SYSTEMIC DNA DAMAGE RELATED TO CANCER

MEETING REPORT

National Cancer Institute Prostate Cancer Genetics Workshop

PRIORITY REPORTS

Paradoxical Relationship between Chromosomal Instability and Survival Outcome in Cancer
Nicolai J. Birkbak, Aron C. Eklund, Qiuyan Li, Sarah E. McClelland, David Enderfelder, Patrick Tav, Iain B. Tan, Andrew L. Richardson, Zoltan Szallasi, and Charles Swanton

Pancreatic Stellate Cells Radioprotect Pancreatic Cancer Cells through β1-Integrin Signaling
Tine S. Mantoni, Serena Lunardi, Osama Al-Assar, Atsushi Masamune, and Thomas B. Brunner

INTEGRATED SYSTEMS AND TECHNOLOGIES

Role for Stromal Heterogeneity in Prostate Tumorigenesis
Maria A. Kiskowski, Roger S. Jackson, Jheelam Banerjee, Xiaohong Li, Minchul Kang, Juan M. Iturregui, Omar E. Franco, Simon W. Hayward, and Neil A. Bhowmick

Précis: Heterogeneity of stromal TGF-β responsiveness supports cooperative intrastromal signaling and prostate adenocarcinoma progression.

Functional Synergies yet Distinct Modulators Affected by Genetic Alterations in Common Human Cancers
Marina Bessarabova, Olga Pustovalova, Weiwei Shi, Tatiana Serebriyskaya, Alex Ishkin, Kornelia Polyak, Victor E. Velculescu, Tatiana Nikolskaya, and Yuri Nikolsky

Précis: This genetic bioinformatics study reports the development of a cancer model offering a unified perspective on the complex signaling and regulatory networks that comprise different human cancers.

MICROENVIRONMENT AND IMMUNOLOGY

Endoglin Regulates Cancer–Stromal Cell Interactions in Prostate Tumors
Diana Romero, Christine O’Neill, Aleksandra Terzic, Liangru Contois, Kira Young, Barbara A. Conley, Raymond C. Bergan, Peter C. Brooks, and Calvin P.H. Vary

Précis: Findings show how a TGF-β accessory receptor is explored as a therapeutic target acts to support the viability of cancer-associated fibroblasts in the tumor microenvironment, which are key drivers of angiogenesis and growth.

Expression of Id-1 Is Regulated by MCAM/MUC18: A Missing Link in Melanoma Progression
Maya Zigler, Gabriel J. Villares, Andrey S. Dobroff, Hua Wang, Li Huang, Russell B. Braeuer, Takesumi Kamiya, Vladimir S. Melnikova, Renduo Song, Ran Friedman, Rhoda M. Alani, and Menashe Bar-Eli

