Adipose-Derived Mesenchymal Stem Cells as Stable Source of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery for Cancer Therapy

Giulia Grisendi, Rita Bussoleli, Luigi Cafiarelli, Istvan Petak, Valeria Rasini, Elena Veronesi, Giorgio De Santis, Carlotta Spano, Mara Tagliazucchi, Helga Bardi Juhasz, Laura Scarabelli, Franco Bambi, Antonio Frassoldati, Giulio Rossi, Christian Casali, Uliano Morandi, Edwin M. Horwitz, Paolo Paolucci, Pierfranco Conte, and Massimo Dominici

Abstract

Adipose-derived mesenchymal stromal/stem cells (AD-MSC) may offer efficient tools for cell-based gene therapy approaches. In this study, we evaluated whether AD-MSC could deliver proapoptotic molecules for cancer treatment. Human AD-MSCs were isolated and transduced with a retroviral vector encoding full-length human tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), a proapoptotic ligand that induces apoptosis in a variety of human cancers but not normal tissues. Although several studies have documented the antitumor activity of recombinant human TRAIL, its use in vivo is limited by a short half-life in plasma due to a rapid clearance by the kidney. We found that these limitations can be overcome using stably transduced AD-MSC, which could serve as a constant source of TRAIL production. AD-MSC armed with TRAIL targeted a variety of tumor cell lines in vitro, including human cervical carcinoma, pancreatic cancer, colon cancer, and, in combination with bortezomib, TRAIL-resistant breast cancer cells. Killing activity was associated with activation of caspase-8 as expected. When injected i.v. or s.c. into mice, AD-MSC armed with TRAIL localized into tumors and mediated apoptosis without significant apparent toxicities to normal tissues. Collectively, our results provide preclinical support for a model of TRAIL-based cancer therapy relying on the use of adipose-derived mesenchymal progenitors as cellular vectors. Cancer Res; 70(9); 3718–29. ©2010 AACR.

Introduction

Mesenchymal stromal/stem cells (MSC) have gained interest as promising tools for cancer therapy because wild-type (WT) and gene-modified (GM) bone marrow (BM) MSC may exert an antitumor potential (1–6). Whereas BM has been the first recognized source of MSC (7), adipose tissue represents a valid reservoir of mesenchymal progenitors (8). Adipose tissue can be obtained in relevant amount and easily processed to release large numbers of adipose-derived MSC (AD-MSC; refs. 9, 10). Similarly to BM-MSC, AD-MSCs are particularly suitable for cell gene therapy approaches because they can be expanded and then transformed by several vectors (11–13).

Starting from this background, we wanted to test whether AD-MSC could represent an efficient vehicle to deliver tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL). TRAIL is a promising anticancer death ligand with a sequence homology to TNF and FasL (14). It is a type II membrane-bound (MB) protein that can be processed by cysteine protease to generate a soluble ligand (15). Both MB protein and soluble ligand can rapidly induce apoptosis in a variety of cancers, sparing normal cells (16). TRAIL mediates the apoptotic effect binding to its death receptors (DR), as homotrimer, particularly on TRAIL-R1/DR4 and TRAIL-R2/DR5 activation, a protein complex, causes caspase-8 activation, triggering apoptosis (17–19). Although several studies have shown the antitumor activity of recombinant TRAIL (rTRAIL), its in vivo use is limited due to short half-life in plasma (20). To overcome these limitations, we generate stably modified AD-MSC to obtain cellular vehicles for a targeted and constant TRAIL delivery. We here originally describe the efficiency of human AD-MSC armed with TRAIL to induce apoptosis in several tumor types and, particularly, in a human cervical carcinoma model.
Materials and Methods

Cell lines and primary tumor cells. HeLa cells (American Type Culture Collection, LGC srl) were cultivated in DMEM (Life Technologies) with 10% fetal bovine serum (HyClone), 1% glutamine (200 mmol/L), and 1% penicillin-streptomycin (100 μg/mL and 10 mg/mL; Euroclone). Primary tumor specimens were obtained after informed consent from patients with histologically documented lung cancer. Tumor cell suspensions were obtained as previously reported (21). For morphologic analyses, trypsinized cells were spun onto slide and stained by standard H&E staining.

