Mechanism of Autophagy to Apoptosis Switch Triggered in Prostate Cancer Cells by Antitumor Cytokine Melanoma Differentiation-Associated Gene 7/Interleukin-24

Abstract

Melanoma differentiation-associated gene 7 (mda-7)/interleukin-24 (IL-24) is a unique member of the IL-10 gene family, which displays a broad range of antitumor properties, including induction of cancer-specific apoptosis. Adenoviral-mediated delivery by Ad.mda-7 invokes an endoplasmic reticulum (ER) stress response that is associated with ceramide production and autophagy in some cancer cells. Here, we report that Ad.mda-7-induced ER stress and ceramide production trigger autophagy in human prostate cancer cells, but not in normal prostate epithelial cells, through a canonical signaling pathway that involves Beclin-1, Atg5, and hVps34. Autophagy occurs in cancer cells at early times after Ad.mda-7 infection, but a switch to apoptosis occurs by 48 hours after infection. Inhibiting autophagy with 3-methyladenosine increases Ad.mda-7-induced apoptosis, suggesting that autophagy may be initiated first as a cytoprotective mechanism. Inhibiting apoptosis by overexpression of antiapoptotic proteins Bcl-2 or Bcl-xL increased autophagy after Ad.mda-7 infection. During the apoptotic phase, the MDA-7/IL-24 protein physically interacted with Beclin-1 in a manner that could inhibit Beclin-1 function culminating in apoptosis. Conversely, Ad.mda-7 infection elicited calpain-mediated cleavage of the autophagic protein ATG5 in a manner that could facilitate switch to apoptosis. Our findings reveal novel aspects of the interplay between autophagy and apoptosis in prostate cancer cells that underlie the cytotoxic action of mda-7/IL-24, possibly providing new insights in the development of combinatorial therapies for prostate cancer. Cancer Res; 70(9); 3667–76. ©2010 AACR.

Introduction

A unique transformed cell-specific apoptosis-inducing gene, melanoma differentiation-associated gene 7/interleukin-24 (mda-7/IL-24), a member of the IL-10 gene family, was identified by subtraction hybridization from human melanoma cells induced to growth arrest and terminally differentiate by treatment with fibroblast IFN and mezerein (1–4). Subsequent experiments document that mda-7/IL-24 has nearly ubiquitous antitumor properties in vitro and in vivo, which resulted in successful entry into the clinic where safety and clinical efficacy when administered by adenovirus (Ad. mda-7; INGN 241) has been shown in a phase 1 clinical trial in humans with advanced cancers (3–12). Forced mda-7/IL-24 expression in cancer cells in vitro and in vivo inhibits angiogenesis (13); stimulates an antitumor immune response (14, 15); sensitizes cancer cells to radiation-, chemotherapy-, and antibody-induced killing (4, 16, 17); and elicits potent “antitumor bystander activity” (18, 19).

Binding of MDA-7/IL-24 to the chaperone protein BiP/GRP78 induces endoplasmic reticulum (ER) stress signals in a cancer cell–specific manner and culminates in apoptosis by activating the p38 mitogen-activated protein kinase pathway and inducing the growth arrest and DNA damage-inducible (GADD) genes (20). Recent studies have shown that MDA-7/IL-24 induces a toxic form of autophagy in glioblastoma cells through PERK activation (21, 22). Additionally, our data show that in kidney cancer cells glutathione S-transferase (GST)–conjugated MDA-7/IL-24 (GST-MDA-7) induces ceramide-dependent activation of CD95, promoting an ER stress response that activates multiple proapoptotic pathways decreasing tumor cell survival (23).