Précis: Mechanistic findings reveal how an important cell adhesion molecule melanoma regulates metastatic progression.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Precis</th>
<th>MOLECULAR AND CELLULAR PATHOBIOLOGY</th>
<th>PREVENTION AND EPIDEMIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3505</td>
<td>Tumor-Evoked Regulatory B Cells Promote Breast Cancer Metastasis by Converting Resting CD4+ T Cells to T-Regulatory Cells</td>
<td>Purevdojoj B. Olkhanud, Bazarragchaa Damdinsuren, Monica Bodogai, Ronald E. Gress, Ranjan Sen, Katarzyna Wejksza, Enkhzol Malchinkhuu, Robert P. Wersto, and Arya Biragyn</td>
<td>Precis: Findings indicate that tumor-evoked regulatory B cells are crucial for lung metastasis, acting to convert resting T cells to regulatory T cells that promote immune escape in the target tissue.</td>
<td>miR-125b Is Methylated and Functions as a Tumor Suppressor by Regulating the ETS1 Proto-oncogene in Human Invasive Breast Cancer</td>
<td>Increased Survival following Tumorigenesis in Ts65Dn Mice that Model Down Syndrome</td>
</tr>
<tr>
<td>3516</td>
<td>Reprogramming CD19-Specific T Cells with IL-21 Signaling Can Improve Adoptive Immunotherapy of B-Lineage Malignancies</td>
<td>Harjeet Singh, Matthew J. Figliola, Margaret J. Dawson, Helen Huls, Simon Olivares, Kirsten Switzer, Tiejuan Mi, Sourindra Maiti, Partow Kebriaei, Dean A. Lee, Richard E. Champlin, and Laurence J.N. Cooper</td>
<td>Precis: Findings reveal that addition of IL-21 to culture provides an extrinsic reprogramming signal to generate effective T-cell immunotherapy.</td>
<td>Human Glioma Growth Is Controlled by MicroRNA-10b</td>
<td>Evidence That Serum Levels of the Soluble Receptor for Advanced Glycation End Products Are Inversely Associated with Pancreatic Cancer Risk: A Prospective Study</td>
</tr>
<tr>
<td>3528</td>
<td>Unraveling Cancer Chemoimmunotherapy Mechanisms by Gene and Protein Expression Profiling of Responses to Cyclophosphamide</td>
<td>Federica Moschella, Mara Valentini, Eleonora Aricò, Iole Macchia, Paola Sestili, Maria Teresa D’Urso, Cristiano Alessandri, Filippo Belardelli, and Enrico Proietti</td>
<td>Precis: Rapidly growing interest in combined regimens of chemoimmunotherapy is based upon emerging evidence that the efficacy of certain chemotherapeutic agents relies upon coordinate immune stimulatory effects.</td>
<td>Anti-TIM3 Antibody Promotes T Cell IFN-γ-Mediated Antitumor Immunity and Suppresses Established Tumors</td>
<td>Precis: The first antibody targeting investigations for a little studied T-cell co-inhibitory receptor establish single agent activity and mechanism of action in multiple preclinical mouse models of cancer and primary carcinogenesis.</td>
</tr>
<tr>
<td>3552</td>
<td>miR-125b Is Methylated and Functions as a Tumor Suppressor by Regulating the ETS1 Proto-oncogene in Human Invasive Breast Cancer</td>
<td>Yan Zhang, Li-Xu Yan, Qi-Nian Wu, Zi-Ming Du, Jing Chen, Ding-Zhum Liao, Ma-Yan Huang, Jing-Hui Hou, Qiu-Liang Wu, Mu-Sheng Zeng, Wen-Lin Huang, Yi-Xin Zeng, and Jian-Yong Shao</td>
<td>Precis: This study identifies an oncogenic transcription factor as a key target of a tumor suppressive microRNA that is downregulated in various types of invasive cancer, including breast cancer.</td>
<td>Precis: Findings characterize the oncogenic functions of microRNA-10b in glioma biology by in silico, in vitro and in vivo approaches.</td>
<td>Increased Survival following Tumorigenesis in Ts65Dn Mice that Model Down Syndrome</td>
</tr>
<tr>
<td>3563</td>
<td>Human Glioma Growth Is Controlled by MicroRNA-10b</td>
<td>Galina Gabriely, Ming Yi, Ravi S. Narayan, Johanna M. Niers, Thomas Wurdinger, Jaime Imitola, Keith L. Ligon, Santosh Kesari, Christine Esau, Robert M. Stephens, Bakhos A. Tannous, and Anna M. Krichevsky</td>
<td></td>
<td>Event That Serum Levels of the Soluble Receptor for Advanced Glycation End Products Are Inversely Associated with Pancreatic Cancer Risk: A Prospective Study</td>
<td>Precis: Mouse model studies offer compelling biological evidence that trisomy in Down Syndrome is protective against cancer, extending survival through multiple mechanisms.</td>
</tr>
<tr>
<td>3573</td>
<td>Increased Survival following Tumorigenesis in Ts65Dn Mice that Model Down Syndrome</td>
<td>Annan Yang and Roger H. Reeves</td>
<td>Precis: Mouse model studies offer compelling biological evidence that trisomy in Down Syndrome is protective against cancer, extending survival through multiple mechanisms.</td>
<td>Evidence That Serum Levels of the Soluble Receptor for Advanced Glycation End Products Are Inversely Associated with Pancreatic Cancer Risk: A Prospective Study</td>
