNAc to complex N-glycans by Mgat3 has varying effects on cell adhesion, cell migration, and hepatoma formation. Here, we show that Chinese hamster ovary cells expressing Mgat3 and the polyoma middle T (PyMT) antigen have reduced cell proliferation and growth factor signaling dependent on a galectin lattice. The Mgat3 gene is not expressed in virgin mammary gland but is upregulated during lactation and is expressed in mouse mammary tumor virus (MMTV)/PyMT tumors. Mice lacking Mgat3 that cannot transfer the bisecting GlcNAc to N-glycans acquire PyMT-induced mammary tumors more rapidly and have an increased tumor burden, increased migration of tumor cells, and increased early metastasis to lung. Tumors and tumor-derived cells lacking Mgat3 exhibit enhanced signaling through the Ras pathway and reduced amounts of functionally glycosylated α-dystroglycan. Constitutive overexpression of an MMTV/Mgat3 transgene inhibits early mammary tumor development and tumor cell migration. Thus, the addition of the bisecting GlcNAc to complex N-glycans of mammary tumor cell glycoprotein receptors is a cell autonomous mechanism serving to retard tumor progression by reducing growth factor signaling.

Introduction

N-glycans have a common core structure, and their branching patterns are determined by different N-acetylglucosaminyltransferases (GlcNAcT; ref. 1). Loss of GlcNAcT-V (Mgat5), an N-acetylglucosaminyltransferase that initiates a β1,6 branch of complex N-glycans, promotes tumorigenesis in the mammary glands of mice carrying the mouse mammary tumor virus (MMTV) polyoma middle T (PyMT) oncogene (2). Mammary tumor cells expressing Mgat5 are more responsive to growth factors due to enhanced interactions of their growth factor receptors with galectins, leading to reduced endocytosis and prolonged signaling compared with cells lacking Mgat5 (3, 4). Human cancer cell lines with targeted silencing of the Mgat5 gene also exhibit reduced epidermal growth factor (EGF) receptor (EGFR) signaling, although apparently by a galectin-independent mechanism (5).

Mgat3 transfers a GlcNAc to generate the bisecting GlcNAc in the core of complex and hybrid N-glycans (ref. 6; Fig. 1A). The presence of the bisecting GlcNAc alters glycan recognition reflected by changes in the binding of plant lectins and mammalian galectins. Thus, LEC10 Chinese hamster ovary (CHO) cells that express Mgat3 (7, 8) bind markedly less ricin and more erythrohytohemagglutinin (E-PHA) than wild-type CHO cells (Fig. 1A). LEC10 cells also bind less galectin-1 and galectin-3 than parent CHO cells (9). These lectin-binding properties reflect changes in the number or accessibility of Gal residues on cell surface N-glycans with a bisecting GlcNAc. Glycomics profiling of LEC10 N-glycans by matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry shows that the bisecting GlcNAc is present on complex, multiantennary N-glycans with many LacNAc units (10).

Mgat3 has been overexpressed in a broad spectrum of cells with consequences that may vary with cell type (11, 12). Thus, overexpression of Mgat3 in K562 cells causes an increase in spleen colonization (13), whereas overexpression in B16 melanoma cells causes a marked reduction in homing to the lung (14). In HeLa cells, overexpression of Mgat3 causes increased EGFR signaling and reduced cell adhesion, promoting metastasis (15). However in other experiments, HeLa cells overexpressing Mgat3 had reduced cell migration on fibronectin, countering metastasis (16). When Mgat3 was overexpressed in MKN45 cells, E-cadherin was upregulated, cell adhesion was enhanced, and cell migration was inhibited (12, 17). The combined data indicate that Mgat3 may behave as a promoter or suppressor of cell migration and cell adhesion. In liver tumors induced by a low dose of diethylnitrosamine, ~50% of males expressing Mgat3 under the serum amyloid protein promoter got fewer tumors (18). By contrast, Mgat3 expressed under the mouse urinary protein promoter was not inhibitory (19) when diethylnitrosamine...
and phenobarbitol were used. In addition, males with independent, targeted mutations of the \textit{Mgat3} gene developed hepatomas more slowly than controls (19, 20), consistent with the facilitation of hepatoma progression by Mgat3.