Autophagy is a catabolic pathway that degrades cellular macromolecules and organelles. It is regulated by autophagy-related genes (atg) that control the formation of autophagosomes, cytoplasmic vesicles with a double membrane surrounding a cargo. The autophagosomes fuse...
with lysosomes to form autolysosomes, in which lysosomal hydrolases digest the cargo to metabolites that are released back into the cytosol for recycling (24, 25). Because cancer cells often display defective autophagic capacities, autophagy is considered a tumor suppressor mechanism (26). Autophagy mediates cytotoxicity of a number of antineoplastic therapies and specific cytokines (27, 28). In contrast to its suppressive function, autophagy has also been shown to provide resistance to therapy-mediated tumor cell death. When tumor cells induce protective autophagy, inhibition of autophagy could sensitize tumor cells to the treatment by activating apoptosis (29, 30). Accordingly, manipulation of autophagy has significant potential to improve efficacy of anticancer therapeutics (31).

Eukaryotic cells have evolved strategies to respond to stress conditions. ER stress resulting from accumulation of misfolded proteins stimulates the assembly of the pre-autophagosomal structures (32, 33). Similarly, ceramide can induce autophagy by interfering with the class I phosphatidylinositol 3-kinase (PI3K) signaling pathway through de-phosphorylation of protein kinase B (PKB) and increasing expression of Beclin-1 (34). Ceramide also mediates tamoxifen-dependent accumulation of autophagic vacuoles observed in human breast cancer MCF-7 cells (35).

The present study assessed a potential role of MDA-7/IL-24 in promoting autophagy in prostate cancer cell lines. Our study indicates that Ad.mda-7 induces autophagy in prostate cancer cells, but not in normal immortal prostate epithelial cells, by augmenting ER stress and ceramide production. Moreover, we document that interaction of Beclin-1 with MDA-7/IL-24 and cleavage of ATG5 by calpain play pivotal roles in shifting autophagy to apoptosis.

Materials and Methods

Cell lines, culture conditions, viability, and colony-forming assays. DU-145, PC-3, and LNCaP prostate cancer cells were obtained from the American Type Culture Collection and cultured as described (16). DU-145-Bcl-xL and DU-145-Bcl-2 have been described (16). P69 cells are immortalized by SV40 T antigen and cultured as described (36). DU-145-Bcl-xL and cultured as described (36). Cells were obtained from the American Type Culture Collection and cultured as described (16). DU-145-Bcl-xL and DU-145-Bcl-2 have been described (16). Cells were obtained from the American Type Culture Collection and cultured as described (16). Cells were obtained from the American Type Culture Collection and cultured as described (16). Cells were obtained from the American Type Culture Collection and cultured as described (16). Cells were obtained from the American Type Culture Collection and cultured as described (16).

Measurement of autophagy. After infection of Ad.mda-7 for different times, cells were cultured with 0.05 mmol/L monodansylcadaverine (MDC) and analyzed by FACScan flow cytometry (38). DU-145 cells were transfected with green fluorescent protein (GFP)–labeled LC3 fusion protein followed by infection with Ad.mda-7 for different times and analyzed by confocal laser scanning microscope (Zeiss 510 Meta confocal imaging system; ref. 21).

Transmission electron microscopy. For transmission electron microscopy, DU-145 cells were processed and analyzed by a transmission electron microscope (Joel JEM-1230 equipped with a Gatan UltraScan 4000SP 4K × 4K charge-coupled device camera) as described previously (39).

Mass spectrometric determination of ceramide levels. DU-145 cells were infected with 100 pfu/cell of Ad.mda-7 and collected at different times followed by freezing at −80°C. Lipids were isolated from the cells, and ceramide concentration was analyzed by tandem mass spectrometry (22).

Assessment of cytosolic Ca²⁺ levels. A high-speed wavelength switching fluorescence image analysis system (a Vector 3 plate reader) was used to determine Ca²⁺ in DU-145 cells, seeded in 96-well plates (20,000 per well), with fura-2 acetoxymethyl ester (fura-2) as an indicator. The ratio of fura-2 emissions, when excited at the 340- and 380-nm wavelengths, was recorded, and analysis software provided with the Vector 3 plate reader was used to process and statistically analyze data (22).

Caspase and calpain assays. Caspase and calpain activities were measured using Caspase-Glo 3/7 assay and Calpain-Glo assay kits, respectively, following the manufacturer’s protocol (Promega Corp.).