Isolation of TRAIL cDNA, vector production, and AD-MSC transduction. Full-length human TRAIL gene (NM_003810.2) was amplified from cDNA isolated by Expand High Fidelity Taq (Roche), as described (22). The following primers containing XhoI and EcoRI sites were used: 5′-ATGGCTATGAGTGACAACTTA-3′ (forward) and 5′-CCCCGGAAAATCATCAGGATT-3′ (reverse). A bicistronic murine stem cell virus–derived retroviral vector (pMiGR1) encoding for green fluorescent protein (GFP) was modified, including the amplified full-length human TRAIL cDNA. The resulting vector was defined as MiGR1-TRAIL-GFP, whereas the empty MiGR1-GFP vector was used as control. Retrovirus production was performed by the FLYRD18 packaging cell lines, as published (23). After approval by local Ethical Committee, AD-MSCs were obtained from individuals performing liposuction for aesthetic purposes and processed with guidelines under approved protocols. Six groups of mice (n ≥ 3 each) were considered as follows: (a) s.c. flank injected once with 1 × 10^6 AD-MSC GFP; (b) s.c. flank injected once with 1 × 10^6 AD-MSC TRAIL; (c) s.c. flank injected once with 2 × 10^5 HeLa; (d) s.c. flank injected with 2 × 10^5 HeLa and, as soon as an appreciable tumor burden appeared (15–20 d), treated with multiple (n = 3) biweekly intratumor injections of 10^6 AD-MSC GFP; (e) tumor injected as in (d) but treated with multiple (n = 3) biweekly intratumor injections of 10^6 AD-MSC TRAIL; (f) tumor injected as in (d) but treated with multiple (n = 3) biweekly tail i.v. injections of 10^6 AD-MSC TRAIL.

AD-MSC TRAIL toxicity was assessed in groups (a) and (b), particularly considering liver (24). Parameters such as survival, weight, and serum liver enzymes by spectrophotometer (Cobas C501, Roche Diagnostic) were recorded. In groups (c) to (g), weights were weekly measured and tumor sizes were calculated as reported (25): volume = length × width^2/2. After 60 d, animals were sacrificed, liver was harvested, and tumor was excised.

Fluorescence-activated cell sorting analysis. Cells were stained with PE-anti-TRAIL, PE-anti-TRAIL-R1/DR4, PE-anti-TRAIL-R2/DR5 (Biolegend), and isotype controls (Becton Dickinson). Intracellular staining on transduced AD-MSCs and controls was performed with BD Cytofix/Cytoperm kit (Becton Dickinson) using the PE-anti-TRAIL antibody.

ELISA. TRAIL was measured by Quantikine Human TRAIL/ TNFSF10 kit (R&D Systems) according to instructions.

Apoptosis and caspase-8 activation assays. HeLa cells were seeded, and after 12 h, either AD-MSC TRAIL or AD-MSC GFP were added at different T:E ratios (1:1, 1:2, and 1:5). Activity of AD-MSC TRAIL was evaluated by propidium iodide (PI; Sigma) staining after 24 and 48 h by fluorescence-activated cell sorting (FACS) gating on GFP-negative cells. Soluble rTRAIL (up to 20 μg/mL; PeproTech, Inc.) was used as positive control. Experiments were performed at least thrice. Isolated primary lung tumor cells were cocultured with either AD-MSC TRAIL or AD-MSC GFP at 1:5 T:E ratio, and tumor cell death was assessed as described above.