We report here the effects of Mgat3 and the bisecting GlcNAc on growth factor signaling in CHO cells expressing PyMT and in the mammary gland during tumor induction by MMTV/PyMT (21). The MMTV/PyMT female develops tumors at different rates in all mammary glands, depending on genetic background (22). Progression to malignancy in this model appropriately reflects the stages of human breast tumorigenesis (23). The PyMT oncoprotein activates signaling

Figure 1. Mgat3 retards cell proliferation. A, complex N-glycans of CHO and LEC10 showing the reactions catalyzed by Mgat3 and Mgat5 (top). LEC10 cells are resistant to ricin and hypersensitive to E-PHA (bottom). B, glycoproteins expressing the bisecting GlcNAc bind well to biotinylated E-PHA (top) and biotinylated L-PHA (bottom). C, proliferation of CHO, Lec4, Lec8, and LEC10 in medium with 7.5% serum. D, proliferation of CHO/PyMT, Lec4/PyMT, Lec8/PyMT, and LEC10B/PyMT in medium with 7.5% serum. Bars, SD. **, \(P < 0.01 \); ***, \(P < 0.0001 \), two-tailed Student’s \(t \) test comparing CHO with LEC10B.
pathways commonly amplified in human breast cancer, such as phosphoinositide 3-kinase, leading to activation of Akt, Ras-Raf, and mitogen-activated protein kinases (MAPK; ref. 24). Here we show that Mgat3 inhibits growth factor signaling dependent on a cell surface galectin lattice in CHO cells and functions cell autonomously in the mammary gland to retard tumor progression, cell migration, and metastasis in MMTV/PyMT-induced tumors.

Materials and Methods

Cells and cell culture. Pro 5 CHO, Lec4 (Pro–Lec4.7B), Lec8 (Pro–Lec8.3D), and LEC10B (Pro–LEC10B.3) cells (25) validated by lectin resistance test and used within 6 mo of cloning were transfected with pcDNA3.1-PyMT generated from PfII-PyVMt (Elaine Lin; Albert Einstein College Medicine) and selected with 1 mg/mL G418 (Invitrogen). CHO and LEC10 cells were transfected with the Mgat3 coding exon or inactive Mgat3 (Mgat32/2; ref. 26) in pcDNA3.1. CHO cells were cultured in α-MEM (Invitrogen) containing 10% fetal bovine serum (FBS) and 2 mmol/L glutamine at 37°C in 5% CO2. Tumor epithelial cells (TEC) were derived from mice tumors treated with 2 mg/mL collagenase (Sigma) and passaged ∼22 times to selectively remove fibroblasts. TECs were cultured in α-MEM containing 10% heat-inactivated FBS, penicillin, and streptomycin.

Lectin resistance test. Cells (2 × 10^5) at 100 μL/well in a 96-well plate were incubated with 100 μL medium or medium with ricin (5 ng/mL; Vector Labs) or E-PHA (35 μg/mL; Vector Labs) for 4 d, stained with methylene blue in 50% methanol (2 g/L), and photographed.