Western blot analysis and immunoprecipitation. Preparation of whole-cell lysates and Western blotting for MDA-7/IL-24, LC3, ATG5, hVps34, Beclin-1, total PKB, total PI3K, phospho-PKB, and phospho-PI3K protein levels were as described (19). For immunoprecipitation, cell lysates were incubated overnight at 4°C with anti–MDA-7/IL-24 and anti–Beclin-1 antibodies followed by coupling with protein A–Sepharose and Western blotting as described (20).

Immunofluorescence assays. Immunofluorescence in DU-145 cells was performed as described (19). For immunofluorescence, the primary antibodies used were anti–MDA-7/IL-24 (1:100) and anti–Beclin-1 (1:100).

Extraction of total RNA and real-time PCR. Total RNA was extracted using a RNeasy Mini kit (Qiagen). Real-time PCR was performed using ABI 7900 Fast Real-Time PCR System and Taqman gene expression assays (Applied Biosystems).

Statistical analysis. Data are represented as the mean ± SE and analyzed for statistical significance using one-way ANOVA followed by Newman-Keuls test as a post hoc test. A P value of <0.05 was considered significant.

Results

Ad.mda-7 induces autophagy in prostate cancer cells. We first confirmed that Ad.mda-7 induces autophagy in DU-145 prostate cancer cells. LC3, a mammalian homologue of yeast atg8, is essential for autophagosome formation. The intracellular localization of LC3 in autophagic vacuoles induced by Ad.mda-7 was determined by transient transfection of DU-145 cells with a plasmid expressing GFP fused with LC3 (GFP-LC3) followed by Ad.mda-7 infection. Confocal microscopic examinations at different times (12–48 hours) were used to trace the redistribution of LC3 during autophagosome and autolysosome formation. In the control and Ad.vec-treated cells, GFP-LC3 was found predominantly as diffuse green fluorescence in the cytoplasm. However, in Ad.mda-7–treated cells, characteristic punctate fluorescent patterns were observed, indicating the recruitment of...
The numbers of cells with punctate GFP-LC3 increased significantly as early as 12 hours after Ad.mda-7 infection, reaching a peak at 24 hours after infection and decreasing at 48 hours (Fig. 1A, bottom). Autophagy was confirmed by MDC staining of DU-145 cells followed by flow cytometry, which occurs when MDC accumulates in mature autophagic vacuoles, such as autophagolysosomes. Similar to GFP-LC3 staining, MDC staining increased at 12 hours, reached a peak at 24 hours, and then declined at 48 hours following Ad.mda-7 infection when compared with control or Ad.vec-infected cells (Fig. 1B).

Electron microscopy provided further confirmation of Ad.mda-7–induced autophagy in DU-145 cells. Electron micrographs of untreated and Ad.vec-infected cells showed normal morphology of all organelles, with mitochondria scattered homogeneously throughout the cells (Fig. 1C). Images taken 12 hours after Ad.mda-7 infection showed a marked accumulation of membrane-bound electron dense structures sequestering cellular components, a distinctive feature of autophagosomes (Fig. 1C; Supplementary Fig. S1). At 24 hours after Ad.mda-7 infection, these double-membrane autophagosomes that contained remains of the cytoplasmic material and mitochondria fused with the primary lysosomes, leading to the formation of single-membrane autolysosomes (Fig. 1C; Supplementary Fig. S1). At 48 hours, autophagy was accompanied by loss of mitochondria and other organelles with extensive vacuolization of the cytoplasm (Fig. 1C; Supplementary Fig. S1). At this stage, nuclear chromatin condensed into small irregular masses of chromatin with the disappearance of nuclear envelope. At the plasma membrane, increased blebbing was seen in many cells, indicating apoptosis.