Caspase-8 activation was measured by FACS with the CaspGLOW Red Active Caspase-8 Staining kit (Biovision Research, Inc.) coculturing either AD-MSC TRAIL or AD-MSC GFP with HeLa (T:E ratio: 1:5 for 8 h) using as negative control the caspase inhibitor Z-VAD-FMK (10 μmol/L). In addition, cocultures of HeLa cells with either AD-MSC TRAIL or AD-MSC GFP were established using a 0.4-μm Transwell system (Corning, Inc.) to separate the two populations (T:E ratios: 1:1, 1:2, and 1:5). For inhibition studies, cocultures of HeLa cells and AD-MSC TRAIL (T:E ratio: 1:1) were treated with 0.8, 1.6, 3.2, and 6.4 μg/mL of neutralizing anti-human TRAIL antibody (PeproTech). HeLa viability was tested by FACS after PI staining.

Animal studies. Eight- to 10-wk-old NOD.CB17-Prkdcscid/J male and female mice (Charles River) were kept in accordance with guidelines under approved protocols. Six groups of mice (n ≥ 3 each) were considered as follows: (a) s.c. flank injected once with 1 × 10^6 AD-MSC GFP; (b) s.c. flank injected once with 1 × 10^6 AD-MSC TRAIL; (c) s.c. flank injected once with 2 × 10^5 HeLa; (d) s.c. flank injected with 2 × 10^5 HeLa and, as soon as an appreciable tumor burden appeared (15–20 d), treated with multiple (n = 3) biweekly intratumor injections of 10^6 AD-MSC GFP; (e) tumor injected as in (d) but treated with multiple (n = 3) biweekly intratumor injections of 10^6 AD-MSC TRAIL; (f) tumor injected as in (d) but treated with multiple (n = 3) biweekly tail i.v. injections of 10^6 AD-MSC TRAIL.

AD-MSC TRAIL toxicity was assessed in groups (a) and (b), particularly considering liver (24). Parameters such as survival, weight, and serum liver enzymes by spectrophotometer (Cobas C501, Roche Diagnostic) were recorded. In groups (c) to (g), weights were weekly measured and tumor sizes were calculated as reported (25): volume = length × width^2/2. After 60 d, animals were sacrificed, liver was harvested, and tumor was excised.

PCR. GFP-marked AD-MSCs were monitored in excised and processed tumors by PCR using GFP (5′-GTAAACGGCGAGAACGTCAGTCATGCCAAGTCAGATT-3′ and 5′-GCAGTGGCAAAGTGGAGATT-3′; DQ768212) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 5′-GCAGTGGCAAAGTGGAGATT-3′ and 5′-GCAAGGGGCGGAGATG-3′; XM_973383) primer pairs.

Histology. Histochemistry was performed as reported (26).

Statistics. Data are expressed as the mean ± SD. A two-tailed P value of ≤0.05 from Student’s t test was considered statistically significant by Excel 2003 software (Microsoft, Inc.).

Results

AD-MSC can be genetically modified to express high levels of TRAIL. AD-MSCs were transduced by vector encoding for full-length human TRAIL (MiGR1-TRAIL-GFP) and with control vector (MiGR1-GFP). In both cases, 95% of GM AD-MSCs were obtained (Fig. 1A, left column). FACS analyses show that WT AD-MSC and AD-MSC TRAIL (T:E ratio: 1:1) were treated with 0.8, 1.6, 3.2, and 6.4 μg/mL of neutralizing anti-human TRAIL antibody (PeproTech). HeLa viability was tested by FACS after PI staining.

Animal studies. Eight- to 10-wk-old NOD.CB17-Prkdcscid/J male and female mice (Charles River) were kept in accordance with guidelines under approved protocols. Six groups of mice (n ≥ 3 each) were considered as follows: (a) s.c. flank injected once with 1 × 10^6 AD-MSC GFP; (b) s.c. flank injected once with 1 × 10^6 AD-MSC TRAIL; (c) s.c. flank injected once with 2 × 10^5 HeLa; (d) s.c. flank injected with 2 × 10^5 HeLa and, as soon as an appreciable tumor burden appeared (15–20 d), treated with multiple (n = 3) biweekly intratumor injections of 10^6 AD-MSC GFP; (e) tumor injected as in (d) but treated with multiple (n = 3) biweekly intratumor injections of 10^6 AD-MSC TRAIL; (f) tumor injected as in (d) but treated with multiple (n = 3) biweekly tail i.v. injections of 10^6 AD-MSC TRAIL.