Western blot and lectin blotting. Frozen tumor (∼150 mg) homogenized in 1 mL 10 mmol/L Tris-HCl (pH 7.4), 0.25 mol/L sucrose, and protease inhibitors (Complete; Roche) was centrifuged at 1,800 rpm for 10 min at 4°C. Tumor cells or washed cultured cells were solubilized in 2% Triton-X-100, incubated on ice for 10 min, and centrifuged at 3,000 rpm for 10 min at 4°C. Protein concentration was measured using the DC reagent (Bio-Rad). Lysates in NP40, 100 mmol/L NaF, 200 μmol/L sodium orthovanadate] containing protease inhibitors (Complete, Roche), electrophoresed and transferred to PVDF membrane. Membranes were incubated with rabbit anti-phosphorylated p44/42 MAPK antibody (Thr202/Tyr204; 1:1,000) and mouse anti-p44/p42 MAPK mAb (L34F12; 1:2,000; Cell Signaling Technology) in Odyssey blocking buffer at 4°C overnight. Following washes with TBS-Tween, IRDye800-conjugated goat anti-rabbit IgG-H+L (1:5,000), horseradish peroxidase (HRP) goat anti-mouse IgG-H+L (1:15,000) were added, HRP was visualized using an enhanced chemiluminescence (ECL) kit (Thermo Scientific) and quantitated by NIH Image/J. For lectin blotting, membranes were blocked in 5% nonfat milk, incubated with biotinylated E-PHA or leukophytohemagglutinin (L-PHA: Vector Labs) at 5 μg/mL at room temperature for 1 h, washed with TBS-Tween, incubated with streptavidin-HRP (1:5,000; Vector Labs) for 1 h, and visualized using an ECL kit.

Signaling assays. Cells (85% to 90% confluent in 60-mm dishes) were serum-starved for 24 h. After washing with α-MEM, cells were stimulated with 10% FCS, 50 ng/mL human platelet-derived growth factor-AB (PDGF-AB; Invitrogen), or 50 ng/mL EGF (R&D Systems) at 37°C. For sugar treatments after starvation, 1.5 mL α-MEM or 0.5 mol/L lactose or 0.5 mol/L sucrose in α-MEM was added for 1 h at 37°C. Cells were washed twice with α-MEM and treated with FCS, EGF, or PDGF-AB at 37°C. MAPK/extracellular signal-regulated kinase (ERK1/2 inhibitor U0126 (Cell Signaling) was dissolved in DM50 at 10 mmol/L, added at ±10 μmol/L for 2 h, and removed before adding growth factor. Controls were treated with DM50. After stimulation, cells were washed thrice with PBS (pH 7.4), lysed in EBC lysis buffer [50 mmol/L Tris-HCl (pH 8.0), 120 mmol/L NaCl, 0.5% NP40, 100 mmol/L NaF, 200 μmol/L sodium orthovanadate] containing protease inhibitors (Complete, Roche), electrophoresed and transferred to PVDF membrane. Membranes were incubated with rabbit anti-phosphorylated p44/42 MAPK antibody (Thr202/Tyr204; 1:1,000) and mouse anti-p44/42 MAPK mAb (L34F12; 1:2,000; Cell Signaling Technology) in Odyssey blocking buffer at 4°C overnight. Following washes with TBS-Tween, IRDye800-conjugated goat anti-rabbit IgG-H+L (1:5,000), Alexa Fluor 580 goat anti-mouse IgG-H+L (Invitrogen; 1:15,000) were added for 1 h at room temperature, membranes were washed, and bands were quantitated by Odyssey IR Imaging System (LI-COR Biosciences).

Mice. Mgat3+ mice (Mgat3+/+; ref. 27) backcrossed to C57Bl/6 mice were mated with MMTV/PyMT transgenic mice (634 FVB; ref. 21; Jeffrey Pollard; Albert Einstein College of Medicine). Mgat3−/− or Mgat3+/− females and Mgat3++/− MMTV/PyMT males were mated to generate Mgat3+/−/PyMT, Mgat3+/−/PyMT, and Mgat3+/+/PyMT littermates. The C57Bl/6/FVB background slowed the time of onset and progression of mammary tumors (22, 28).