To rule out possible nonspecific aggregations of ectopically expressed GFP-LC3, we monitored changes in expression of endogenous LC3. Infection of DU-145 cells with Ad.mda-7 led to a rapid accumulation of the LC3-II form in a dose- and time-dependent manner when compared with control and Ad.vec-infected cells (Fig. 2A). As a corollary to our other findings, the increase in LC3-II was maximum 24 hours after Ad.mda-7 infection and decreased by 48 hours after infection. A similar accumulation of LC3-II on Ad.mda-7 infection was observed in two other human prostate cancer cell lines PC-3 and LNCaP, indicating that Ad.mda-7 induces autophagy in additional prostate cancer cells of diverse genetic background and phenotype (Supplementary Fig. S2). The normal immortal human prostate epithelial cell line P69 did not show any autophagic features with Ad.mda-7 infection, providing confirmation of prostate cancer–specific effects of mda-7/IL-24 (Supplementary Fig. S2).

The increase in LC3-II accumulation can be associated with either an enhanced formation of autophagosomes or impaired autophagosome degradation. To differentiate between these two possibilities, LC3-II expression was assessed in the presence of bafilomycin A1, an inhibitor of V-ATPase that interferes with the fusion of autophagosomes and lysosomes blocking autophagosome as well as LC3-II degradation. DU-145 cells treated with either Ad.mda-7 or

Figure 1. MDA-7/IL-24 induces autophagy in DU-145 cells. A, DU-145 cells were transfected with GFP-LC3 and infected with Ad.mda-7 (100 pfu/cell), and after different times, localization of LC3 in transfected cells was examined by confocal microscopy. Magnification, ×100. Autophagosome formation was quantified, and data were presented as percentage of GFP-LC3–transfected cells with punctate fluorescence to autophagosome formation. A minimum of 100 GFP-LC3–transfected cells was counted. *, P < 0.05; **, P < 0.001, compared with control at the corresponding time. B, the MDC fluorescent intensity of Ad.mda-7–treated DU-145 cells was analyzed by flow cytometry. This result was representative of three different experiments. C, DU-145 cells were infected with 100 pfu/cell of Ad.mda-7 or Ad.vec for different times, and cells were fixed and processed for electron microscopy. Single arrow, autophagosome; double arrow, empty vacuole. Scale bars, 2 μm.
rapamycin, a prototypical autophagy inducer, showed further accumulation of LC3-II in the presence of bafilomycin A1 (Fig. 2B). These observations suggest that the increased LC3-II association with vesicles mediated by Ad.mda-7 was a consequence of increased autophagosome formation.

ER stress and ceramide mediate autophagy in Ad.mda-7–treated DU-145 cells via the canonical pathway.

Autophagy can be induced by the canonical pathway in which Beclin-1 initiates the generation of the autophagosome by forming a multiprotein complex with class III PI3K or hVps34 or by the noncanonical pathway that is independent of Beclin-1 and hVps34 (40). To check which pathway mediates Ad.mda-7–induced autophagy, we used a small interfering RNA (siRNA) approach to knock down essential autophagy (atg) genes, such as Beclin-1, atg5, and hVps34, and quantified GFP-LC3 punctate formation and LC3-II accumulation. The specific siRNAs significantly downregulated the corresponding proteins (Supplementary Fig. S3A). Inhibition of Beclin-1, atg5, or hVps34 decreased the percentage of GFP-LC3–positive cells as well as LC3-II levels (Fig. 2C and D, respectively) on Ad.mda-7 infection, indicating that Ad.mda-7 triggers autophagy via the canonical pathway.