AD-MSC TRAIL toxicity was assessed in groups (a) and (b), particularly considering liver (24). Parameters such as survival, weight, and serum liver enzymes by spectrophotometer (Cobas C501, Roche Diagnostic) were recorded. In groups (c) to (g), weights were weekly measured and tumor sizes were calculated as reported (25): volume = length × width^2/2. After 60 d, animals were sacrificed, liver was harvested, and tumor was excised.

PCR. GFP-marked AD-MSCs were monitored in excised and processed tumors by PCR using GFP (5′-GTAAACGGCGAGAACGTCAGTCATGCCAAGTCAGATT-3′ and 5′-GCAGTGGCAAAGTGGAGATT-3′; DQ768212) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 5′-GCAGTGGCAAAGTGGAGATT-3′ and 5′-GCAAGGGGCGGAGATG-3′; XM_973383) primer pairs.

Histology. Histochemistry was performed as reported (26).

Statistics. Data are expressed as the mean ± SD. A two-tailed P value of ≤0.05 from Student’s t test was considered statistically significant by Excel 2003 software (Microsoft, Inc.).

Results

AD-MSC can be genetically modified to express high levels of TRAIL. AD-MSCs were transduced by vector encoding for full-length human TRAIL (MiGR1-TRAIL-GFP) and with control vector (MiGR1-GFP). In both cases, 95% of GM AD-MSCs were obtained (Fig. 1A, left column). FACS analyses show that WT AD-MSC and AD-MSC GFP do not constitutively express TRAIL; in contrast, gene modification of AD-MSC with TRAIL-encoding vector allows a relevant protein expression by surface and intracellular stainings (Fig. 1A, middle and right columns). Because TRAIL in nature can be released as soluble ligand (14), we wanted to evaluate whether this soluble form could be also produced by AD-MSC TRAIL. A time course experiment (Fig. 1B), started with confluent culture of
AD-MSC TRAIL, allows to detect soluble TRAIL starting from 6 hours (126.8 ± 18.4 pg/mL), and further analyses at 12, 24, and 48 hours show a constant release of soluble TRAIL (up to 366.4 pg/mL).

Having shown that AD-MSC TRAIL express the desired protein, we evaluated whether forced TRAIL production could be followed by death of AD-MSC themselves. Thus, we investigated TRAIL-R1/DR4 and TRAIL-R2/DR5 expression on WT AD-MSC, uncovering that these cells lack TRAIL-R1/DR4 and show low (<26%) TRAIL-R2/DR5 (Fig. 1C). These findings were validated by PI staining (at 24 and 48 hours), which reveals no differences (P > 0.08) in cell death between confluent WT AD-MSC, AD-MSC GFP, and AD-MSC TRAIL (Fig. 1D). Annexin V staining performed to detect early apoptosis (Supplementary Fig. S1A) further indicates that ~85 ± 4% of AD-MSCs are refractory to TRAIL expression, prompting their use in our cancer gene therapy approach.

AD-MSCs are not affected by retrovirus transduction and TRAIL expression. AD-MSCs were then analyzed for known surface antigens and differentiation potentials (27). As shown in Supplementary Fig. S2A, WT and GM AD-MSC express high level of CD90, CD105, CD73 lacking of CD45, CD34, and CD14. In addition, adipogenic and osteogenic differentiation assays indicate that gene modifications do not affect main AD-MSC differentiation pathways (Supplementary Figs. S2B and C and S3A and B). Collectively, these data indicate that the mentioned cell manipulations do not perturb the main AD-MSC features.