The MMTV-SV40-BssK vector (Jeffrey Pollard) was used to make the MMTV-Mgat3-CAGloxPCATloxP-EGFP transgene. The mouse Mgat3 coding region was inserted between the MMTV-LTR and the SV40-polyA addition site followed by the CAGloxPCATloxP-EGFP cassette (ref. 29; Jun-ichi Miyazaki; Osaka University Medical School). Plasmid linearized by SpeI was microinjected into FVB fertilized eggs. A founder with a single site of integration and several tandem copies of the Mgat3 transgene was used to generate MMTV-Mgat3-PyMT mice. Mice were housed in a barrier facility with food and water ad libitum. Animal protocols were approved by the Animal Institute Committee of the Albert Einstein College of Medicine.

Tumor analysis. All 10 mammary glands of MMTV/PyMT females were palpated (genotype-blinded) thrice a week, from 6 wk. The three largest mammary tumors were excised, weighed, and fixed in 10% formalin at room temperature for...
24 h. Tumor tissue was also frozen in Trizol (Invitrogen) or stored at −80°C. Total RNA from tumors was analyzed by reverse transcription–PCR (RT-PCR) to determine expression of PyMT, Mga5, Mga5, and β-actin (primers in Supplementary Table S1).

Lung metastasis. Formalin-fixed lungs were paraffin-embedded and sectioned at 5 μm. Three sections per lung separated by 50 μm were stained with H&E and examined for metastatic lesions. Total RNA extracted from lungs in Trizol (Invitrogen) was treated with amplification grade DNasel (Invitrogen) and cDNA prepared using the SuperScript III first-strand synthesis system (Invitrogen). Real-time PCR was performed with 5 ng cDNA and primers: PyMT, 5′-agccacctctatcccecaac-3′ (forward), 5′-ctctctctctctctctca-3′ (reverse); β-actin, 5′-ggcggctctggacaca-3′ (forward), 5′-tgctctagttcaggg-3′ (reverse). PCR products incorporated SYBR Green dye (Qiagen) and were analyzed on a Prism 7700 system (Applied Biosystems) as follows: 95°C 15 min, then 94°C 15 s, 59°C 30 s, 72°C 30 s for 40 cycles. PCR product formation was measured continuously, and C(t) plots were generated. Plasmids TA-PyMT and TA-actin were used to determine the absolute number of PyMT and mouse β-actin transcripts.

In vivo invasion assay. Cell migration into microneedles filled with 25 nmol/L EGF (Invitrogen) and Matrigel (BD Biosciences) and placed into tumors of live anesthetized animals was performed as described (30). Passive collection of cells or tissue during insertion of needles was blocked. After 4 h, needles were removed and cell numbers were determined by 4′,6-diamidino-2-phenylindole staining. Cell migration is required for cells to enter needles (31).

Statistical analysis. Student's t test was from the Excel Data Analysis Package. Tumor development was compared by Mantel-Cox log-rank test. Univariate analysis was performed by the χ² test.

Results

Mga5 inhibits growth factor signaling in CHO/PyMT cells. To investigate effects of the bisecting GlcNAc and PyMT on growth factor signaling, we used PyMT-expressing CHO mutants whose glycosylation pathways are extremely well characterized (10, 25). Wild-type CHO cells lack Mga5 but express Mga5, LEC10B express Mga3 and Mga5, Lec4 lack both Mga3 and Mga5, and galectin binding is CHO>LEC10B>Lec4 (9). Lec8 lacks Gal resides on all glycans and does not bind galectins (9). As expected, glycoproteins with the bisecting GlcNAc from LEC10B/PyMT bound E-PHA and those without did not (Fig. 1B). However, glycoproteins from LEC10 or CHO Mga3 transfectants also bound L-PHA highly compared with cells expressing inactive Mga3T37 (Fig. 1B). Therefore Mga3 does not interfere with Mga5 in CHO cells.

The effect of the bisecting GlcNAc on growth rate was determined in medium with reduced FBS. All CHO cells expressing PyMT grew at a faster rate (Fig. 1C and D). At 7.5% FBS LEC10B/PyMT with the bisecting GlcNAc on complex N-glycans proliferated more slowly than CHO/PyMT. Lec4 with reduced N-glycan branching and Lec8 lacking Gal grew slower than CHO and LEC10B, whether they were expressing PyMT or not (Fig. 1C and D).