mda-7/IL-24 induces ER stress and ceramide production, and these changes play an important role in autophagy induction (32–35). We therefore determined whether ER stress and ceramide production contribute to autophagy induction by Ad.mda-7 in DU-145 cells. We first confirmed Ad.mda-7–induced ER stress by upregulation of ER stress markers (i.e., BiP/GRP78, GRP94, GADD153, and P-eIF2α) on Ad.mda-7 infection of DU-145 cells (Supplementary Fig. S2B). We also confirmed increased intracellular ceramide production by Ad.mda-7 in DU-145 cells (Supplementary Fig. S3C). We next checked the effect of the ER stress inhibitor salubrinal and the ceramide inhibitor ISP-1 on Ad.mda-7–induced autophagy by analyzing LC3-II accumulation 24 hours after infection. Cotreatment of Ad.mda-7–infected DU-145 cells with nontoxic doses of salubrinal (5 μmol/L) or ISP-1 (10 μmol/L) significantly inhibited LC3-II accumulation, and a combination of salubrinal and ISP-1 further reduced Ad.mda-7–induced LC3-II accumulation (Fig. 3A). The three major transducers of ER stress are IRE-1, PERK, and ATF-6, which all sense the presence of unfolded proteins and transduce signals to the nucleus or cytosol. Therefore, we hypothesized that one or more of these transducers must activate the signaling required for Ad.mda-7–induced autophagy and tested this possibility using siRNA targeting IRE-1 and ATF-6 with PERK dominant-negative–treated cells (Supplementary Fig. S3A and D). Among these treatments, IRE-1 and ATF-6 knockdown cells showed no change of GFP-LC3-II accumulation during a 24-hour period after Ad.mda-7 infection (Supplementary Fig. S3E). But Ad.mda-7–induced punctate staining of GFP-LC3 vacuoles and LC3-II accumulation was significantly inhibited by a dominant-negative inhibitor of PERK in DU-145 cells (Fig. 3B), indicating a potential involvement of PERK, an ER stress mediator, in Ad.mda-7–induced autophagy.

Figure 2. MDA-7/IL-24 induces canonical autophagy in DU-145 cells. A, DU-145 cells were infected with Ad.mda-7 or Ad.vec for different times and LC3 expression was analyzed by Western blotting. B, LC3 expression was examined after 24 hours of treatment with Ad.mda-7 or Ad.vec (100 pfu/cell) in the presence of rapamycin (100 nmol/L) or bafilomycin A1 (100 nmol/L). C, cells were transfected with the indicated siRNAs and LC3-GFP followed by infection with 100 pfu/cell Ad.mda-7 or Ad.vec, and cytoplasmic aggregation of LC3-GFP was determined. A minimum of 100 GFP-LC3–transfected cells was counted. *, P < 0.05; **, P < 0.001, compared with siRNA (si) control. D, LC3-II expression 24 hours after administration of the indicated siRNAs and Ad.mda-7 infection (100 pfu/cell) by immunoblot. Densitometry was performed on the original blots, and the ratio of LC3-II to actin in control cells was 1.
To determine if the Ad. mda-7–dependent increase in the intracellular pool of ceramides results in relief of the inhibitory effect of the class I PI3K/PKB pathway on autophagy, we investigated the phosphorylation status of the p85 subunit of class I PI3K and PKB in Ad. mda-7–infected DU-145 cells. Ad. mda-7 infection resulted in a significant decrease of the p85 subunit of class I PI3K and PKB phosphorylation at Tyr458 and Ser473, respectively (Fig. 3C). Interestingly, Ad. mda-7 infection resulted in a significant increase in Beclin-1 and ATG5 protein and mRNA levels (Fig. 3C and D, respectively) at 24 hours in DU-145 cells. Collectively, these observations suggest that Ad. mda-7–induced ER stress and ceramide production might contribute to autophagy in prostate carcinoma cells.

Ad. mda-7–induced autophagy leads to apoptosis in DU-145 cells. Electron microscopic studies documented autophagic features at 24 hours followed by apoptotic features at 48 hours after Ad. mda-7 infection in DU-145 cells (Fig. 1C). To investigate the potential relationship between autophagy and apoptosis, we analyzed growth-inhibitory potential of Ad. mda-7 in DU-145 cells in the presence of the autophagy inhibitor 3-methyladenosine (3-MA) by standard MTT assays. The 3-MA treatment significantly augmented the Ad. mda-7–induced reduction of cell viability (Fig. 4A) at 48 hours after infection. Additionally, caspase-3/7 activity was increased in the presence of 3-MA in Ad. mda-7–infected DU-145 cells, indicating that inhibition of autophagy could sensitize prostate tumor cells to the cytotoxic (apoptotic) actions of mda-7/IL-24 (Fig. 4B) and Ad. mda-7–induced autophagy might be a cytoprotective mechanism in prostate tumor cells (29, 30).