AD-MSCs expressing TRAIL display an in vitro antitumor activity in cancer cell lines. HeLa cells have been...
Appropriate text cannot be securely extracted from the provided image.
Figure 2. AD-MSCs producing TRAIL exert a potent cytotoxic effect on a target tumor cell line. A, FACS analyses of TRAIL receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression on HeLa cells. B, in vitro cultures of HeLa alone as control (CTRL; top), HeLa with AD-MSC GFP (middle), and AD-MSC TRAIL (bottom) visualized by both phase-contrast and GFP filter fluorescence microscopy at 1:5 T:E ratio. Scale bar, 200 μm. At 24 h, AD-MSC TRAIL exert a cytotoxic effect on HeLa cells as shown by the presence of cellular debris in culture medium (left; arrows), and this effect is even more prominent at 48 h (right). C, representative FACS plot of PI staining detecting cell death induced by AD-MSC TRAIL at 48 h. Apoptotic cells were identified gating on (red arrow) GFP-negative cells (HeLa). D, cell death by PI staining on gated GFP-negative HeLa cells in coculture with AD-MSC TRAIL, AD-MSC GFP, rTRAIL, and controls. Different T:E ratios have been tested showing significant cytotoxic effects of AD-MSC TRAIL versus AD-MSC GFP both at 24 and 48 h (P < 0.016). Cytotoxicity is maintained up to 48 h (right) when the lowest ratio (1:5) is comparable with rTRAIL at 20 μg/mL (P = 0.9).
cell carcinoma (SRCC). The histologic staining of the starting tumor specimen typically revealed the positivity for TTF-1, CK7, and the lack of CDX2 and CK20 (data not shown; refs. 35, 36). Starting from 4 days after isolation, SRCC in vitro generated cell clusters that rapidly reached the confluence (Fig. 4A, left and middle). Tumor population was constituted by elements with the classic signet ring jeweler aspect characterized by abundant intracellular mucin and a crescentic nucleus displaced at the cell periphery, as displayed by H&E staining of cultured cells (Fig. 4A, right).

We first investigated the presence of TRAIL receptors on primary SRCC population revealing the exclusive presence

![Figure 3. AD-MSC TRAIL specifically induce apoptosis by caspase-8 activation through cell-to-cell contact. A, neutralization of TRAIL-induced apoptosis by anti-human TRAIL antibody diluted in cocultures of HeLa cells and AD-MSC TRAIL at 1:1 T:E ratio. HeLa viability is assayed by PI staining. Untreated HeLa cells were used as control. B, FACS analyses at 8 h of caspase-8 activation on gated GFP-negative HeLa cells in coculture with AD-MSC TRAIL and AD-MSC GFP as control (1:5; T:E). Left, bottom, representative histogram showing the caspase-8 activation on HeLa cells after AD-MSC TRAIL coculture (black line). The addition of specific caspase-8 inhibitor (Z-VAD-FMK, 10 μmol/L) counteracts TRAIL activity inhibiting caspase-8 activation (gray line). Top, caspase-8 activation is undetectable also in coculture of HeLa cells and AD-MSC GFP with or without caspase inhibitor. Columns, mean percentage of caspase-8 activation on HeLa cells in coculture (1:5 ratio) with AD-MSC TRAIL or AD-MSC GFP both with (w) and without (w/o) specific inhibitors (P = 0.003); bars, SD. C, HeLa cells were cocultured in Transwell (TW) plates with either AD-MSC GFP or AD-MSC TRAIL and tested for apoptosis by PI staining.]
of TRAIL-R2 on the SRCC surface (Fig. 4B). Coculture experiments were then performed with GM AD-MSC at 1:5 T:E ratio at both 24 and 48 hours, obtaining a significant amount (up to 59.9%; \(P < 0.005 \)) of PI-positive cells in coculture with AD-MSC TRAIL versus AD-MSC GFP (Fig. 4C). This effect resulted even more prominent than the one obtained with 20 \(\mu \)g/mL of rTRAIL (\(P < 0.001 \)), suggesting that, even on primary cancer cells, TRAIL delivery by AD-MSC may be more effective than the use of the recombinant protein.