Activation of the Ras pathway was also investigated. After serum starvation for 24 h, cells were stimulated by 50 ng/mL PDGF-AB. All cells expressed similar cell surface levels of the PDGF receptor (PDGFR; Supplementary Fig. S1). The ratio of pErk-1/2/Erk-1/2 was greatest after 5 minutes in all cells (Fig. 2A). This ratio was reduced by ~40% to 50% in LEC10B/PyMT and Lec4/PyMT and to an even greater extent in Lec8/PyMT cells that lack Gal on glycans (Fig. 2B). Similar results were obtained for 10% serum. Treatment with the MEK kinase inhibitor UO126 inhibited both Erk-1/2 activation and cell proliferation (Supplementary Fig. S2).

The responses of PyMT transfectants to growth factors correlated with their reduced ability to bind galectin-1 and galectin-3 (CHO>LEC10B>Lec4>Lec8; ref. 9). Consistent with a role for galectins, PDGF-induced Erk-1 activation was strongly inhibited by treatment with lactose, which removes galectins from the CHO cell surface (9), whereas sucrose had no effect (Fig. 2C and D). The same results were obtained for Erk-2. Thus, galectins enhance signaling via PDGF receptors that carry wild-type complex N-glycans to a greater extent than PDGF receptors with bisected complex N-glycans (LEC10B) or complex N-glycans lacking a β1,6 branch (Lec4) or lacking Gal residues (Lec8).

Mga5 is expressed in lactating mammary glands and PyMT tumors. RT-PCR on total RNA from the fourth mammary gland failed to detect Mga5 expression in virgins but showed robust expression during lactation (Fig. 3A). Reflecting active Mga5, glycoproteins from lactating mammary glands bound E-PHA much better than those from nonlactating mammary glands (Fig. 3B). In mammary tumors, the PyMT oncogene was expressed equivalently in control (Mga5+/−/PyMT) and mutant (Mga5−−/PyMT) females (Fig. 3C). Mga5 transcripts, although undetected in virgin mammary glands, were present in mammary tumors of Mga5−−/PyMT virgins (Fig. 3C). Mga5 transcripts were also not detected in virgin mammary glands but were present in mammary tumors, irrespective of Mga5 genotype (Fig. 3C). Glycoproteins from Mga5−−/PyMT tumors bound E-PHA better than those from Mga5−−/PyMT tumors or virgin mammary glands (Fig. 3D). Mga5 gene expression did not affect the expression of Mga5 (Fig. 3C) nor L-PHA binding to tumor glycoproteins.

The absence of Mga5 enhances tumor development. Mammary tumor development in Mga5−−/PyMT (n = 4) and Mga5−−/PyMT (n = 23) females was shown to be equivalent (days to first tumor, 74 ± 1.7 versus 75 ± 2.3; days to first five tumors, 90.5 ± 3.4 versus 91.6 ± 2.22; weight of largest three tumors, 1.3 ± 0.2 g versus 1.2 ± 0.2 g, respectively, based on mean ± SEM), allowing Mga5−−/PyMT females to serve as controls. Early tumor lesions were examined by whole-mount analysis of the fourth mammary gland. Expression of Mga3 correlated with a reduced primary tumor lesion in several 5-week littermate pairs (Supplementary Fig. S3). The average lesion area was 3.2 mm² in 5-week Mga5+/−/PyMT females (n = 8) compared with 4.5 mm² in mutant
females (n = 9), but significance was $P > 0.05$. At 5 weeks all mammary tumors were adenomas.