The connection between Ad. mda-7–induced autophagy and apoptosis was investigated further using Bcl-2–overexpressing and Bcl-xL–overexpressing DU-145 cells (DU-Bcl-2 and DU-Bcl-xL). DU-Bcl-2 and DU-Bcl-xL clones were extensively characterized previously, showing that overexpression of these antiapoptotic proteins blocks apoptosis induction by Ad. mda-7 (16, 37, 41). However, Ad. mda-7–infected DU-Bcl-2 and DU-Bcl-xL cells continued to exhibit higher autophagic phenotypes compared with control DU-Neo clones as evidenced by LC3-II accumulation and GFP-LC3 punctate vacuole formation (Fig. 4C). These findings indicate that in DU-145 cells, Ad. mda-7–induced autophagy culminates in apoptosis, and when apoptosis is blocked by overexpression of Bcl-2 or Bcl-xL, autophagy increases (42). To further confirm this possibility, we stained Ad. mda-7–infected DU-145 cells with MDC and propidium iodide (PI) and analyzed treated cells by flow cytometry 48 hours after infection. We observed that autophagic cells also displayed apoptotic features as revealed by both MDC and PI staining in 25.8% of Ad. mda-7–infected cells compared with 1.9% of Ad. vec–infected cells (Fig. 4D).
Calpain-mediated cleavage of ATG5 and interaction of Beclin-1 with MDA-7/IL-24 switches autophagy to apoptosis. To clarify the role of Beclin-1 and atg5 in Ad.mda-7-induced apoptosis, we knocked down Beclin-1 and atg5 expression with siRNA in DU-145 cells and examined Ad.mda-7 sensitivity by MTT and caspase-3/7 assays 48 hours after infection. Beclin-1–deficient DU-145 cells exhibited increased sensitivity toward Ad.mda-7 when administered at 100 pfu/cell (Fig. 5A and B). In contrast, silencing atg5 gene resulted in partial resistance to Ad.mda-7 (Fig. 5A and B). Colony-forming assays confirmed the increased sensitivity of knockdown Beclin-1 and resistance of atg5–deficient DU-145 cells toward Ad.mda-7 compared with control DU-145 cells (Fig. 5C). These findings suggest that although, at 24 hours after infection, Ad.mda-7 induces Beclin-1 and atg5 to facilitate autophagy, at 48 hours there might be inhibition of Beclin-1 and augmentation of atg5 that then leads to apoptosis. At 48 hours after infection, Ad.mda-7 treatment did not significantly alter the mRNA and protein levels of Beclin-1 (Figs. 5D and 6A, respectively). We hypothesized that MDA-7/IL-24 might physically interact with Beclin-1 and inhibit Beclin-1 function. Indeed, at 48 hours after Ad.mda-7 infection of DU-145 cells, coimmunoprecipitation studies using either anti–MDA-7/IL-24 or anti–Beclin-1 antibody for immunoprecipitation followed by immunoblotting with anti–Beclin-1 or anti–MDA-7/IL-24 antibody, respectively, confirmed an interaction between these proteins (Fig. 6B, top). Double immunofluorescence studies using confocal microscopy further confirmed the interaction of MDA-7/IL-24 and Beclin-1 in DU-145 cells (Fig. 6B, bottom). The overlapping localization of the two proteins was visible as intense yellow in the merged image. The role of the antiapoptotic proteins Bcl-2 and Bcl-xL on Beclin-1 in switching autophagy to apoptosis in Ad.mda-7–infected DU-145 cells was interrogated by immunoprecipitation assays (Supplementary Fig. S4A). The results indicated that Beclin-1 did not interact with either Bcl-2 or Bcl-xL in the presence of MDA-7/IL-24, thereby nullifying the effect of these proteins in Ad.mda-7–induced apoptosis.