In vivo toxicology of the AD-MSC TRAIL approach. Because TRAIL exposure and MSC gene manipulation were associated to side effects (24, 37, 38), we established an in vivo toxicology approach assessing the effect of AD-MSC TRAIL. Firstly, based on the reported TRAIL liver toxicity, mice were s.c. injected once into the flank with \(1 \times 10^6 \) AD-MSC TRAIL or with \(1 \times 10^6 \) AD-MSC GFP alone, and serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was monitored. As seen in Fig. 5A, both AST (21 ± 1 IU/L and 63 ± 29 IU/L) and ALT (6 ± 1 IU/L and 19 ± 10 IU/L) levels were between ranges (39, 40) in both AD-MSC GFP and AD-MSC TRAIL groups. These data are confirmed by H&E staining (Fig. 5B), where there is no evidence of abnormal hepatocytes and inflammatory cell infiltration. In addition, to verify whether i.v. and s.c. multiple (\(n = 3; 1 \times 10^6/each \)) AD-MSC TRAIL and AD-MSC GFP injections might have been linked to toxicity, same tests were repeated, confirming the lack of liver damage (data not shown). To monitor the overall status of treated mice, weight, food intake, and behavior were monitored. As seen in Fig. 5C, both single (left) and multiple s.c. (middle) and i.v. (right) injections of AD-MSC TRAIL or AD-MSC GFP are not affecting animal weight gain (\(P > 0.63 \)). Similarly, food intake and behavior did not reveal pathologic status and necropsies, performed at 60 days, did not provide signs of abnormal GM AD-MSC proliferation.

AD-MSC TRAIL exert an antitumor activity in vivo. To validate in vitro findings and having considered in vivo...
toxicology, xenotransplant models of cervical carcinoma have been established s.c. transplanting 2×10^5 HeLa cells. Tumor burdens started to appear between 15 and 20 days from the inoculum and three doses of AD-MSC TRAIL or AD-MSC GFP (1 × 106 cells/each) were injected. AD-MSC TRAIL inhibit tumor cell growth ($P < 0.006$); on the contrary, both AD-MSC GFP and HeLa alone generate large tumors (Fig. 6A). Similarly, animals treated with multiple ($n = 3$) i.v. injections of AD-MSC TRAIL (1 × 106 cells/each; Fig. 6B) were associated to a reduced tumor burden ($P = 0.01$). Interestingly, early phases (up to 45 days) after AD-MSC GFP injection have been associated to a greater tumor size versus HeLa cells alone. However, at 60 days, this difference disappeared in both s.c. and i.v. injected mice. To validate that tumor growth reduction was due to the presence of injected AD-MSC TRAIL, we were able to detect these cells in tumor samples (Fig. 6C), and to confirm this finding, immunohistochemical analyses performed on tumor sections reveal specific AD-MSC TRAIL localization (Fig. 6D).

Discussion

We here show that GM AD-MSC can be used as a powerful tool in cancer therapy to counteract cancer growth. Others reported the use of BM and cord blood MSC as drug delivery systems (1, 2, 41–47). Dealing with AD-MSC, these cells have been recently used as cancer therapy tools to vehicle prodrug-converting enzyme (13); however, to our knowledge, our strategy represents the very first example of cancer gene therapy based on AD-MSC directly producing a potent proapoptotic agent, such as TRAIL.

Adipose tissue has been selected as source of MSC based on a standardized and minimally invasive procedure from normal subjects and from cancer patients, allowing their use in a hypothetical autologous setting.

To begin with, we show that AD-MSCs without gene modification do not constitutively produce TRAIL; second, we excluded the presence of DR on AD-MSC, which could affect cell survival after TRAIL autocrine production. In particular, we could not detect TRAIL-R1/DR4 and low level of TRAIL-R2/DR5 similarly to what has been described on both BM and amnion-derived MSC (48). Taken together, these data originally indicate that human AD-MSC could be an ideal vehicle to delivery TRAIL.