Tumor development was examined by palpation from 6 weeks. $Mgat3^{-/-}$/PyMT mutants had a palpable tumor ~7 days earlier than controls, and they were also ~8 days ahead in having five palpable mammary tumors (Fig. 4A). Analysis of tumor development in all 10 mammary glands shows that control females remained tumor-free for a
significantly longer time than mice lacking Mgat3 (Fig. 4B). At 17 weeks, 17 of 20 Mgat3−/−/PyMT females had tumors in all 10 mammary glands compared with only 9 of 23 Mgat3+/−/PyMT control mice. Tumor burden is increased in the absence of Mgat3. The largest three tumors from 17-week mice were weighed. The absence of Mgat3 substantially affected tumor burden, increasing it by ∼1.7-fold (Fig. 4C). Among the 60 tumors from mutant mice, ∼30% weighed >1 g, whereas from control mice only ∼10% weighed >1 g (Fig. 4D). Body weight was similar for control and mutant females at 17 weeks.

Loss of Mgat3 causes increased pulmonary metastases. Western blot analyses showed that Mgat3+/−/PyMT tumors from three 15-week females expressed low amounts of functionally glycosylated α-DG recognized by mAb IIH6 (Fig. 5C), indicating enhanced metastatic potential (32, 33). This loss of IIH6 reactivity was confirmed in two Mgat3−/−/PyMT TEC lines (Fig. 5C). Lung metastases in control and mutant females were assayed by real-time PCR of PyMT transcripts in lung (34, 35). Total RNA was isolated from whole lungs of 8-week mice when mammary tumors were at the adenoma or early carcinoma stage. The absolute copy number of PyMT and β-actin was determined and the PyMT/actin ratio calculated. There was more PyMT expression in lungs of females lacking Mgat3 (Fig. 5D). This was also apparent in a plot of PyMT/actin transcript ratio compared with tumor lesion area (Fig. 5D). In mammary glands with the least tumor size, Mgat3−/−/PyMT lungs generated more PyMT transcripts than controls, in which the number of PyMT transcripts was relatively constant in relation to tumor area. By contrast, lung PyMT transcripts generally increased with tumor area in Mgat3−/−/PyMT mammary glands. Therefore, the absence of Mgat3 facilitates early lung metastasis from Mgat3−/−/PyMT tumors. By 17 weeks however, mutant and control lungs had many metastases in equivalent numbers based on histologic comparisons of lung sections.

Constitutive overexpression of Mgat3 retards early tumor formation. Because virgin mammary glands do not express Mgat3 (Fig. 3) and Mgat3+/−/PyMT virgins do not
begin to express Mgat3 until ~4 to 5 weeks, the effect of constitutively misexpressing Mgat3 under the MMTV promoter was investigated. Expression of the MMTV-Mgat3 transgene was confirmed by RT-PCR (Fig. 6A), and Mgat3 activity was shown by lectin blotting with E-PHA (Fig. 6B). Nontransgenic 5-week mammary tumor glycoproteins did not bind E-PHA. Tumor lesions in whole mounts of the fourth mammary gland were reduced in MMTV-Mgat3-PyMT transgenic females (Fig. 6C). Therefore constitutive overexpression of the Mgat3 gene inhibited the development of primary tumors at 4.5 weeks. However, a comparison at 13 weeks when PyMT tumors express Mgat3 revealed no significant difference in the tumor burden of MMTV-Mgat3-PyMT and control females.

Tumor cell migration is inhibited by Mgat3. A hallmark of enhanced progression of tumors is the acquisition of migratory properties by tumor cells (31). To investigate the effect of Mgat3 on tumor cell migration, cells that migrated into needles containing EGF and inserted into tumors were counted. In tumors lacking Mgat3, cell migration into both control and EGF-containing needles was increased (Fig. 6D). In tumors from Mgat3 overexpressing females, cell migration into both control and EGF-containing needles was reduced (Fig. 6D). Therefore Mgat3 inhibits the acquisition of migratory properties by mammary tumor cells.