To determine the role of ATG5 in the predominantly apoptotic phase at 48 hours after Ad.mda-7 infection, atg5 mRNA and protein expressions were analyzed. At 48 hours, Ad.mda-7 infection resulted in significant induction in atg5 mRNA levels (Fig. 5D). Although the levels of ATG5 protein did not significantly change on Ad.mda-7 infection, a second band corresponding to a molecular weight 24-kDa protein was observed in Ad.mda-7–infected groups (Fig. 6A). A recent report indicates that apoptosis is associated with calpain-mediated atg5 cleavage, resulting in an NH2-terminal cleavage product with a relative molecular mass of 24 kDa (43). In this context, calpain activity was measured in Ad.mda-7–treated cells by Calpain-Glo protease assay. Calpain activity
was significantly higher in Ad.mda-7–infected cells when compared with control or Ad.vec-infected cells (Fig. 6C). We also determined if calpain activation by ER stress induced calcium mobilization following Ad.mda-7 infection. Ad.mda-7 enhanced calcium release compared with control Ad.vec-infected cells, and this calcium release was inhibited by calbindin (Supplementary Fig. S4B).

Discussion

mda-7/IL-24 has significant potential as an anticancer therapeutic because of its multiplicity of antitumor properties, its nontoxic effects to normal cells and tissues, and its safety and efficacy as observed in a clinical trial (5–8). In the present study, we document that Ad.mda-7–induced
ER stress and ceramide production lead to early autophagy that subsequently switches to apoptosis in human prostate cancer cells (Fig. 6D). Our experimental evidences indicate that autophagy induced by Ad.mda-7 might initially serve a cytoprotective function and inhibition of autophagy by 3-MA augments apoptosis induction by Ad.mda-7. Accordingly, by combining Ad.mda-7 with autophagy inhibitors, it may be possible to augment the antitumor properties of Ad.mda-7, resulting in an improved therapeutic index for patients with prostate cancer. Although potential protective functions of autophagy with respect to Ad.mda-7 action have been observed in specific malignant glioma and leukemia cells (21, 44), the mechanism by which this process switches to apoptosis has until now not been mechanistically resolved.

Our experiments show that Ad.mda-7 first induces autophagy selectively in different types of human prostate cancer cells, without promoting this effect in immortal normal human prostate epithelial cells (Fig. 1; Supplementary Fig. S2). We presently show that autophagy in prostate cancer cells is a consequence of ER stress and ceramide generation, two processes also induced by Ad.mda-7 (20, 45). The reason Ad.mda-7 does not induce these changes in normal cells even in the presence of abundant levels of MDA-7/IL-24 protein remains an enigma. Efforts to decipher this phenomenon will provide further insights into the molecular mechanisms of mda-7/IL-24 action.

Ceramide is an important second messenger molecule involved in signaling pathways that control cell proliferation, differentiation, death, and autophagy (34, 35). Ceramide induced by Ad.mda-7 controls autophagy by interfering with two pathways encompassing PI3Ks. Class I PI3K and class III PI3K products have been reported to paradoxically inhibit and stimulate autophagy, respectively (Figs. 2C and 3C). Ceramide reverts the inhibition of the class I PI3K signaling pathway on autophagy by interfering with IL-13-dependent activation of PKB and stimulation of Beclin-1 expression (34). Additionally, low doses of radiation induce protective autophagy in breast cancer cells (46). From these results, it is possible that ceramide could be involved in triggering an autophagic response to protect cells during the initial 24 hours of Ad.mda-7 treatment, whereas a more intense stimulus (48 hours after treatment) causes prostate cancer cell death by apoptosis. These findings differ from the effect of high doses of GST-MDA-7 in glioma and renal cells, where it induces toxic autophagy (21, 22). A possible explanation might be cell type specificity of action of mda-7/IL-24. Alternatively, the disparate response may reflect subtle differences in the mechanism of antitumor action of GST-MDA-7 (versus secreted MDA-7/IL-24 protein) that does not induce autocrine induction of endogenous mda-7/IL-24 (18, 19) and exerts its anticancer activity without dependence on canonical MDA-7/IL-24 receptors (47).