<td>Precis: This prospective study suggests that soluble forms of the receptor for advanced glycation end-products, a molecule with anti-inflammatory properties, might prevent pancreatic cancers thought to be driven by proinflammatory stimuli.</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Abstract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3590</td>
<td>Bel-2 Inhibits Nuclear Homologous Recombination by Localizing BRCA1 to the Endomembranes</td>
<td>Corentin Laulier, Aurélia Barascu, Josée Guirouilh-Barbat, Gaëlle Pennarun, Catherine Le Chalony, François Chevalier, Gaëlle Palierne, Pascale Bertrand, Jean Marc Verbavatz, and Bernard S. Lopez</td>
<td>Précis: Findings suggest a new tumor suppressor function and new mode of regulation for BRCA1, with general implications for understanding the role of homologous recombination in the maintenance of genome stability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3603</td>
<td>Deciphering the Molecular Events Necessary for Synergistic Tumor Cell Apoptosis Mediated by the Histone Deacetylase Inhibitor Vorinostat and the BH3 Mimetic ABT-737</td>
<td>Adrian P. Wiegmans, Amber E. Alsop, Michael Bots, Leonie A. Cluse, Steven P. Williams, Kellie-Marie Banks, Rachael Balli, Clare L. Scott, Anna Frenzel, Andreas Villunger, and Ricky W. Johnstone</td>
<td>Précis: An extensive analysis of the basis for cancer cell death synergy between two important new classes of molecular targeted therapies stimulates interest in evaluation of their clinical combination.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3616</td>
<td>Epigenetic Silencing of MicroRNA-203 Dysregulates ABL1 Expression and Drives Helicobacter-Associated Gastric Lymphomagenesis</td>
<td>Vanessa J. Craig, Sergio B. Cogliatti, Hubert Rehrauer, Thomas Windisch, and Anne Müller</td>
<td>Précis: Progression of H. pylori-associated gastritis to gastric MALT lymphoma is epigenetically regulated by promoter methylation of a microRNA that regulates the ABL oncogene.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3625</td>
<td>Following Cytochrome c Release, Autophagy Is Inhibited during Chemotherapy-Induced Apoptosis by Caspase 8–Mediated Cleavage of Beclin 1</td>
<td>Hua Li, Peng Wang, Quanhong Sun, Wen-Xing Ding, Xiao-Ming Yin, Robert W. Sobol, Donna B. Stolz, Jian Yu, and Lin Zhang</td>
<td>Précis: This study provides direct evidence that cleavage of Beclin 1 by caspases functions as a critical switch for turning off autophagy for effective killing of cancer cells.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3635</td>
<td>The Dual EGFR/HER2 Inhibitor Lapatinib Synergistically Enhances the Antitumor Activity of the Histone Deacetylase Inhibitor Panobinostat in Colorectal Cancer Models</td>
<td>Melissa J. LaBonte, Peter M. Wilson, Will Fazzone, Jared Russell, Stan G. Louie, Anthony El-Khoueiry, Heinz-Josef Lenz, and Robert D. Ladner</td>
<td>Précis: Findings provide a preclinical rationale to combine HDAC inhibitors with EGFR and HER2-targeted therapies in clinical trials seeking to improve colorectal cancer treatment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3649</td>
<td>Contribution of Abcc10 (Mrp7) to In Vivo Paclitaxel Resistance as Assessed in Abcc10−/− Mice</td>
<td>Elizabeth A. Hopper-Borge, Timothy Churchill, Chelsy Paulose, Emmanuelle Nicolas, Joely D. Jacobs, Olivia Ngo, Yehong Kuang, Alex Grinberg, Heiner Westphal, Zhe-Sheng Chen, Andres J. Klein-Szanto, Martin G. Belinsky, and Gary D. Kruh</td>
<td>Précis: This is the first study to define an ATP-binding transporter other than P-glycoprotein that mediates cytotoxic sensitivity to taxanes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3658</td>
<td>STAT3 Mediates Resistance to MEK Inhibitor through MicroRNA miR-17</td>
<td>Bingbing Dai, Jieru Meng, Michael Peyton, Luc Girard, William G. Bornmann, Lin Ji, John D. Minna, Bingliang Fang, and Jack A. Roth</td>
<td>Précis: This study suggests strategies to overcome resistance to MEK kinase inhibitors which are presently being evaluated in clinical trials.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3669</td>
<td>Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis</td>
<td>Caterina Nardella, Andrea Lunardi, Giuseppe Fedele, John G. Clohessy, Andrea Alimonti, Sara C. Kozma, George Thomas, Massimo Loda, and Pier Paolo Pandolfo</td>
<td>Précis: Findings suggest clinical evaluation of S6 kinase inhibitors in a subset of adrenal gland tumors lacking the tumor suppressor PTEN.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TUMOR AND STEM CELL BIOLOGY