Discussion

Understanding factors that affect tumor progression is important for determining how to control tumor growth and metastasis. Here we show that the addition of a single bisecting GlcNAc by Mgat3 to complex N-glycans on GFRs has pronounced effects on tumor progression. In the MMTV/PyMT mammary gland, premature expression of Mgat3 inhibits the development of primary tumor lesions and tumor cell migration. Conversely, when the Mgat3 gene is inactivated, mammary tumors appear earlier, develop more rapidly, contain more migratory tumor cells, and metastasize earlier to lung. The Mgat3 gene is not expressed in virgin mammary gland but is upregulated during MMTV/PyMT tumorigenesis. Mgat3 is similarly upregulated in WAP/SV40 T antigen (36) and MMTV/neu (37) mouse mammary tumors. The modification of E-cadherin by Mgat3 reduces its turnover and enhances cell-cell interactions (38, 39). Therefore, Mgat3 upregulation during tumor formation may be part of a cellular attempt to suppress tumor progression. We observed no evidence of spontaneous mammary tumor formation in C57Bl/6 Mgat3−/− females following five cycles of pregnancy and lactation, although C57Bl/6 mice are relatively resistant to mammary tumor development (22, 28). In humans, the MGAT3 gene maps to 22q13.1, in a
Figure 5. Increased expression of pErk-1/2 and early pulmonary metastases in the absence of Mgat3. A, Western blot of pErk-1/2 and Erk-1/2 in tumors from Mgat3⁺/⁻/PyMT and Mgat3⁻/⁻/PyMT females. Ratios of pErk-1/Erk-1 and pErk-2/Erk-2 in histograms. *, P < 0.05, two-tailed Student's t test. Bars, SEM.

B, EGF and PDGF-AB signaling in Mgat3⁺/⁻/PyMT and Mgat3⁻/⁻/PyMT TECs in the presence and absence of 10 μmol/L UO126. Bars, SEM. C, functionally glycosylated α-DG (IIH6) in 15-wk tumors and TEC lines. D, ratio absolute number PyMT/actin (×10³) transcripts. *, P < 0.05, two-tailed Student's t test. Bars, SEM (left). Ratio absolute number PyMT/actin (×10³) transcripts versus tumor area from the fourth mammary gland of the same mice (right).
region proposed to contain a tumor suppressor gene whose loss of heterozygosity (LOH) correlates with human breast cancers (40, 41). Expression data from human breast cancers have not revealed changes in Mgat3 transcripts to date, perhaps because MGAT3 mutations do not alter the expression of mutant alleles maintained by LOH. In human ovarian cancer, however, upregulation of the MGAT3 gene was observed (42).

To address how the loss of Mgat3 might promote tumor progression, we examined growth factor signaling in CHO/PyMT cells, MMTV/PyMT tumors, and MMTV/PyMT TEC cells. In LEC10B CHO cells with well-characterized bisected N-glycans (10) that cause a reduction in cell surface galectin binding (9), Mgat3 expression retards cell proliferation and inhibits galectin-promoted growth factor signaling. Importantly, CHO/PyMT cell proliferation is driven in part by Erk-1/2 activation as shown by the inhibition of cell growth by the MEK1/2 inhibitor UO126. Erk-1/2 activation is also regulated by Mgat3 in vivo, being greater in Mgat3^{−/−}/PyMT mammary tumors. Tumor-derived TECs lacking Mgat3 also exhibited enhanced Erk-1/2 activation in response to serum, EGF, or PDGF. Therefore, whereas the MMTV/PyMT oncogene was the driving force of mammary tumorigenesis, Mgat3 restrained growth factor signaling, and loss of Mgat3 resulted in an increase in Erk-1/2 activation.