Cellular stress can promote autophagy and apoptosis in multiple ways, including induction of autophagy/apoptosis sequentially, simultaneously, or in a mutually exclusive manner (29, 48). Interestingly, our data show that Ad.mda-7-induced autophagy and apoptosis occur in a sequential manner and are mutually exclusive with an initial induction of autophagy followed by apoptosis. The switch between autophagy and apoptosis is a complicated process that is currently poorly defined. It was shown that calpain-mediated cleavage of ATG5 is a critical proapoptotic event, which activates caspase-dependent cell death (43). Recently, Beclin-1 has been shown to be a substrate for caspases and that downregulation of Beclin-1 expression sensitizes cells to apoptotic cell death (49). In another study, stimulation of the cell death signal by ceramide degrades the autophagy-related proteins Beclin-1 and ATG5 (50), which subsequently induces caspase-dependent apoptosis. We presently show that, 48 hours after Ad.mda-7 infection, protective autophagy shifts to apoptosis that is regulated by Beclin-1 and ATG5. During this predominantly apoptotic phase of Ad.mda-7 treatment, the interaction between Beclin-1 and MDA-7/IL-24 might inhibit autophagy. At this time, Ad.mda-7 increased calpain activity leads to the cleavage of ATG5 and production of a 24-kDa molecular weight product, which might translocate from the cytosol to the mitochondria and be involved in apoptosis (43). Taken together, this study provides new insights into the complex nature of ER stress and ceramide response that may be involved in switching Ad.mda-7-induced protective autophagy to apoptosis by regulation of autophagy-related proteins (Fig. 6D).

Our study suggests a novel role for Beclin-1 and ATG5 in mediating a switch between protective autophagy and apoptosis in prostate cancer cells infected with Ad.mda-7. These studies implicate calpain activation, which can cleave ATG5 resulting in a 24-kDa truncated protein, as a major contributor to this physiologic switch between protective autophagy and apoptosis, both of which are promoted by mda-7/IL-24 in prostate cancer cells. They also raise a number of intriguing questions. Does the interaction between MDA-7/IL-24 and Beclin-1, or ATG5 cleavage play a role in immune cell development and maturation? Do these interactions or changes in pro-autophagic molecules play any role in inflammatory responses? Further studies aimed at unraveling these newer aspects of MDA-7/IL-24 function would seem valuable. Moreover, based on our present observations, using strategies to block autophagy through promoting ER stress and ceramide production may represent a viable tactic for enhancing the antitumor activity of mda-7/IL-24 toward prostate and potentially other cancers.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

NIH National Cancer Institute grants R01 CA097318 (P.B. Fisher), R01 CA127561 (P.B. Fisher), and P01 CA104177 (P.B. Fisher, P. Dent, and D.T. Curiel) and National Foundation for Cancer Research (P.B. Fisher). D. Sarkar is a Harrison Endowed Scholar and P.B. Fisher holds the Thelma Newmeyer Corman Endowed Chair in Cancer Research in the VCU Massey Cancer Center.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 10/02/2009; revised 02/10/2010; accepted 02/25/2010; published OnlineFirst 04/20/2010.
References

43. Yousfi S, Perozzo R, Schmit I, et al. Calpain-mediated cleavage of...
Cancer Research

Mechanism of Autophagy to Apoptosis Switch Triggered in Prostate Cancer Cells by Antitumor Cytokine Melanoma Differentiation-Associated Gene 7/Interleukin-24

Cancer Res 2010;70:3667-3676. Published OnlineFirst April 20, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-3647

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/04/19/0008-5472.CAN-09-3647.DC1

Cited articles
This article cites 50 articles, 16 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/9/3667.full.html#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
/content/70/9/3667.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.