Effects of Carbon Ion Beam on Putative Colon Cancer Stem Cells and Its Comparison with X-rays
Xing Cui, Kazuhiko Oonishi, Hirohiko Tsujii, Takeshi Yasuda, Yoshitaka Matsumoto, Yoshiya Furusawa, Makoto Akashi, Tadashi Kamada, and Ryuichi Okayasu

Précis: This is the first study to show that carbon ion beam therapy may have advantages over photon beam therapy in targeting cancer stem-like cells for destruction.

ΔNp63 Versatilely Regulates a Broad NF-κB Gene Program and Promotes Squamous Epithelial Proliferation, Migration, and Inflammation
Xinping Yang, Hai Lu, Bin Yan, Rose-Anne Romano, Yansong Bian, Jay Friedman, Praveen Duggal, Clint Allen, Ryan Chuang, Reza Ehsanian, Han Si, Satrajit Sinha, Carter Van Waes, and Zhong Chen

Précis: Mechanistic findings reveal how the interaction of two key epidermal regulatory transcription factors orchestrate inflammatory changes characteristic of injury and malignant transformation.

Does the Hepatitis B Antigen HBx Promote the Appearance of Liver Cancer Stem Cells?
Alla Arzumanyan, Tiffany Friedman, Irene O.L. Ng, Marcia M. Clayton, Zhaorui Lian, and Mark A. Feitelson

Précis: This work establishes a link between chronic HBV infection and liver cancer by showing that the virus oncoprotein, HBx, promotes the appearance of “stemness” markers.

PHLDA1 Expression Marks the Putative Epithelial Stem Cells and Contributes to Intestinal Tumorigenesis

Précis: A novel marker of epithelial stem cells is suggested that functionally contributes to the migration and proliferation in colon cancer cells.

Interaction between FGFR-2, STAT5, and Progesterone Receptors in Breast Cancer
Juan P. Cerliani, Tomás Guillardinoy, Sebastián Giulianelli, José P. Vaque, J. Silvio Gutkind, Silvia I. Vanzulli, Rubén Martins, Eduardo Zeitlin, Caroline A. Lamb, and Claudia Lanari

Précis: This study shows that activated nuclear FGFR-2 interact with hormone receptors and STAT5 to induce hormone related breast cancer growth.

Correction: Oncogenic Synergism between ErbB1, Nucleolin, and Mutant Ras

ABOUT THE COVER

Breast cancer induces the generation of regulatory B cells (tBregs) from resting B cells. As a result, tBregs convert T cells into Tregs which infiltrate CCL17/CCL22-expressing lungs to protect metastasizing cancer cells from NK cells. For details, see the article by Olkhanud and colleagues on page 3505 of this issue.
Cancer Research

71 (10)

Cancer Res 2011;71:3435-3732.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/71/10

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/71/10. Click on “Request Permissions” which will take you to the Copyright Clearance Center's (CCC) Rightslink site.