PyMT is a scaffold protein that acts in the cytoplasm to cause transformation (24). It cannot be directly affected by Mgat3, which acts on N-glycans in the Golgi. This is the reason our investigations into how Mgat3 modulates mammary tumor progression focused on its effects on growth factor signaling via glycoprotein receptors such as PDGFR and EGFR known to have N-glycans modified by Mgat3 (15). Constitutive activation of EGF signaling due to activating mutations in EGFRs is a well-characterized basis of poor prognosis in breast cancer (43). PDGF signaling has also been implicated in both autocrine and paracrine mechanisms of promoting breast cancer progression (44, 45). A new mechanism for modulating signaling through GFRs is through interactions of lactosamine units on their complex N-glycans via a galectin lattice (46, 47). GFRs with more branched N-glycans are retained longer at the cell surface in a galectin lattice, allowing them to signal longer before endocytosis and downregulation. This is the mechanism that we propose is affected by the addition of the bisecting GlcNAc. Thus, we show that loss of Mgat3 reduces galectin-regulated growth factor signaling and cell proliferation. Growth factor receptors with a bisecting GlcNAc are predicted to be less well retained in a galectin lattice and to signal more weakly than their counterparts with N-glycans lacking the bisecting GlcNAc. We propose that reduced galectin lattice interactions caused by the bisecting GlcNAc are due to reduced galectin recognition of highly branched N-glycans carrying a bisecting GlcNAc. An alternative proposal that bisected complex N-glycans are not substrates for Mgat5 and thereby have reduced branching (13) seems unlikely because LEC10 glycoproteins carrying the bisecting GlcNAc bind much more L-PHA (which recognizes the product of Mgat5) than CHO glycoproteins and express N-glycans with many LacNAc
units (10), indicating that branched N-glycans are likely to have been produced by Mgat5.

Any growth factor or cytokine receptor or integrin with complex N-glycans is a potential substrate for Mgat3 and may have its signaling strength modulated by the addition of the bisecting GlcNAc. Thus, a broad spectrum of signaling pathways may be affected in MMTV/PyMT tumor cells. In this paper, we focus on Erk-1/2 activation and show a functional relationship to cell proliferation. It will be important in the future to determine the hierarchy of growth-promoting versus growth-retarding pathways, as well as those involved in epithelial-mesenchymal transition and metastasis that are modulated by Mgat3 during MMTV/PyMT tumor progression. For example, we observed that 15-week mammary tumors and TECs lacking Mgat3 express reduced levels of functionally glycosylated α-DG, which results in reduced binding to laminin and correlates with enhanced tumor progression (32, 33). Loss of another GlcNACT (β1,3GlcNACT-1), which is essential to the generation of lactosamine units on complex N-glycans and also to the functional glycosylation of α-DG, also leads to enhanced progression in a murine prostate cancer model (32). Mgat3 transfers the bisecting GlcNAc to the same subset of complex N-glycans that are substrates for β1,3GlcNACT-1 and may act, in part, by inhibiting the functional glycosylation of N-glycans on α-DG, which are known substrates of Large (48), a putative glycosyltransferase for which β1,3GlcNACT-1 is an essential partner (32).

In investigations of mechanism, it will also be important to identify which of the 10 mouse galectins promote the progression of MMTV/PyMT mammary tumors through their interactions with complex N-glycans. Whereas galectin-3 has been implicated in the regulation of growth factor signal-

References

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Elaine Lin and Jeffrey Pollard for expert advice; Riddhi Bhatarycharrya, Peter Draber, David Gross, Yan Deng, and Wen Dong for technical assistance; Shira Landskorner-Eiger, Suzanne Williams, and Parai Kenny for helpful discussions; and all who kindly provided reagents.

Grant Support

National Cancer Institute grants RO130645 and RO136434 (P. Stanley) and P30CA13330 supporting the Albert Einstein Cancer Center and Young Investigator Award Breast Cancer Alliance, Inc. (S. Goswami).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 07/22/2009; revised 01/05/2010; accepted 01/22/2010.

The Bisecting GlcNAc on N-Glycans Inhibits Growth Factor Signaling and Retards Mammary Tumor Progression

Yinghui Song, Jason A. Aglipay, Joshua D. Bernstein, et al.

Cancer Res 2010;70:3361-3371.