Because rTRAIL potential is known as well as its capability to selectively induce death on tumor cells, sparing...
Figure 6. In vivo antitumor effect of AD-MSC TRAIL. A, tumor inhibition by AD-MSC TRAIL s.c. injected. A significant reduction of tumor burden is detected in mice treated with AD-MSC producing TRAIL in comparison with both HeLa cells only and AD-MSC GFP. *, *P = 0.006; **, **P = 0.002.

Right, representative tumor specimens taken from a HeLa cell-injected mouse and mouse treated with HeLa and AD-MSC TRAIL. B, AD-MSC TRAIL i.v. injections reduce tumor growth in treated mice. *, *P = 0.01.

C, reporter gene (GFP) amplification in tumors taken from mice treated with AD-MSC TRAIL. The GFP plasmid is the positive control (PC). MK, marker; NC, negative control. GAPDH is used as housekeeping gene. D, representative photomicrographs of anti–GFP-stained (in red) sections obtained from mice treated with HeLa cells (left) or HeLa and AD-MSC TRAIL s.c. Marker, 100 μm. The presence of GFP-positive cells (arrows) within tumor (T) burden confirms AD-MSC TRAIL localization.
normal tissues (16), several protocols based on rTRAIL were introduced as cancer treatment (19). However, a suboptimal half-life in plasma reduces its possible therapeutic effects. Bypassing rTRAIL limitation, agonistic anti-TRAIL-DR antibodies were generated (17). They induce a stronger antitumor effect than rTRAIL after binding to specific DR and overcoming the action of decoy receptors (49). Thought apparently favorable, this property also implies that normal cells are no longer safeguarded by apoptosis-inhibitory mechanisms and become more sensitive to apoptosis. Moreover, anti-TRAIL-DR antibodies have a longer biological half-life than rTRAIL (21 days versus 60 minutes), potentially increasing the risk of side effects (16, 50).

To overcome the mentioned limitations of rTRAIL and anti-TRAIL-DR antibodies, other researchers very recently reported the use of GM human progenitors as tools to specifically deliver TRAIL (45–47, 51, 52). Although these preliminary approaches provided relevant insights about strategies to deliver TRAIL, they mainly rely on adenoviruses that retain limits due to a subefficient gene modification of MSC lacking CAR receptors (45, 53) and to a transient transgene expression (51). Taking into account these limits, we generated a stable retrovirally transduced population of AD-MSC able to constantly produce TRAIL up to 20 passages (data not shown) without signs of abnormal cellular behavior either in vitro or in vivo, as reported by others using adipose and marrow MSC (2, 54).

Most importantly, our data indicate that AD-MSC TRAIL exert a robust cytotoxic effect on target cell lines and, in particular, on HeLa cells. It has been reported that HeLa cells are sensitive to rTRAIL (55); however, this is the first time to our knowledge that a cell therapy approach based on TRAIL has been successfully introduced to induce cervical carcinoma apoptosis. We further validate these data testing other cell lines representative of deathly tumors, such as pancreatic and colon cancers. Moreover, in association with a TRAIL-sensitizing agent such as bortezomib, we originally induce apoptosis in a TRAIL-resistant breast cancer cell line, indicating that bortezomib could be combined with a cell-based TRAIL delivery to successfully target TRAIL-resistant cancers.

In addition, in vitro data dealing with cytotoxicity induced by AD-MSC TRAIL against primary cancer cells indicate how a cell-based TRAIL delivery may be effective for the treatment of incurable cancers. Beside this approach has been tested on a single sample, due to technical issues on primary tumor cell isolation, we retain it may represent a valid proof of concept that certainly merits further validation.

Having shown that GM AD-MSC can simultaneously express TRAIL either as MB protein or as soluble ligand, we show that TRAIL effect is mainly based on a cell-to-cell contact. Even if soluble TRAIL has been detected in the culture media, its low concentration and/or the lack of stable TRAIL trimerization may not be sufficient to trigger cell death, as previously reported (56). Moreover, the TRAIL receptor profile on HeLa, with a predominant TRAIL-R2/DR5 expression, further confirms that cell-to-cell contact is preferred in our system because this receptor is preferentially activated by MB TRAIL (51, 56).

Confirming the in vitro results, two different in vivo delivery models indicate that AD-MSC TRAIL inhibit cancer growth. When directly injected into the tumor burden, AD-MSC TRAIL are integrated within its stroma and generate a cytotoxic cell bundle around tumors, suggesting a nonrandom persistence. Similarly, when iv. injected in a s.c. established tumor, AD-MSC TRAIL maintain an antiproliferative effect. Although with a less prominent effect than s.c. injected AD-MSC TRAIL, the systemic cell infusion significantly reduces tumors. These findings originally suggest that iv. infused AD-MSC can circulate over the lung vascular bed and migrate into s.c. growing tumors, supporting the concept that even AD-MSCs, similarly to other progenitors, home into tumors (1, 13, 45).

We also have to report a more prominent tumor growth in mice treated with AD-MSC GFP in comparison with HeLa alone, similarly to what has been described for WT BM-MSC (57). Interestingly, this trend decreases over time and, in late time points, seems reversible. The reason behind this phenomenon is under investigation; it may be that the ratios between AD-MSC and tumor cells can initially be in favor of a proliferative burst; however, when cancer cells become prevalent, the amount of AD-MSC may not be adequate to feed tumor. Nevertheless, the anti-proliferative effect exerted by TRAIL-producing AD-MSC is able not only to counterbalance the tumor-supportive capacity of AD-MSC but also to determine a powerful inhibitory effect.

Because rTRAIL has been previously associated with liver toxicity (24), we wanted to investigate whether tumor treatment with AD-MSC TRAIL may be similarly related with this side effect. In TRAIL-treated mice, liver enzyme levels are normal and liver histology does not provide evidence of abnormal features.

Conclusively, our data indicate that a cell therapy approach with stably genetically modified AD-MSC delivering TRAIL alone or in combination with sensitizing agents is opening novel therapeutic opportunities for still incurable cancers.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

Ministero Italiano Istruzione Università e Ricerca grants PRIN 2006 and PRIN 2008 (M. Dominici), OTKA-T046665, ETT 576/2006, and OMBF-00257/KKK; National Office for Research and Technology Hungary (I. Petak); NIH grant R01 HL077643 (E.M. Horwitz); Regione Emilia Romagna (P. Paolucci, PRIN 2008 (M. Dominici), OTKA-T046665, ETT 576/2006, and OMBF-00257/ KK); National Office for Research and Technology Hungary (I. Petak); NIH grant R01 HL077643 (E.M. Horwitz); Regione Emilia Romagna (P. Paolucci, P. Conte, and M. Dominici); Associazione per il Sostegno dell‘Epatologia e dell’Oncologia Pediatrica (P. Paolucci); and Fondazione Cassa di Risparmio di Modena (M. Dominici).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked ‘advertisement’ in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 05/21/2009; revised 02/23/2010; accepted 02/24/2010; published OnlineFirst 04/13/2010.
References

44. Uchibori R, Okada T, Ito T, et al. Retroviral vector-producing...

Adipose-Derived Mesenchymal Stem Cells as Stable Source of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery for Cancer Therapy

Giulia Grisendi, Rita Bussolari, Luigi Cafarelli, et al.

Cancer Res 2010;70:3718-3729. Published OnlineFirst April 13, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-09-1865

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/04/13/0008-5472.CAN-09-1865.DC1

Cited articles
This article cites 57 articles, 19 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/9/3718.full#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/70/9/3718.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link:
http://cancerres.aacrjournals.org/content/70/9/3718.
Click on “Request Permissions” which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.